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Surfaces characterized by certain special
properties of their directrix congruences.

(By Cnester H. Yeatown, Evanston, I1l.)

INTRODUCTION.

The projective differential geometry of non-developable surfaces, as de-
veloped by WiLczynskr (¥, is based on the theory of the invariants and co-
variants of a completely integrable non-involutory system of partial differ-
ential equations of the second order, which may be reduced to the canonical
form (**) v
Yo +2by, [y =0,

- 1)
Yo +20 Yy, +gy=0, | (

where ', b, f, g are analytic functions of the independent variables « and v,
and satisfy the integrability conditions
¢+ 0.+20.b+4d b, =0, )
bo+f4-2a'b, +4a, b=0, ' )
G +2bg, +4bg—f.—2df, —4a', f=0. '

The canonical form of such a system is left invariant by all transformations
of the infinite group (**) .

y=kVo. by, w=9(m, v=4¢(), (3)

(*) E. J. WiLczynski, Projective differential geometry of curved surfaces. Five memoirs.
Transactions of the American Mathematical Society, 1907-9. We shall hereafter refer to these
as First Memoir, etc. ’

(**) First Memoir, p. 246.
(***) First Memoir, p. 256.
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where ¢ (1) and ¢ (r) ave arbitrary functions of their respective arguments and
where % is an arbitrary constant. An integral surface S, of system (1) is
obtained by interpreting four linearly independent solutions

His Yzv Yss Yu»

as the homogeneous codrdinates of a point P, and, since the most general
solution of system (1) is of the form

Y==C i+ Colfy F=Catfs+Colfys

where ¢, . ¢,, ¢,, ¢, are arbitrary constants, it follows that all of the integral
surfaces of system (1) constitute a class of projectively equivalent surfaces.
On each of these surfaces the parametric curves are asymptotic lines (¥).

Through an arbitealy peint-P, of an integral surface S, there pass two
asymptotic curves. The tangents at five neighboring points of either of these
curves, in general, determine. as the five points approach coincidence at P, .
a definite linear complex which is said to osculate the curve at the point P,.
Since a straight line on a swrface is always an asymptotic curve, at least
one of the osculating linear complexes is indeterminate at a point of such
a line; we shall, therefore, exclude integral surfaces which are ruled, that
is, we shall assume that " and b are not identically zero (**). The two com-
plexes thus associated with a point P, of a non-ruled surface have a linear
congruence in common. This congruence is made up of the lines which
intersect a certain pair of lines: one of these lies in the tangent plane at P,
and is called the directria of the first kind, while the other pierces the sur-
face at P, and is called the directrir of the second Ekind (***). These direc-
trices ave hereafter designated as « and d' respectively. As P, ranges over
the surface, the lines 4 and d generate two congruences, called directrix
congruences of the first and second kinds (****) and designated as G and @'
respectively. It turns out that the developables of the two congruences are
determined by one and the same net of directrizc curves on §,.

In the present paper we obtain the conditions under which one or both
of the focal sheets of the congruence G are curves. Limiting our discussion

(*) First Memoir, p. 244

(**) First Memoir, p. 260,

(***) Second Memoir, p. 95,

(****) Second Memoir, p. 114,
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’

to the class of surfaces charvacterized by the vauishing of a certain inva-
riant M, we then show that if the directrix curves form a conjugate system
and are distinct from the asymptotic curves, the cougruence G' may be
linear; finally, we obtain the finite equation of a surface S to which all -
surfaces having these latter properties are projectively equivalent. The writer
takes this opportunity to thank Professor Wrnezyyski for his interest and
guidance in the work leading to this paper.

I. INTRODUCTION OF A NEW LOCAL TETRAHEDRON
OF REFERENCE AND SIMPLIFICATION OF THE CONDITIONS OF INTEGRABILITY.

The fundamental semi-covariants of system (1) are

Yy, 2=y, p=4¢., 9=y, (). (4)

In the second memoir the directrix d' is determined by the points P, and. P,.
where
T=—dabz—u, bo4+2a b

The two focal points P’, and P’, on o, that is, the points in which
touches the focal surface of the congruence &, are given hy the expressions

)‘l.{/"_!"l T, )‘:!/’l"\""z‘ra (|U'I7 oy == 0). (9)

where A, :p, and 7,:p, are the two roots of the quadratic equation (**)

WY, L C o, s )
(7)‘*“’(32&/"’326 2a'b+ o) e T .
c Ik S 6)
e | Y A Y ol (N2 . ATy —
S hatb (32a'+3°26 2a b—|—ara) o (M4 @ bLN) =0,

where the notation is the same as that used in the second memoir, and

*) "The points Py, Pz, Po, Ps determine the local tetrahedron of reference used in

the second memoir.
(**) Equation (143) of the second memoir has been put in this form by using equations

(148) and (149). Equation (148) should read 8 M =a'b (« r—h (),
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where in particular

’

a
a=7i, p =
2a P

B

b’ ) (7)
=16’ (a«, — 24a’'b), C'=16b(, —2a’d). S

(8=

If, now, we put
c L ) , ‘
T =30, 394 “—’(”J+7~P=Q(1..-|—Pu)——4ab+¢3, (8)

the roots of (6) are

’;zu_wbyjuﬂ% VM3 bL N,

‘1

A -
2 =%4'by— M*+4-a'bL N,

|
Vg 2a’b \/
and the expressions () become

Q—J?Jﬂ?—t—a'bLNy—l—Qa’byy—kr, )

1 ©

TS
9ah \/M +abLNy+2a'byy—+ )

From the form of (9) it follows that the focal points P’, and P’, on d’
are harmonic conjugates with respect to the points P, and P,, where ¢ is
given by ‘

’ 2a’byy+ -,

or, since we are using homogeneous codrdinates, we may take
t=yy—Pz—ag+o. (10y

The directrix d is determined by the points in which it intersects the
asymptotic tangents, that is, by the points P, and P, where

p=—2y+2z q=—pby-+o (11)

Since the tetrahedron P, P, P, P, is non-degencrate (*), except for certain

(*) Second Memoir, p. 80,
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singular points, the expressions (10) and (11) show that the four points P,,
P,, P,, P, determine a non-degenerate tetrahedron which may be used as @
local tetrahedron of reference. The unit point is so chosen that the point P,
whose codrdinates in the local system are (x,, «,, x,, ®,), shall be given
by the expression-

=0+, p+ a9+, L.

Let P, be displaced t0 Pyjeautear; the corresponding directrix of the
second kind joins this point to the point Piys,auyrae - By direct computation,
we find

t.=Py+Qp+Rq+St, t=Py+Qp+Rqg+S5t, (12)
where we have put .
P =y +%ay—af—rf—2af—bf+2bg—fi+2d,b,
Q =y —B— aB+hab=— b (. —a),
R =—o"—o,—b—f
S =—a,
Py 428y —af—ap —2af —a,at+2a f—g,+2ab,,
¢ ——F—B—da.—g
R=y—o—af+ba'b= g (B —2),
S’ '=—F
An arbitrary point of the displaced directrix will be given by
' (y+ezdu-odo)y+a' (t+¢t, du—t do)
The coordinates of such a point are, therefore,
o, =m' (1 +adu—+pdv)+n (Pdu—+ P dv),
o =m' du—+n(Qdu—+ Q dv),
X, =m'dv+n' (Rdu—~+ R dv),
x, = wW({l+Sdu+ S dv).
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This point will also be a point of /', if its codrdinates satisfy the equations

' Wy = g = 0,
that is, if

mdn—+ 1 (Qdu+ @ dv)y=\0, % (13)
m do—+ 1 (Rduw+ R dv)=0, |
whence
dat Qdu—+@Q dwv 0
dv Rdu—+ R dv 7
or
Cdur +2Mdude+Ndo' =0, (14)
where we have put
LR — 2 - — l ’
V= ——d—z,,—b7—f——m]—1,
, { L -
M=R =—-Q= o (Bl,—d,‘)=m M, (IO)
Sy . !

Equation (14) is the differential equation of the directrix curves on S, (*).
The net of directrix curves degenerates into a one-parameter family only

when
R =W — YN (16)
vanishes.
Considered as equations in du and dv, system (13) will be consistent
if, and only if, .
w + Qn Q 0
R w =R

or
m — N =0.
Hence, the focal points P', and P’y on d' are given by

M, =Ryt W,=—Ny+1, (17)

respectively, where M is one of the square roots of M* — ¢ M,

(*) CE. Second Memoir, equation (137).
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We next consider the directrix congruence ¢. The directrix d belonging
to the point P, is the edge P, P, of the tetrahedron of 1etelence An arbitrary
point of the displaced duectw( deter mmed by the points Ppyp,autpae and
Pytqudutqav, 18 given by

m(p+p. du+p dv)y+n(g+q,.du—+q, dv).
But, differentiating (11) and reducing, we find

Po=82y—ap—2bq, p = (9JI+80)J+£:1)—1—t é
' (18)

A

q,,=(9.'t-g—b)y+aq+t, ¢ =—Ry-—-2dp—pg,
so that such a point has the coordinates

&y = [" du — (8)I+bc )dv]—l—n [(ﬂ)l—%)du—mdv]

w,=m(l —adu—+pdov)— ‘ﬂd’aztl v,
u'az—Qbmdu—l—n(lv +adu—pdo),
@, = mdv—+ ndu.

This point will lie on the directrix d if, and only Iif,

, »
7 —{—nl(iﬂ?——ﬁ)du—sﬁdv] —0, 3 o

x, =m [“ du ~(§)R—g~gc )dv

ty=mdv—+ ndu=0.

As equations in m and n, these are consistent if, and only if, du and dv
satisty equation (14); that is, the curves defined by (14) delermine the devel-
opables of both directrixz congruences. If system (19) is to be consistent when
we regard du and dv as variables, we must have

Em-i—(im gb) (9)?+8C)m—5‘u _o,
n n
or
L —2Mmn+ N u*=0. (20)

Therefore, the focal points P, and P, on d are determined by the expressions

I, =M-+R)p+ Yyq, o, =(M—N)p+ Lq. (21)
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Further, the coincidence of the two one-parameter families of directrix curves
is the necessary and sufficient condition for the coincidence of the two focal
sheets of either directric congruence.

The introduction of the invariants € and R enables us to simplify the
integrability couditions (2). Substituting the values of g, and f, as obtained
from (*)

f=—oa*—a,—b —¢ g=—0p —p —d,+ N, (22)

in the first two of equations (2), we find

— 288, —B.. +N, +2a, b+4a'b =0,

(23)
—2aa,—a, — & +2a'b, +4a,b=0.
But the differentiation of (7) gives
C, =16a’ (oc"',_ +2a2,—2a'b, —44d,b), ? (1)

0, =16b (6, + 2B, —2a'.b —ba'd,). §
Thus equations (23), that is, the first two integrability conditions become
166%N, — C'. =0, 16a'®, + C,=0. (25)
Further, differentiating the first two equations of (2), we have
Go=— ., —2d,0—2d,b,—4a',b,—4a'b,,,

fo. =—5, —2a'b,—2a"b,—4a' b, —4a,, b

"

These together with the values of f, and g, as obtained from (22), substituted
in the third equation of (2) give

-+ b+ (@2, +)+2a Qaa, 4, + L) — 2
—4b, (BB, —N) —2b(2BB, + B —N)=0. )

' al, fe., L] du. 3d.d. | @l
. =|lag) | =20 247, =20 — 2a® &

and therefore,

(26)
But

— e+ 40 () + 20 (2aa, +«,)=0.

(*) Cf. Equations (15).
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Similarly
b, — &b, (B +8)—2b(2BE +B.) =0.
Hence equation (26), that is, the third integrability condition hecomes
2/ ¢4 a'V, +2b,N+DN, =0
or, multiplying by a'b, we find
" b(a” 9, + « (B*N), =0. (27)
Referring to equations (157) (*) of the second memoir and (15) of the present
paper, we have '
2°a” =", 2°p* M= —0, (28)
where § and 6 are the invariants of weight four of the osculating ruled
surfaces of S, (**). Using (28) we obtain
. bh,—a' b, =0 (29)
So that the integrability conditions (2) can be written in the simpler form
given by (25) and (29). ’

These results enable us to simplify the expressions for ¢, and f, given
by (12). In fact, substituting from (8) and (22), we have

—_

P= 5 B..— )+, —a)+2(0, + 200, —4a',b—2a"b,) +

9
+2b (B b+ + g+,
which, by means of (15), (24), and (25), reduces to

P=M +2aM—¥, +2bN
Similarly
P =M —26M4+N, —2a’V.

In order to simplify certain of our later results, we write

P—P+2aM—28¢, P=P —2M+2aN. (30)

(*) These equations should read b0=64L and o'0'=64 N.
(**) Second Memoir, pp. 81, 82.



10 Chester H. Yeaton: Surfaces characterized

The expressions (12) now hecome
L= —2aM4+2pY) y—Mp+ ¥ ¢—oat,

(31
=P 4-2M—2aMy—Np+Mg—F(t. )

2, CONDITIONS FOR DEGENERACY
OF THE FOCAL SURFACE OF THE DIRECGTRIX CONGRUENCE
OF THE SEGOND KIND.
The locus &', of the focal point P’, on the directrix 4’ will degenerate
into a curve if, and only if, ', satisfies a partial differential equation of the
form (*)

b, 4+ E(,), + F(W,), =0, . (32)
where D, E, and F are funclions of u and ¢ and where (1)), and (11',), denote
‘% and 68_111:, respectively. By direct computation from (17) and (31), we
have .
nw, = Ny 4t
(M), =M, +aN 4P —2aM4-26 V) y+ (N —M) p+ Lq — ot (33)
(), =M, LN 4P +28M—2aN)y— Np +(>)t—|—>))t)q—{:t.\
The existence of a relation of the form (32) requires that the matrix

n 0 0 1
Ny aM+P —2a M2 R—M ¢ —

M, AERAPF26M—2aN —N NLM —p
be of rank not greater than two. Let D, denote the third order determinant
obtained by omitting the i column of this matrix. We find
D, =N — M 4 ¢N =0,
D, =MPAMMN, —MN) 4+ (RN, 4+ MP — v,
Dy=—RP 4NN, —MNR,) — (NN, 4+ NP — M),
D= N (R — M- v Ny = 0,

(*) First Memoir, p. 237,
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Hence, S', degencerates ,if, «and only if.
D,=D,=0. (3%)
From (17) it follows that the corresponding expressions for the point P’
can he obtained from the above by replacing % by — M. That is, the locus
S', of the point P’, degenerates if, cid only if,
Dy= — (NP +MR, —YN) MR, +MBP—¢P) =0,

(35
Dy—= MF RN, —MR) — NN, +NE — M) =0, )

If % =0, then couditions (3%4) and (35) are identical and, provided that M ==0,
they reduce to the single equation

MW =W =0, (36)
If S, and §', are distinct but degenerate, then (34) and (35) give
RP+MN, —vR, =0, REANN, —MN, =0, (37)
RN, +MB— ¢ P =0, RN, + NP —MP =0. (38)
But, multiplying equations (37) by W and — ¥ respectively and adding, we
find
MEON, +MP — vy =0;
also, multiplying by % and — M respectively and adding, we get
NENM, NP — M) = 0.
That is, assuming 2 ==0, equations (37) imply equations (38). Conversely,
(37) follow from (38). The two systems are, therefore, equivalent and either
may be taken as the conditions of the problem. This may be expressed as
follows:

The focal sheets of the directriw congruence of the second kind are distinct
and reduce to two curves if, und only if,

MM, 4= MR — W =0 \
: M- = 0. ( (39)
NN, R — W = 0, \

If they coincide, the-focal surface is the locus of the vertex P, of the local
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tetrahedron and this locus degenerates only if

MP— P =0,

N =0. ! (40)
. NP — MP =0, 5

3. CONJUGATE DIRECTRIX CURVES,

Thus far the values of the invariants ¢, M, and N have heen unre-
stricted, but we now limit our discussion to the case

M =0,

that is, we shall consider only those surfaces S, on which the directrix
curves, if determinate, form a conjugate system. Among these surfaces we
propose to discuss those cases for which the focal surface of the congruence
G degenerates and to study in detail the conditions under which this con-
gruence is linear. There are three cases to be considered.

Case I. First let us suppose ’

Y=M=N=0.

This is the case of indeterminate directrix curves-(*). Expressions (17)
and (21) show that the focal points on d’ coincide with P,, while those on d
are indeterminate. The conditions for the degeneracy of the focal surface
of the congruence ' are satisfied identically. Wivczynskr has shown that
the point P, remains fixed in space and that d lies in a fixed plane. This
directriz point and directrizc plane are respectively the focal surfaces of the
directrixc congruences (' and G which they determine; they are in united po-
sition only when the asymptotic curves belong to linear complexes (*¥), in
which-case they are corresponding elements in any one of the null systems
determined by these osculating linear complexes.

(*) E. J. Wirczynskl, Ueber Flicleit mit unbestimmten Direktrixkurven. Mathematische
Annalen, December 1914.

(**) C. T. SULLIVAN, Properties of surfaces whose asymptotic curves belony to linear com-
plexes. Transactions of the American Mathematical Society, Vol. XV (1914).
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Case II. If
C==0, M=N=0,

the two directrix curves through the surface point P, coincide with the asymp-
totic curve u = const. The focal points on the directrix d' coincide at P,;
moreover, the locus of this point cannot degenerate into a curve, for con-
ditions (40) now hecome

2a' ¢ =0,

-

which cannot be satisfied since ¢ =j=0 and the surface §, is not ruled. Expres-
sions (21) show that the focal points on the directrix d coincide with the
vertex P, of the tetraliedron of reference. From (18) it follows thal the expres-
sion ¢ satisties an equation of the form ‘

Dg+Eq,+Fq =0,

where D, E, and F are functions of » and », only if the matrix

0 0 1 0
C’ .
— 3% 0 7. 1
) —2¢ —p O

is of rank not greater than two. But the determinant obtained by omitting
the first column has the value — 2a’; this cannot vanish identically and the
matrix is, therefore, of rank three. That is, the locus of the vertex P, cannot
degenerate into a curve. These results may be summarized as follows:

If the two one-parameter families which form the net of directrix curves
coincide with each other and with the asymptotic curves u = const., then the
two focal sheets of the congruence G' coincide with the swrface S,, while those
of the congruence G coincide with the surface S,, which is the locus of the
intersection of the directrix d of the point P, and the tangent to the asymp-
totic curve w = const. Furthermore, neither of these focal surfaces can degen-
erate info a curve.

By symmetry we find a similar theorem for the case

e=M=0, N==0.
Case III. Finally suppose
e==0, M=0, N==0.
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The directrix curves constitute a non-degenerate conjugate net on the surface
S, and the two focal sheets of either directrix congruence are distinct. In order
that the directrices d' may intersect two distinct curves, we must have, on
account of (39),

MR, —v (N, —2a' ¢ 42aN) =0, ) (1)

NN, —N(C, —2bN +262) =0, §
where, now,

N=—¢N. (42)

We proceed to require these focal curves to he straight lines, so that the
directrix congruence G’ bhecomes linear. Since ¢ and N are different from
zero, neither set of parametric curves can be directrix curves; in particular,
then, the focal points P’, and P’, on & must trace the above mentioned
straight lines whenever the surface point P, moves along a curve » = const. -
So that, in addition to conditions (41), the expressions I’ and 11', must each
satisfy an equation of the form

Dn+En,+ Fu,, =0, _ (43)

where D, E, and F are functions of « and ». Putting M =0, we tind from (33)

n, = R y o+ ot

('), =(MN,+aN—v,426N) Y+ N P+ Q q— o ¢

(1)), = | (9, o — ¢ - 2BRY, - -(C-2?)R— %] Y2, — € A-26R) (¢, — 26T (€45 —, ).

Cousequently 11, satisties a relation of the form (43) ounly if the matrix

0 : 0 0 |
N AaN —C+2bN o Q —

Q@ (1
(-‘ﬁ,‘—l-a.?\i——\’,.—l—clbgﬁ),‘—i—oﬁ]?,,—|—(\’—|—a"')?JE-\gcb IN, — 20N ¥, —2bN Vo —a,

is of rank less than three. In particular, the delerminant

: z \
D, = " ‘ =N, 2N, 4L
2M, — Y, +206M v, —2b0

must vanish. Similarly, if ', is to satisfy a relation of the form (43), the
matrix obtained from (44) by replacing ® by — N must be of rank less than
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three and, in particular, the determinant
— R {

D', = =—(Ny, —29N,v)+ Ly,
—2R, — v, 426N ¢, 420N | ( )+

must vanish. The vanishing of D, and D', gives
Q.=0, MNv,—2M, =0, (45)
the second of which may be written in the form
R, — (W), € = 0.

Whence, by means of (42), it follows that

Conditions (45) imply, therefore, that ¢ and N are functions of u aloue
and v alone, respectively; that is, '

V=t (), N =N(v).

Moreover, ¥ and M are invariants such that if the system (1) is transformed
by means of (3), we have
1

(]

T

2|

3

¢, @:é%

By choosing ¢ («) and ¢ (v) so that

Go=L(u), $j=—N(v),
‘we can make

* Let us assume that this transformation has already been made; the
only transformations of form (3) which will not disturly the normal system
obtained in this way, are those for which

on=1{¢; = 1. (46)
Putting ,

in (41), we find ‘
o +a=0, b+ p=N0. (48)
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Similarly the third integrability condition (27) reduces to
o, —b,=0. (49)
This, combined with (48), gives

0=d,—b,=2(@a—bp)=—2(a” —0").
Hence, either
@ —b=0 (50)
or
a4+ b=0. (51)

These cases are not essentially distinet. For, let us suppose that
' o +b=0.
Since @’ and b are relative invariants such that the effect of the transfor-

mation (3) upon them is given by the equations (¥)

PR RNV o 2
o = d, b=1-0,
¢ Pu
we shall have

’ ’

o =a, b=-—b,
if we choose, consistent with the restrictions (46),

fo=—tb =1
We shall then have

ad—b=0.

Therefore a transformation of form (3) and satisfying the restriction (46),
reduces (51) to (50), and we need consider only the case

a,'=b=—-—a.=—ﬁ, ‘;’=—Sﬁ=1, (5@)

the condition M = 0 heing implied by the equ‘ality o =b.
As a result of (52), we find

and, by means of (7),

(*) First Memoir, p. 249.
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so that the first two integrability conditions are satisfied identically. Further,”
the matrix (44) and the corresponding matrix for the expression I, become

L 0 0 1
—3b 1 1 b
L +70 — 20 —2b 1—b
and
— I 0 0 - 1
—b — 1 | b
—1+¥ —92b 20 l—bgl

- respectively; each is of rank not greater than two. That is, as a consequence
of (52), the integrability conditions are satisfied and both I’; and 11, satisfy
equations of the forms

: Du +En, +Fn, =0,

Dnu+E'n,+ F'n,, =0,

where D,..., F' are functious of » and v. Hence, the directriz congruence '
is linear if conditions (52) hold. .

The conditions (52) enable us to determine the coefficients of system (1)
explicitly as functions of » and v. In fact, we find

b,=b,=—20, (99)
whence

b — ; .
2(u—+ v)+k

where k is an arbitrary constant. Without disturbing the simplifications already
secured, we may make the transformation

\

J
ﬁ=u+9‘~, p=0

of the independent variables, so that

1

b=g—="

2 (w—+v)
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Assuming this transformation already made, we may write

W
2 (w4 v)
The conditions
Y=—MN=1

_determine the coefficients f and g. These results are summarized in the
theorem.

Every swrface with conjugate directria curves ihose divectrix congruence
of the second kind is linear, is determined, except for a projective transfor-
mation, as an integral surface of the completely integrable system of partial
differential equations

-

Y. +2by. +fy=0, (56)

Yoo +2a y,+gy=20,
where .
(lr'=b=—l—- f=g9g=—1—"b, (D7)
2 (1 )
the curves w = const. and v = const. being asymptotic lines. Since the coefti-
cients of (56) involve no arbitrary elements, all such surfaces are projectively
equivalent.

4. THE ANYMPTOTIG GURVES ON THE INTEGRAL SURFACES OF SYSTEM (36),
THE DIRECTRIX CONGRUENGE G.
SYSTEM (96) REFERRED TO THE DIRECTRIX CURVES.

We proceed to study the class of surfaces S, detined by the theorem
just stated. From (56) we find ax the differential equation of the asymptotic
curve u = const.

Yoo + 20y, —2L 30y, — 401 =30y, + (1 +20° — 15Dy = 0.
The dependent variable being transformed by means of

| -
Y= -—=—=1.
Y \'u+va
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{this equation becomes
Voor — 2+ = 0. (58)

[ts invariants are constants, in particular,

16 16*

by =0, =0, 0 =g

We may recapitulate as follows.

All of the asymptotic curves w = const. are projectively equivalent to each
other. Each of them is anharmonic and belongs to a linear complex (*). and.
therefore, lies on «a quadric (**). Besides, each is identically self-dual; in fact,
any point of the cirve and the osculating plane at that poinl are correspond-
ing elements in the null system deternvined by the linear complex to which
the curve belongs.

Similarly, the asymptotic curves ¢ = contst, are characterized by the dif-
ferential equation .

Yowre = 2Yus +y =0

Its invariants have the same constant values as those of equation (58) and,
consequently, the curves of the two families of asymptotic curves are projec-
tively equivalent to each other.
According to (21) the foeal points P, and P, on the directrix d are given
by the expressions
1, =p +q, I,=—p-+gq, (59)

which show that the focal points on d are harmonic conjugates iwith respect
to the intersections of d and the corresponding asymptotic tangents. Further,
the differential equation of the directrix curves (14) reduces to

dw —dvi=0,

(*y C. T. SunLwvan, L c.. p. 175. His conditions (15) may he written

o e 0 and Q" o
=—g==0 and =y~

0.
8a

These are satisfied as a result of (5%) of the present paper.

**) E. J. WiLczynskl, Projective differential geometry of curves and ruled surfaces.
B. G. Teubner, Leipzig, 1906. p. 282. We shall hereafter refer to this work as Proj.
Diff. Geom.



20 Chester H. Yeaton: Swrfuces chiaracterized

so that the directria curves are given by w—- 0= const. and 1w — v = const.,
and the second equations of systems (13) and (19) become

wdu—4uw'do=0, wdiu+mde=0.

Move specilically the notation is such that, when the surface -point P, moves
along the directrix curve i 4 v := counst., the points P, and P’, trace the edges
of regression of the corresponding developables in the directrix congruences
G and 7 respectively. N

[n order to study the loci of the points P, and P,, we first write down
the expressions

# == by+ p g =— by + 4
.= y4bp-—2bg, , = — 1 Fot,
p ytobp by p Op -+ (60)
¢, = — bg+ .t q¢= y—2bp+bg,
t, =—2by + .qg+0bt t, =—2by+ P —“+bt.
obtained from (11), (18). and (31) by means of (52). So that we find
n = P+ q.
(), = Y+ bp — 3bg+ t,
my, = y— 3bp 4+ bg+ ¢ (61)
(M) =—2by—+ (1 — V)p+14+7b)g—2b¢,
(M), =--6by+U+30)p+(1+3b)qg+2bt
(M), =—2by+(1+70)p+(l— b)g—20bt,
and
I, = - p+ q, R
(M), =—  y— bp+ bg+ &
(m,), = y— bp + bq— t (62
2)
(M) =—2by— (L —=0)p+ (1 =g+ 20bt,
(), = (L0 p— (1 +0%g,
(M), = 2by—(1—=0b0)p+{1—0)g—2bt
From (61) we find ‘
(.., +2b (1), — (1400, =0,
' (63)

(n,),, +2b), — (1 4+, =0, )
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which show that the parametric curves on the locus of P, are straight lines.
Moreover, the determinant

—6b 1430 1+30b° 25

1 b — 30 1

‘ — 64D
1 —3b b 1
0 1 1 0

does not vanish. Also the matrix formed from the last three rows contains
the determinant :

) —3b
|3 b | | =—8b
1 | 0

which is not equal to zero and, therefore, the matrix is of rank three. We
may conclude that 1, satisfies no relation of the form

D (L), 4+ E(W,), + F(1L,), + H1l, — 0,

where D, E, F, H are functions of « and v, the case D =0 being included.
Consequently the locus of P, is a non-degenerate quadric surface.
Transforming (63) by means of

I, =r ﬁ,, r=u-+0, S=u—10,

|£| -

we find
(ﬁl)rr ~+ (ﬁl)ss - ﬁl = 07
(ﬁl)r.q = O,

whence the differential equations of the curves » = const. and s = const. on
the locus of P, are '

and

(ﬁl)rrr - (ﬁl)r' =0
respectively. For each of these equations the invariant of weight three is
zero. It therefore results that the curves, along which the developables of the
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congruence (+ touch the quadric focal sheel, constitute « comjugate net of
conics (*). '

There is one and only one relation of the first order between the expres-
sions occurring in (62), namely

(n,), 4- (1), —2b1, =0,

and this shows that the locus of P, is a curve. The relation

(), — 26 (I,), — (I —3b%) o, =0

requires this curve to be a straight line. The focal points P, and P, being
dislinct, this line cannot be a ruling on the locus of P,. Hence the theorem.
The directrices d of wn integral surface S, of system (96) are tangent to
@ quedric and intersect « line not on that quadric. The two sets of rulings,
that is, the asymptotic lines on the quadric corrvespond to the two one-pa-
rameter families of asymptotic curves on S, .
Let us now refer the surface S, to its directrix curves by putting

R 1 ¢ — 4 4
r= T s=u—"1, (6%)

and, in order to simplify our results, transform the dependent variable by
means of

y=r - (65)
We find

1

Y. =I.—7‘“47.~.'yr_‘_!7~_:7 \,l) I"I_),

l -

]

=

(66)
1

Yoo =1 (r‘ Yo — 205+ Y+ 1y, +r Y. — T ’ 1_/) \

|
Yoo =17 : (1" Yo +20%y, +y. 1y, —ry.— 7—'% )""ﬂ’ .

(*) Gf. DarBoux, Lecons sur la théorie des surfaces, . 1L, p. 12,
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So that system (56) now becomes
Y+ Y. —y=0 -
Tt .=y =0 57)
U =0. S

That is, if the variables are switably chosen, the differential equations of the
surface S, will have the simple form (67). the directrix curves being para-
metric. )

From (67) it follows that the differential equations of the directrix curves
r = const. and s = const. are

Yoo — Yo =10,
and
Y+ 40"y, —y, =0

respectively. The invariant of weight three for the first equation is identi-
cally zero and, therefore, the curves r = const., that is, the directrix curves
- v = const. are conics (*). As we have already seen (**), the corresponding
focal points P, and P’, trace a quadric and a straight line respectively.

5. DETAILED DISCUSSION OF A REPRESENTATIVE SURFACE OF THE CLASS.

We find that system (67) has the following four linearly independent
solutions

1

;Di =re" ) g‘: =re ” » Ys=¢, 71 =e. (68)

Interpreted as the homogeneous codrdinates of a point, these determine a

surface S to which all integral surfaces S, of (67) are projectively equivalent.
We introduce non-homogeneous cosrdinates by putting

77 —+s 7 - +s e . X
x=%' =re” y:%"'=rr: , :=%i=e“, (6Y)
Ya Y 1

(*) Proj. Diff. (Geom., p. 61.
(**) Cf. p. 20,
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and we may regard «, y, # as the rectangular cartesian codérdinates of a
point of the surface.
Eliminating » and s from (69), we find

1 x\*
e B q o —— 70
~_4“71:‘1/(100,1) (70)

as the cartesian equation of S, which shows that the planes x4y =0 and
® —y=0 are planes of symmetry. If we transform to cylindrical cosrdinates
by means of :

T =i COS ¢, y =wsin g, 2=2,

equation (70) becomes

7= % w’® sin 2 ¢ (log, cot 9)°. (71)

Taking account of the symmetry and interpreting negative values of w, we
need consider only values of ¢ such that

— 45° = ¢ = 45°.
We can plot only real values of the variables and, since

log,a =log,a +2&mi, it @ is positive and real, ) (72)
=log, |a |+ (2k+ 1)1, if @ is negative and real, {
where % is an arbitrary integer, it follows that z as a function of w and ¢
has more than one real value only when cot¢=1 or — 1, that is, only
when ¢ =45° or —45°. If ¢ =45°, we find from (71)

k._, 7:.2 ~.
k being an arbitrary integer; in other words, the plane ¢ =45° intersects
the surface S in the denumerable set of parabolas having their vertices at
the origin and their foci at the points w =0, g=— G for k=0 this

set includes the straight line ¢ =45° z=0. If ¢ = — 45° we find

8
W= e 2

Q4+ 1)'="

’
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where % is an arbitrary integer; that is, the plane ¢ = — 45° intersects the
surface in a denumerable set of parabolas having their vertices at the origin
2

and their foci at the finite points w =0, z = From (71) and

QEF R
(72) we see that there are no real points of S for values of 4 in the interval
— 450 < <TO.

Consider now an arbitrary meridian plane for which 0°<Cg<C45°. Re-
ferred to the rectangular axes in this plane, the intersection with S has the.
equation :

where ) /
2esc2o

"= {log, cot u)*

The real part of this intersection consists of a single parahola with its vertex
at the origin and whose focus is the point w =0, # =m. Thinking of m as
a function of ¢, we find . ’

dm desc2qcot2y
= —— o coto — 9 2 ).
do (log, cot 7)* (log. coty sec2¢)

In the interval 0° <<¢ <C45°, this derivative vanishes only when

log, cot g — 2sec 2y =10,

d*m
do*
therefore, determines the meridian plane section of minimum latus rectum.

that is, only when, 1 =7°-2+. This value of ¢ makes positive and,

. dm . . - .
Since Te negative when 0" <To <TT7°- 2+, we see that m increases as ¢
: ?

decreases and becomes infinite when ¢ approaches zero, for

©ocese 2y . cot? :
Lm=2IL —"% _ g 0% _ cse2o = x.
=0 g=0 (log, coto)’ =y log cote =y

Hence, as the meridian plane approaches the a z-plane, the parabolic section
straightens out and coincides with the w-axis when ¢ = 0° Also, from (70),

we find
&z_ L / : o l, Ou i — 9 73
. @_—I” (Io,w y) (Iugﬁ Y _.) ; (73)

.
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which becomes infinite when y approaches zero, provided x=|=0: so that
the surface hecomes tangent to the x z-plane along the w-axis, except pos-
. - - dm . .0

sibly at the origin. When 7" - 24 <Tp <<45H°, then o s positive and, there-
fore,m increases as g inereases and becomes infinite when ¢ approaches 45°, that
is, the parabolic section straightens out as the meridian plane approaches
the plane w— y =0 and coincides with the line x —y =0, z=0 when

. ) . . . 0z o

o= 45" Putting y = in (73), we see that ~—| =0 whence it follows

===l

by means of the symmetry that the suwrface § is tangent to the xgy-plane
along the line w —y =0, =0, except possibly at the origin.
Consider the plane section z = const. (positive). From (71) we have

¢t == et cos’g = —200t®
S Y " {log. cotg)* ™
Then ‘
o a2 s osct v
S P O . 0 —— 2 .
dy log, cot ¢)° (log, cot ¢ )

In the interval 0°<C9 <T45", this derivative vanishes only if

log, cotp —2 =0,
that is. only if

p=1" T+.

positive and, therefore, gives the

We find that this value of < makes (L

t
minimum value of x for every positive value of z. [n other words, for an
arbitrary section of the surface S, parallel to the a y-plane, the point with
minimum abscissa in the interval 0°<Ce<C45" lies in the meridian plane
whose equation is ©— ey =0.

By symmetry we obtain the complete surface S. We now proceed to
cousider certain of the associated loci. From (69) we find

9
1 o

whence it follows that the intersections of the surface S with the planes through
and perpendicular to the z-axis are respectively the directrix curves 1 = const.
and s == const.: the directrizc d' belonging to the surface point P, intersects the



~1

r
by certain special properties of their directrix congruences. 2

z-axis perpendicularly and passes through the point P,. Thus the z-axis and
the line at infinity in the planes z = const. are seen to constitute the focal loci
of the congruence G

"~ The equations of transtormation (64) and (65) enable us to compute the
four values of the semi-covariants z, p, ¢ corresponding to the four values
of y given by (68). Substituting the expressions thus obtained in the cova-
riants p, ¢, t (*), we find -

1 L
= \/1_8 " y D= — \/;e 1', Ps = ('___'—__Q L';, V= (—'_‘-1‘) e—r’
Vr Vr !
1 L
q, = \/;:6 " y = — \/1—6 " y s = (L“—— l’ y (= (‘ +D e, (74‘)
7 G
- - 1 1
tb=\re", t,= \Jre ", t=— ¢ bi=——¢ |

These determine the other three vertices of the local tetrahedron helonging
to P,. We can now write the codrdinates of a point referred to our fixed
cartesian system; in particular, we have

1 1
-t "T"'”' e)

1’,( -re , —7Te P, (0, O, e”),

L
Lo e ) o

l’,(e , —e P, (0, O, —e*),

where the directrix curves are parametric. The homogeneous codrdinates of
! ! 4

the focal point P, are (e e 7,0, 0). From (69) and (75) it follows that

the directrixc d belonging to the point P,, as determined by the points P,

and P,, is the intersection of the tangent plane to S and the plane determined

by the z-awis and the point which is the image of P, in the xz-plane. The

- focal sheets of the congruence G are the hyperbolic paraboloid S,

Z+ay =0 (76)

and the z-axis. More specifically, let P, trace the parabolic directrix curve
(*) The reduced forms of b and ¢ are given by (60); as a result of (32) the expression

(10) becomes
t=—0bly+bz4bp+o,
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i = const., which is determined by the plane

lle

r—e" =0,

then the directrix d intersects the zaxis in the point whose zcoordinate is
equal to the negative of that of P,, and envelopes the parabola in which
the paraboloid S, is cut by the plane

2

xte " y=0,

while the directrix 4’ remaining parallel to the a:y-plane, sweeps over the
upper half of the given meridian plane. If P, traces the directrix curve
s = cousl., that is, the curve in which S is cut by the plane z =-¢*. then d
generates the cone determined by the vertex (0, . — e*) and the hyperhola
in which S, is cut by the plane of the directrix curve, while d’ rotates ahout
the z-axis. )

The poiut P,, being the harmonic conjugate of P, with respect to the two
focal points on the directrix d’, has as its locus a surface which, in the ter-
minology of Koenigs (¥), may he called the point conjugate of the surface S,
with respect to the directriw: congruence ', Moreover. if the developables of
a congruence determine a conjugate net on a surface S, such that when S,
is referred to this net, the equation of the form

Y=Yy +by. +cy

has equal Laprace-Darsourx invariants, Koesias has shown that these devel-
opables trace a conjugate net on the point conjugate of §, also. From (69)
and (7%) it is cleav that the surfuce S is its own point conjugate, correspond-
ing poiuts P, and P, being symmetrically situated with respect lo the z-axis,
The parametric curves of the locus S, coinciding with the dirvectrix curves
of S,, form a conjugate net as is required by the lheorem, since hoth La-
pLaci-DarBoux invariants of the second equation of system (67) vanish.

[f in (69) we introduce the variables of the asymptotic curves by means
of (6%) and then eliminate r, we find that the asymptotic curves 1 = const.

() G. Koextas, Sur les systémes conjugucs @ invariants égcaux. Comptes Rendus, v. 113
(1891).
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on the surface S are determined by the family of hyperbolic paraboloids
wz—ety=0(*). (77)

Similarly the asymptotic curves v = const. are the curves in which the family
of hyperbolic paraboloids

yr—e =0 .
intersects the surface S.

As a result of (H%) both fumilies of osculating ruled surfuces B, and R,
have distinct straight line directrices (**). The two directrices of each of these
ruled surfaces are the two branches of its flecnode curve (***). From (56)
the osculating ruled surface of the first kind R, (u = counst.) is characterized
by the equations :

Yoo =Pt + Vo2 40y +q2=0, |

. (78)
A o T P ol VPO ] + (s 2= 0, |
where
2)“'———0, p12=0» QHZ_I‘*():, Q. =2b,
P = — A, pa=0, @ =2b+06b" qu=—1—50.

The flecnodes P, and Py on the generator P, P, ave given by the factors of
the quadratic '
F2byz+ (b — 1)y,

so that, referring to (60), we may put
n=y+p, T=—y+p
That is, the flechodes are harmonic conjugates with respect to the points P,
and P, (***). In non-homogeneous covrdinates the flecnodes.are the points

su L4+b s
P"I(Qe ’ 7—_;);—.6.( )’.

20 . b
P;‘(),l_b i )

(*) Cf. p. 19.

(*¥) C. T. SuLLivaw, . ¢., p. 178. The reader will distinguish hetween the straight line
directrices of a ruled surface and the directrices of the first and second kinds associated with
an arbitrary point of a non-ruled surface.

(***) Proj. Diff. Geom., p. 150.
(****) This is always true for the osculating ruled surfaces R, .
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Hence. as v varies, P, and Py trace the lines given by

x=2e" y=0
and ,
x =10, e y+22=20

respectively; that is, the directrices of R, are a line in the x z-plane parallel
to the z-axis and a line in the y z-plane through the origin.

Similarly the flecnodes Py and P; on the generator P, P, of the oscu-
lating ruled surface of the second kind (¢ = const.) are harmonic conjugates
with respect to P, and P,, in faclt, we may write .

q

b—y+q, i=—y+y

In non-homogeneous coérdinates the flecnodes are the points

20 b
o | =7 p2v e p¥u—n)
“(l—q—be’o‘l—{—be )

I —b
), ) — Qe 2 7 g
P (‘( , — 2, e ) .

Hence, the equations of the directrices of R, are

"

e —2z2=0, y=20

and

these represent respectively a line in the « z-plane through the origin and
a line in the yz-plane parallel to the z-axis. SuLcivan has shown that the
directrices of the two families of ruled surfaces R, and R, are complementary
reguli on a certain quadric surface, which he calls the directrix quadiic (*).
For our surface S this directrix quadric degenerates into the xz and y 2
planes.

(*) C. T. Surrivan, L c., p. 185. In a later paper the same author has considered surfaces
having a degenerate directrix quadric. Cf. abstract, « Bulletin of the American Mathematical
Society », vol. 21 (1915), p. 431,
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6. Duavirty.

The adjoint of system (1) i’

. Y. +20 Y+ fY=0, _
_ _ (19)
Y, +2d'Y,+gY=0, -
where
& =—da, b=—b, [=Ff4+2b. g=g+2a«, (*.

An integral surface Sy, obtained by interpreting four linearly independent
solutions of (79) as the homogeneous codrdinates of a point Py, is dualistic
to every integral surface S, of (). Relations among the invariants of (79)
define projective properties of the surface Sy: by duality, then, certain pro-
jective properties of the surface S, are determined and, since the invariants
of (79) are expressible in terms of the invariants of (1), in particular,

W=—a., b=—b v=v, M=M, N=™=N, (80)

we are able to write down the relations among the invariants of (1) which
characterize these projective properties of the surface S,. The dualistic trans-
formation, by which the point Py of Sy corresponds to the tangent plane
of S, at the point P,, makes the directrices of the first and second kinds
correspond to the directrices of the secoud and first kinds respectively; more-
over, the directrix directions correspond. These considerations enable us
to extend the results of the second and third paragraphs of this paper.

For the surface Sy the two focal sheets of the directrix congruence of the
second kind are distinct and degenerate if, and only if (*¥),

RR, +MP — v T =0,
N == 0,
MR, +RF —MWF =0.

(*) First Memoir, p. 259. Note the corrected values of f and g
(**) Cf. equations (39).
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But by means of (80) these hecome

MR, 4MP—4N) — v (P +-da'V)y=0, |
N=]=0, (81)
MM, N (P =400 — MP' + 4o v)=0. “

Hence we may state the theorem for the surface S,. The focal surface of the
divectrie congruence of the first kind consists of liro distinct developable surfuaces
only if conditions (81) are satisfied. If the two focal sheets coincide and if
the resulting surface ix to be developable, we must have either

MR —4DN) — VW +4a'v)y=0, N =0, M =0, (82)

or
V=M =N =0.

[n the latter case the focal surface is a plane (*).
Conditions (39) and (81) cannot hold simultaneously, for. in that case,
we must have
DIAEDN 2 L
M Th()ﬁ~ a'=0. ) (83)
N Ma =0, § X
But, since %t == 0, these equations can he satisfied by non-vanishing values
of « and b only if both ¥ and M vanish: for. if one is zero the other must
be also. Finally. if v =N = 0, conditions (39) imply that M =0, which ix
impossible. Hence, if the focal surface of the congruence G’ consists of tivo
distinct curves. the two distinet focal sheets of the congruence G cannot be de-
velopable. . '
From (52) and (80) it follows that, if a surface, on which the directrix
curves form a non-degenerate conjugate net, has a linear directrix con-
gruence (. it is possible to choose the variables so that

(ﬂ:l):d:f). V= — M= |. (84‘)

These conditions enable us to determine the ~eminvariants «'. b, £, g, and
we find the theorem. Every surfuce with conjugate directrix curves, whose
directrix congruence of the first kind is linear, is projectively equivalent to an
arbitrary integral surfuce of the system whose canonical form (1) has the

(*) Cf. p. 12
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coefficients o
a'—=b— it —_g = 502 5
5w+ 0) ) Vi g. 1—50b% (85)

If now we put
1
y=r"7%
and refer the surface to its directrix curves by means of the transformation
(64), the system given by (85) becomes

Yoo+ Y+ Y, —y =0,
" Yo+ Yo + 47 Y Y % (86)

§,. = 0.

We find that these equations have the following four linearly independent

solutions
1

. 1
?712—(_:“_‘_1)6 " ?—/2»=(>VL_1)6‘.’ Ys=¢€", J.=c¢" (87)

Hence, every surface characterized by the conditions (84), is projectively equiv-
alent to the surface defined by the parametric equations (87). It is easy to
verify that the system determined by (85) is the adjoint of system (56) and
that the solutions (87) are the codrdinates of the tangent plane to the sur-
face S defined by the parametric equations (68).

Since o’ and b are different from zero, it is impossible 1o satisfy con-
ditions (52) and (84) simultaneously. In other words, a surface whose directric
curves form a conjugate net, cannol have more than one linear directria con-
gruence.

Estratto dagli Annali di Matemalica Tiro-tir. Resescuist pi Toratr e C.
Tomo XXVI della Serie III, pag. 1 e seguenti. Milano, 1916.



