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A GENERAL IMPLICIT FUNCTION THEOREM WITH AN APPLICA-
TION TO PROBLEMS OF RELATIVE MINIMA.

By K. W. Lamson.

. Goursat has given a proof of the existence of a system of solutions of
the equations .
(1) yi=F‘i(yly ccty Yns Ry "'yzm) (/L= ]-) 2: ] n):

where the functions F; reduce to 3 for y = y©@, z = 2, and their differ-
ence from y{” is of an order higher than the first in the variables y. He has
further shown how, under certain conditions, the following system

(2) Gi(yl: *ty Yns f1 "',Zm) =0 (7/ =12 -, n);

can be reduced to the form (1). A system of equations of type (2) arises
in the theory of relative extrema of functions of a finite number of variables
(referred to as theory I).

Equations (1) and (2) suggest the following problem of implicit func-
tions in the theory of Functions of Lines. Let z, £ be variables on the
continuous range ab, and consider a functional operation F[y(z), z(x); £]
such that to a pair of functions y(z), =(x) and number £ on ab corresponds a
unique real number. Further suppose that F[y(z), z(z); £] reduces to yo
when y = yo, 2 = 2o, and that its difference from y, is of an order higher
than the first, with a suitable definition of order of difference. The sub-
script 7, thought of as a variable with the discrete range 1, 2, --- n, or
1, 2, --- m, has been replaced by the variable £ with the continuous range
ab. The functions y(x), z(z) take the place of the sets of numbers y;, 2;.
To equations (1) and (2) correspond

3) y(§) = Fly(a), 2(x); £],
4) Gly@), z(x); £]1= 0.

FrECHET uses the term “fonctionelle” for F or G, when £ is fixed, and the
term “functional” has come into use as the English equivalent. For
equation (3), VOLTERRA* has suggested an existence proof analogous to
that of Goursat for equation (1). An instance of equation (4) occurs in
the Calculus of Variations in the case of problems in tlhe plane (referred to

as theory II).
The first purpose of this paper is to give an existence proof for equations

* Lecons sur les Fonctions des Lignes, p. 71.
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244 Lamson: A General Implicit Function Theorem.

which include as special cases equations (1), (2), (3) and (4). Equations
(3) and (4), although suggested by (1) and (2) are not generalizations of
them in the sense of including them as special cases. The general theory
is to include also the systems of equations of type (4) appearing in the
space problems of the Calculus of Variations (referred to as theory I.I.I)-
The existence theorems used in the theories I, IT and IIT have similarities
in hypothesis, proof and conclusion. In I a solution consists of a set of
numbers y;, a function of the variable 7, with the range 1 =1, 2, - - 7;
in II the solution is a function y(x) of the continuous variable z, with the
range ¢ = x = b, and in III it is a function y;(z) of the composite variable
(¢, «) with the composite rangest = 1,2, --- n,a =« = b. The difference
in the three theories lies in the difference in the range of the independent
variable. Any general theory which includes the three as special cases will
introduce a range which will specialize to the three just mentioned. For two
reasons it has seemed best not to attempt to abstract common properties
from these ranges, but to introduce the general range® of E. H. MooORE,
not defined and on which no postulates bear explicitly. In the first place
the dissimilarities make it hard to find useful common properties, and in
the second place, the general theory is not to exclude problems involving
double integrals or combinations of integrals and sums. The general
range is a set P of elements p, and the functions to be considered are such
that to each p corresponds a real number y(p).

Replace the ¢ of equations (1) and (2) and the z of (3) and (4) by p.
This leads to the equations

(5) y(») = Fly(g), 2(9); pJ,
(6) GLy(9), 2(9); p1= 0,

where ¢ has the range B and where, by means of F and G, to each p and pair
of functions y and z in a certain class I of functions there corresponds a
unique real number.

In § 1 below the basis and postulates for the solution of equations (5)
and a special form of (6) are set down. In§§ 2, 3 are lemmas leading to the
solution of (5) and to the reduction of (6) to the form (5). The last section
of the paper contains an application to the problem of Lagrange in the
Calculus of Variations.

§ 1. The Basis.

. The independent variable of the theory has the general range §§. An
element of P will -be denoted by one of the letters p, g. The functions
entering the theory belong to a class I, whose elements are real single-
valued functions y(p) or 2(p). In theory I the class M is the set of n-

* Bolza, Bulletin of the American Mathematical Society, Vol. 16 (1910), p. 403; also
Jahresbericht der Deutschen Mathematiker-Vereinigung, Vol. 23 (1914), p. 251.



Lamvson: A General Implicit Function Theorem. 245

partite numbers or of points in n-space. In theories II and III I is the
class of functions or curves in the plane and in (n 4+ 1)-space respectively,
continuous with their first derivatives. To each element y of I corre-
sponds a positive or zero number, the “modulus” of y, which will be
denoted by || y||. In theory I the modulus is interpreted as the largest
of the numbers y;, or as the distance of the point (y1, - -, y») from the
origin. In theories IT and III the modulus is interpreted as the number
defining a neighborhood of the first order, namely the maximum absolute
value of the functional value and of the derivative. In the general theory
the modulus is not defined and is subject to postulates. These postulates
and those on I will be shown in § 4 to be satisfied in the case of the
Lagrange problem.

Postulate 1. M is linear, that is, contains all functions of the form
c1y1 + c2y2, where ¢; and ¢, are real numbers, provided y; and y. are them-
selves in IN.

Postulate 2. ||y:+ 35 || = ll9a || + || 321

Postulate 3.. ||cy|| = |e| ||y||, for every real number c.

Postulate 4. If ||y || = 0, then y(p) = 0 for every p..

TreEOREM 1. If {y:} and {y:} are sequences, and y and y' are functions,
such that {im ly —w:|| = liim l|y: — yi || = 0; and if lim || yi—y: || <0,
then ||y — y'|| = 0.

This theorem follows at once from the preceding postulates.

Definition. The sequence {y.} is defined to be a Cauchy sequence if

,._nloi'?_w“-’/i —yil| = 0.

The sequence {y;} is said to have a limit y if lim ||y — y:|| = 0.

The uniqueness of this limit is a result of postulates 2, 3, 4.

Postulate 5. For every Cauchy sequence in It there exists a function
in ¢ which is the limit of this sequence.

Definition. The symbol (7)., denotes the totality of functions y of IN
such that ||y — 7 || < a.

Consider F[yi, ---, y.; p] real and single-valued for y; in (i)
(1=1, -+ x) and p in B, and such that when y;, ---, y, are fixed the
resulting function of p is in .

Definition. The functional F is continuous at a set of .arguments
(y1, *+ +, yx) if for every e there exists a § such that

W FCys, -5 9 21— FLys, -5 9 2l < e
whenever y; is in (y:)s. :
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§ 2. Solution of the equation y(p) = F[y, =; pJ-
The proof of the existence of a solution, y(p), of the equation

®) y(®) = Fly, =5 p]

is similar to that given by Goursat,* who used the method of successive
approximations to treat equation (1). Let yo and z, be two functions of
the class M. The functional F[y, z; p] is supposed to be real and single-
valued for all elements (y, z; p) for which y is in a neighborhood (yo)a,
2 in (2¢)a, and p in B, and to have the property that when y and z are fixed
in its range of definition the resulting function of p is also in 9. It has
further the properties

(1) F[yo, 20; p] = yo(p) for every p in PB;

(2) it is continuous in y and z at each element y’, 2/, in its range of definition;
(3) there exists a constant 0 < K < 1 such that

| Flyy, 25 p]— Flye, =5 pJll < K||y1 — w2l

whenever (y1, z) and (y, ) are in the range for which F is defined. This
condition will be referred to as the Lipschitz condition.
Define a sequence of successive approximations by the equations

(7) y1 = Flyo, 2 p]

(8) Yir1 = F[yi’ 25 P] (7’ = 1) 2’ 3) o ');
which is possible whenever every y; is in (y0)s. It will first be shown that
a neighborhood (2o)s, With a@; = a can be chosen so that the elements of

the sequence are well defined whenever z is in (zo),,.
Lexya 1. There exists a positive constant a; = a such that for z in

(20)a,y and for every v, ys; s 10 (Yo)a-
To prove this, use the continuity of F in 2, and choose a; = a, so that

lyr = woll = || FLyo, 25 1 — Flyo, z0; p]|| < a(1 — K).

From the Lipschitz condition, if y is in (yo)a,

| F Ly, 25 0] — Flyo, = 21 1| < K ||y — wo|-
From the addition of || F[yo, 2; p] — yo|| to both sides, and from Postu-
late 2, follows '
9) - 1 FLy, 25 p1 = woll < K|y — wol| + a(1 — K).
In particular, putting ¥ = y1, this becomes

[ly: — woll < K|ly1 = wo|| + a1l — K) < a.

To complete the induction proof, assume || y; — yo|| < @, and put y; in (9).

* Goursat, Bulletin de la Soctété Mathématique de France, Vol. 31 (1903), p. 184.
Bliss, Princeton Colloguium Lectures, p. 8.
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Lewnis 2. The sequence {y:} is a Cauchy sequence and tts limit, y,
(Postulate 5) 1s in (yo)a-
To prove this, the convergence of the series D || g1 — i || is first

shown, by using > .K‘a as a dominating series. From the definition of
i

y2 and y;, and from the Lipschitz condition,

llva — w1l = | Flys, 25 21— Flyo, 55 21|l < K Hy1 — ¥ol| < K.
To complete the induction proof, assume

Iy — y:ll < K'a,
and apply the Lipschitz condition to || yir2 — yita|]-

The convergence of =||yi1 — yi||, and Postulate 2 imply that the
sequence {y;} is a Cauchy sequence. From Theorem 1 it follows that the
limit y of {y;} is in (yo)a-

Lemma 3. The equation (5) is satisfied by the limit y of Lemma 2.

For from the definition of y;, and from Lemma 2,

(10) lim ||y — y: || = lim ||y — Flys 2 p1I| = 0.
From the continuity of F,
(10) lim || FCys, 25 1 — FLy, 2 P11 = 0,
and from the addition of (10) and (10a), and the application of Postulates
2 and 4,
y = Fly, z; pJ.

Leavia 4. The solution y of equation (5) described in the preceding
lemmas 1s the only one tn (yo)q corresponding to a z in (20)a,.

For the proof, assume two solutions, and apply the Lipschitz condition
to their difference, using Postulate 4.

LeEMMA 5. As a functional of z, y ts continuous tn the netghborkood (2¢)a,-

It is necessary to show that if ||z — 2’|| is small, then ||y — ¥|| is
small, where y and y’ are the solutions corresponding to z and 2’ respectively.

From Postulate 2,

lly— v || = || Fly, 2 p1— FL¥', 2’5 p]l|
=||Fly, 2 p]— FLy', 2 p]|| + || FL¥', 2 p] — FLY', 25 p1|
=K|ly— v ||+ | Fl¥, % p]1— F[y, 25 p]|.

From the continuity in z, the last term can be made less than an € as
required, whence

ly =yl <y—%-

The results of this section may be summed up in the following



248 Layson: A General Implicit Function Theorem.

TaEOREM 2. When F[Ly, z; p] has the solution (yo, =o; p) @nd the
properties described at the beginning of this section for elements (y, 25 P)
with y i (Yo)a, 2 11 (20)a, and p in B, there exists a constant a; = = a such that

the equation
y=Fly, = p]

has one and only one solution y = Y[z; p] for each = in the neighborhood
(20)a- The functional Y[z; p] so defined has the value y = yo for = = 2o
and s continuous at z = zo.

§ 3. The equation GLy; p] = 2(p).

In order to transform equation (2) to the form (1), Goursat® assumes
first that the derivatives dG;/dy; exist and are continuous, and second that
the functional determinant is different from zero for those values of y; and
2; for which the G; vamsh The equation (6) will be taken in the less
general form,

(11) GLy; p] = 2(p),
which is to be solved for y, given that

GLyo; p] = 20(p).

The equation (11) will be transformed to the form (5) treated in the
preceding section, by a procedure following that of Goursat. Before
prescribing the properties of the functional G it will be useful to describe
those of a functional A[y1, y2, 7; p] which will be called a difference func-
tion for reasons which will presently appear. At each element (y1, ys, 1; )
with y1 and y» in (o), 7 in M, and p in P the functional 4 has a single real
value, and when the first three of its arguments are fixed defines a function
of the class 9. It has furthermore the following properties:

(1) it is linear in 7%, that is,

A[Cﬂh + 02")2] = 01A|:"71] + 02A|:712:|

where 77 and 7, are functions of the class I and ¢; and ¢, are constants.
The three arguments other than 7 are suppressed for the moment in this
equation;

(2) There exists a constant M such that

| ALy, yo, m5 p1|] = M || 9]|

whenever (y1, y2, 7; p) is in the set for which A4 is defined;t
(3) the functional A4-is uniformly continuous in (yi, y3) at (yo, 7o) with

* Loc. cit., p. 191. ‘
T Riesz, Annales Scientifique de L’ Ecole Normale Supérieure, 3me Série, Vol. 31 (1914),
" p. 10. .
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respect to the set of admissible arguments 5 for which || || = 1, that is
for every given e there exists a & such that

Il ALyy, y2, m5 21— Alyo, yo, m; ]Il < e
whenever y; and y, are in (yo)s, 7 is in .

The functional G[y; p] is supposed to be real single valued for all
arguments (y, p) such that y is in (yo)s and p in P, and to have the usual
property that it is in the class 9 when the argument y is fixed. It has
furthermore a difference function 4 of the kind described above such that

GLy1; p] — Gly2; p] = Alys, y2, y1 — ¥2; P

whenever (y1, p) and (ys, p) are elements in the domain of definition of G.
- The functional A[yo, yo, 7; p] is called the differential of G at y,. Since
Yo is a fixed element of the class 9N the differential is a function of # and
p alone.

The use which Goursat makes of his hypothesis concerning the non-
vanishing of the functional determinant suggests the assumption that A4
has a “reciprocal” for y1 = y» = yo, namely that there exists a functional
A[m; p]such that

AT Alyo, yo, 15 ¢1; p1 = n(p)

A[n; p] bas the properties (1) and (2) prescribed for 4, where M denotes

the number corresponding to the M of property (2). . It has the further

property that it vanishes identically in p only when 5(p) = 0 for every p.
LemmA 6. The functional F defined by the equation

Fly, z; pl=y — A[Gly; p]1— = 7]
has the properties of the functional F of § 2 near the element (yo, zo) where

20 = GLyo; p.
As to the property (1) of § 2, it follows from the definition of F given in
this lemma that .
Flyo, zo; 1= yo — A[0; p]1= 0.
The continuity, property 2, is proved by these inequalities,

| FLy, 2 p1— FLy', 5 p]
=|ly — ¢ + A[GLy; p]— GLy'; p1— =+ 2; p]ll
=lly—vll+ M| 6Ly; p1— 6Ly p]—z+ 2|
=Q+MM)||ly—y|| +|z—7]

To find the K of property 3, use the linearity of the functional A.

|| Fly, 2; p1— FLy'» 2 plll = [ly — ' — A[GLy; ] — G[y'; ¢J; p1l

: =lly—v — A4y, ¥,y — v (11— Alyo vy — ¥'5 ¢]
+ Alyo, yo, y — 9’5 ¢J; p1l|



250 LaysoxN: A General Implicit Function Theorem.

From linearity again, from the fact that 4 is the reciprocal of .1, and from
Postulate 3, || — y || = ||y ||, this expression reduces to

| ALACy, vy — o5 a1 — Alyo v, ¥y — ¥'5 ¢ P
Because .1 is bounded, this is less than

y—y y—y ‘ '
A-I:y ,) 7 5 ]—A[ ) 3 5 ]‘ ——yH'
WYy =y P vor o 1 =y | 1Y
The number « of Lemma 1 is then chosen to make the coefficient of

[ly — ¥ || less than K < 1.
TaeoreM 3. The solution of the equation

M

(3) y=Fly, = p]
where F 1s defined in Lemma 6, satisfies uniquely the equation
(11) GLy; p] = 2(p),

and 1s continuous as a functional of =.
For, from the definition of F, (5) reduces to

A[6ly; ¢J— = p]1=0
and since A[7; p] vanishes identically only when n(p) = 0, it follows that
GLy; p]= =)

Any other function y’, a solution of (11), would make F reduce to y’,
and would satisfy (5). But the solution of (5) is unique (Lemma 4).
The solutions of (5) and (11) have been shown to be the same, and the
solution of (5) is continuous (Lemma 5). This proves the continuity
asserted in the theorem.

§ 4. An Application to the Calculus of T ariations.

The theorem of § 3 will now be applied to the differential equations of
the problem of Lagrange in the Calculus of Variations. Ifor this problem
the functions y in the integral

b
[ f(l', Y, * 5 Yny 3/1, M) y;)dxy

to be minimized are subject to two sets of conditions. They must satisfy,
first, the m < n differential equations,

(12) ‘P.;(:t, Y, =y y"’ y;' ] ylll) = O (a= ]-J tt m)’
and second, the end conditions,
(13) yi(a) — h; = 0,

(14) yib) —k; =0 G=1,- -, n).
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The equation (12) may be regarded as a single equation in the composite
variable (e, 2), whose range is a subset of the range of elements (z, )
where1=1,2, ---n,a=a =b.

Bliss* has given a treatment of a problem of which this is a special
case by adjoining to (12) the n — m new equations

(15) QO;-(CI:, Y, © 5 Yny y;) ] y:’t) = Z"(a:) (T = m+ 1! ) n)'

In (15) the functions ¢, are arbitrary except that they are to be chosen
so that the determinant |d¢;/dy;| is different from zero at every point of
the minimizing arc to be studied. Equations (12) and (15) can then be
written together in the single equation

(16) §0i<‘l‘: Y, * 5 Yn, yi: ) Z/;) = Z;(.”L) (’L = 1) 2; ) n)’

with the understanding that Z; = 0 identically in z, for ¢ = m.

Consider now a system of solutions y'?(z), Z%¥(x) of class C’ of the
equations (16). In a neighborhood of the elements (z, y, y’) of this solution
the functions ¢; are supposed to have continuous first and second partial
derivatives, and along the solution itself the functional determinant
|0¢:/dy;| is different from zero. The partial derivatives d¢/dy; and
d¢i/dy; will henceforth be denoted by ¢;; and ¥;;, and their values at z = a,
by ¢:;(a) and ¥;;(a). It is proposed to show that the problem of deter-
mining a system of solutions of the equations (16) with initial conditions
(13) is a special case of the theorem proved in § 3.

Equations (13) and (16) together are equivalent to the single system

Gly(g); p]= 2(p),

where the independent variables are p = (i, x), ¢ = (j, 21) and G is the
functional in the first member of the equation

D Es@E@ — W)+ [ ooy, )= 5@ (=1,

Equations (13) have been multiplied by a matrix of rank n. The z; ap-
pearing in (17) are the integrals from @ to z of the functions Z;(x) in (16),
and so vanish for x = a. Equations (14) are discussed later.

The general theory of the preceding sections will be applied to the
solution of (17) for y when z is given. With the y©@ which minimizes the
integral is associated a 2@ by equations (17), and it is in a first order
neighborhood of these functions that a solution is to be found. The range
P is specified to be the set of elements (¢, z), ¢ = 1, ---, n; a =2 =b).
The class M is the class of functions y;(x) which for each ¢ are continuous
with their first derivatives on the interval ab. The modulus, ||y||, is

* Transactions of the American Mathematical Society, Vol. 19 (1918), p. 307.
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the maximum of the absolute values of y; and y;, (i =1, «-+, 1) The

functional G[y; p]is the left-hand member of equations (17).

It remains to exhibit the differential 4, its reciprocal -1, and to prove
that the postulates of § 1 and hypotheses of §2 are satisfied. Postulates
1-4 are immediately seen to be satisfied. Postulate 5 can be proven from
the fact that convergence of the moduli of a sequence of functions o.f m
implies the uniform convergence of the functions and of their first derivatives.

The differential 4 is given for the function (17) by Taylor's formula*
in the form

18) 2 i(ami(e) + 77: jc: ) {Cii(a)m;(ay) + Ci(rn)nj(e) Jdas,

where

1
Cii(m) = f 0ii(@1, YO + uy® — y®), y®' + w(y® — y©*))du,
0

1
Cii(x) = f Yii(@y, y© + uy® — y®), y® 4 u(y®" — y®))du.
0

In C and C’, y® and y® are the arguments of the functional 4, and are
in a first order neighborhood of the extremal y® such that the determinant
|¢:;] * 0, and ¢ is defined. VWhen y® = y® = y©®, 4 reduces to

(19) Z\Pij(a)m(a) + ijfx {oimi(@y) 4 Yam; (1) }das.

To exhibit the reciprocal A is to define an operation which will reduce
(19) to nx(x). This operation will be taken in the form

1= 2 w@n@+ [ mmedn + e |

with suitably chosen functions /, \, », and it is to be proved that when the
functions 7(q) = 7:(z;) of the variable ¢ = (s, 2;) is replaced by A in this
expression the result is n(p) with p = (k, ). To distinguish variables of
integration from each other and from limits of integration, the notations
x, 1, T2 are used. Summations are from 1 to n. To choose the functions
I, \, » operate as follows. Put @ = a in (18) and multiply by undetermined
factors li;(x). Form (18) for a1, (e < 1 < @), multiply by Ap:i(z, 21),
and integrate from a to x. For x; = x, multiply by vii(x). Add the terms
so formed and sum as to <.

A method of choosing the functions /, X and » is to be given so that the
expression,

> [{ lea(2) + 1::)\1“'(-1‘, andey + vi() }tl/ij(a)ni(a)

ij

* Jordan, Cours d’ Analyse, 2d ed., Vol. 1, p..247.
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+ f N, 21) f (@in; + Yiny) rydaady
+ f vii(@) {pam; + %ﬂ?}}zzd“]’

whose formation was described in the preceding paragraph, reduces to ().
By the change in order of integration in the second term, and the combina-
tion of the last two terms, this becomes

(20) ;[{lki(x) + fx)\ki(% zy)dey + vi(2) } nj(a)
+ f" (@i + Yiin)z { fz)\ki(x, 21)dzy + viiz) }dmz] )

A set of auxiliary functions ux(z, 2;) may be defined by means of the
equations

(21) f )\ki(x, wl)dxl + vki(x) = ,uki(x, 332) (K, 1= 1, 2, ceey n).

From (21) and the integration of the last term by parts, (20) is seen to
become -

(22) ; [ { les() + fx)\ki(x: x1)dxy + vii(x) } Vij(a)n;(a)
+ fz{ #I;i(% ) Yi() — fle-lvki(x: @) @ij(21)day } n;dxs

=+ ni(x) j;,uki(x, @‘1)%]'(-?)‘1701]-

Next it will be shown that the functions ui:(x, z1) can be so chosen
that the brace under the integral in the second term is independent of z,
and therefore equal to a function «;(z) satisfying the following equation:

@) Tunm el = X [ wue, aledde + @),
(j = 1:-"'7 n)'

. The differentiation of (23) for a; as it stands would imply the existence of y"’.
To avoid this replace the u’s by linear combinations of them, vx;(x, x2),
determined by the following equations,

(24) vii(x, 22) = ; pii(E, T2)Wij(x2).

The solution of these for the functions u is possible since |¢;;| #+ 0, and
it gives
(25) pri(@, T2) = zckr(xz) vri(, T2).
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From (24) and (25), equation (23) becomes
£
vi (@, 22) = Z crr(@) vri(, xy)i(x)day + Kiej ()

In this equation the right member is differentiable for a,, and the equations
for the determination of the functions v; may be written in the form

d
(26) do, ki, @) = 2 crr(@2) vri(, 22)ii(X2).

These are linear differential equations which determine vy;(x, 22) uniquely
subject to the initial conditions,

27) v (v, ) = Okj)

where 8;; is unity when x = j and zero otherwise. When the functions
vy; are known the u’s are given by (23), the «'s by (23) and the N’s and v’s
by (21). With the help of (23), (24) and (27) the expression (22) may be
replaced by

@ Z[ {1 @ + [Nt i [ vston |

- ;xkj(x)nj(a) + ni(2).
The functions I may now be determined by the equation
(29 Shalalol@) = suse) = Eoaabo@ = Tale) [ hute, s

so that everything in the expression (28) disappears except 7x(x). This
result is formulated in the following definition and theorem.

Definition. The differential A[yo, yo, n; p] of the functional G[y; ¢]
in the equation (17) for the problem of Lagrange is the expression

(30) JZ‘pij(a)nj(a) + 2 fl (pini + Yim)) zdar.

J a

The functional A[n; p]is given by the formula

(31) > [lki(x)ni(a) + fx)\ki(x, )@ dry + vis(@)n:(x) ] .

In this definition the functions ¢;; and ¥;; are formed for the extremal y©,
the functions X\ and » are determined by the equations (26), (27), (25)
and (21), and the functions I by (29).

TurorEM 4. The functional A is the reciprocal of A, that s if the n in
(31) s replaced by the function (30), then (31) will reduce to nx(x).

The differential 4 given by (30) is seen to satisfy the first and second
assumptions of § 3. The reciprocal 4 is also seen to satisfy these assump-
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tions. The third assumption as to 4 follows from the continuity properties
of ¢, and from the mean value theorem. It remains to show that the
reciprocal vanishes identically only with the argument 7.

LeMMA 7. If the functions n:(x) are continuous with their first derivatives
on the interval ab, and if the equation

60 2| ni@n@ + [t eniedde + mn | = 0
holds identically in x and z, it follows that n,(x) = 0 identically in 1 and .

To prove this, put ¢ = a. " From (29) with the help of equations (21)
and (23) for x = z, = a, it follows that l;;(a) = 0, and from (24) and (27)
it is seen that |»4:(a)| & 0. Therefore nx(a) = 0 identically in «, and it is
correct to write

n:(x) = f ﬂ’i(xz)dﬂv’z-
From (31) then
Z N, xl)f n/i(l’z)dxzdh + vii(x) f ﬂ;(xz)dxz = 0.

By change of order of integration, combination of terms and the use of
(21), this becomes

(32) 5 [ ute, womiande = 0.

From the theory of differential equations, the solutions of equations (26),
and hence also the functions wi(z, z;), are differentiable for 2. Then
differentiation of (32) with respect to = gives

@ Twon@= -3 [ 3 s

After multiplying by u,x(2), the matrix reciprocal to ux:(z, «), summing
with respect to « and setting

— d
- ;Mrk(x) 35 Hi(@ &) = 0@, 21)
the equations (33) give
(34) 7@ = 3 [ onte wmieda.

The proof that no solution of (32) exists except 7/(x) identically zero
is a slight modification of the corresponding proof for Volterra’s integral
equation.* If M and m are the maxima of |o,:(z, z1)| and n/(x) respec-
tively, for r, 2 = 1, 2 - -+ n and values of 2 and 2, on the interval ab, the

* Bocher, An Introduction to the Study of Integral Equations, p. 15.
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equations (34) give

m = f nMmdx = nMm(z — a),

and by repeated applications of this inequality it follows that

(x — a)*
ol

m = n*Mm

for every positive integer a. As this last expression approaches zero with
increasing e, it follows that

7”@ =0 a=a2=b r=1,---,n.

Since 7,(a) = 0, it is true that 5,(z) = 0, as stated in the lemma.

The postulates and hypotheses of the general theory have been proved
to be satisfied in the case of the Lagrange problem. The results of this
section may be stated in the following theorem.

TeEOREM. Under the hypotheses made at the beginning of this section
the system of equations

¢i(x’ Y, © 5 Yny y;; ) y;) = Zz(x) ('L = 1: tt n)

with the initial conditions yi(a) = hiy, 1 =1, ---, n), is equivalent to the
single equation

Spu@n@ = b1+ [ ede = 5.

This has thé form
GLy(9); p] = 2(p)

where p and g represent the pairs p = (3, z), ¢ = (j, ). If y©(q), 29 (p)
is an initial solution of the last equation with properties as prescribed
above, then there exist two neighborhoods (y©®), and (3®),, such that to
every z(p) in the latter there corresponds one and but one solution y(g) in
¥®),. The functional y(g) = Y[z; ¢] so defined is continuous in (z®),,
and reduces to y = y©@ for z = 3@,

Tae UnNiversity oF CHICAGO.
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