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AN APPLICATION OF SYMBOLIC METHODS TO THE TREATMENT
OF MEAN CURVATURES IN HYPERSPACE®

BY

WILLIAM HUNT BATES

This paper is an application of MASCHKE's symbolic method for discussing
invariants of quadratic differential forms, as developed in his article, 4 Symbolic
Treatment of the Theory of Invariants of Quadratic Differential Quantics of
n Variables.t Extensive use is also made of results and methods contained in
two later publications, Differential Parameters of the First Order,} and The
Kronecker-Gaussian Curvature of Hyperspace.§ Some familiarity with these
three articles is implied.

Part I of the present paper is devoted to the study of the curvatures of an
n-space 2 in an euclidean (n + 1)-space S ,,. In §§1-3 the equations and
some of the properties of the lines of curvature of &2 in S,,, are developed. In
particular, equation (28) gives the n curvatures of the n lines of curvature through
a given point of £ . The coefficients A, ..., K of this equation are the so-
called curvatures of I, in S, involving the coefficients «,, and a, of the two
fundamental forms of 2 . With the help of his symbolic method, || MASCHKE
has expressed K, when n is even, and KA 2, when 7 is odd, as rational integral
functions of the coefficients @, of the first fundamental form and their
derivatives.

In §§ 4-6 similar expressions are derived for all the curvatures XK, of even
index. It does not seem possible to obtain rational results for the curvatures &,
of odd index. In § 7, however, it is shown that, with the exception of XA,
these curvatures are expressible irrationally in terms of the first fundamental
quantities and their derivatives.

The symbolic expressions for K,, and K ? show at once that they are differ-
ential invariants of the first fundamental quadratic form for & , and they have
meaning as invariants of any quadratic form in n variables. Part II of thig
paper considers a space R, defined in a space £ (n > M), which is not neces-
m the Society December 31, 1910.

+These Transactions, vol. 4 (1903), pp. 445-469. This paper is referred to hereafter
as M. 1. :

1 Ibid., vol. 7 (1906), pp. 69-80; referred to as D. P.

¢ Ibid., vol. 7 (1906), pp. 81-93 ; referred to as K.-G. C.

| In K.-G. C.
19



20 W. H. BATES: MEAN CURVATURES [January

sarily euclidean. The invariants K&, and K ; for R, are calculated in terms of
the coefficients a,, belonging to the length element of 2, and of the functions
U1, ..., U" which determine the space R, in R,.

_ PART L
CURVATURES OF AN n-SPACE IN AN (7 + 1)-SPACE.
§ 1. Parametric Representation for an n-space in an (n + 1)-space.

Let 2/, 2%, - .., 2**! be the coordinates* of an euclidean space S of » + 1
dimensions, i. e., a space whose arc-element is of the form '

n+1

) dst =Y [d#]*.

i=1
We define in S, any hypersurface, or space RB_, of n dimensions, by express-
ing each z as a funcion of n independent variables x , --., x_:

' 2=z (2, -y 2,),
(2) e e e e

2l = 2"t (2, -0, ).
The arc-element of R, is given by the equation

1,..,n
3) ‘ ds* = Y, a,dxdx,,
ik
where
mtl 9o Jpd Ml
= — =) izl =f
(4) aik - = ax‘. . axk - j=zl .Z‘i. ‘f‘nf;"

differentiation with respect to x, being indicated here, as in the following pages,
by the lower index :.

A space of A dimensions, A <z, would be obtained by using in (2) only A
independent variables x,, ---, z,. In particular, a curve in §_, is obtained by
expressing each 2z as a function of one new variable x.

If in (2) one puts x,= ... =2 = 0, the resulting curve is called the x,-axis
of a curvilinear system of coordinates on &,. By letting x,, ..., @, represent
arbitrary constants, one gets the complete system of x,-curves; and similarly
for the other cases.

x,-curves if x, varies and x,, ..., 2 are constants,

x,-curves if o, varies and x, ..., x,_, are constants.

n—1
Equations (8) and (5) give the elements of the new axes,
(6) ds? = a,dx}, ---, ds:=a_dx,

*It is assumed that no confusion will arise from writing the upper index, as' MASCHEE does,
without parentheses. Exponents are only occasionally used, and will be easily recognized.
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where ds, is the element of the x,-axis. Represent the direction cosines of the
x,-axis, in the old system, by cos (2, «,), -- -, cos (2"*', ;,). Then
dz/  zldm, 2l

(7) cos(z ’ l.) ds V(l d(l} I/E; (j=1,--yn+1k=1,.--,m).

Let w,, be the angle between the waxis and the x,-axis. Then

(8 3 eos (#4 )= 3 — 2% S

cos w, = DQ_cos (2'x,)cos (z/x, )= — S (t,k=1,:--,n),
) k» j=1 ( ) ( k) j=1 l/a..’.l/a l/a“l/a“ K
so that necessary and sufficient conditions for mutual orthogonality of the axes
of the new system are
9) a,=0 (i, k=1, - -, n;ismk).

§2. General Gurves on R,.
A general curve on /2, may be defined by means of n — 1 equations,
10y U*(x,, -+, 2, ) =const., -.., U"(zx,, .. «, &) = const.

The differential equations of this curve, which we call the U-curve, are
(11) S Utde,=0, --v, > Utde,=0.
=1 i=1

Its direction is defined by the ratios of du,, - - -, dx, in (11). In order to solve
for these differentials, let p be any function of x,, - .., , which satisfies the
condition *

D=(pUz...Un)=(pU)=l= 0.
If A" denotes the cofactor of p_in D, equations (11) are identically satisfied by

12y de, =pd’, --., dz, = pA",
where p is an arbitrary parameter
~ The direction cosines g, ... gt of the U-curve are found as follows.
From (12),
(18) ;Pidmi=P§piAi=P(pU)‘
Then

— dzk__ 1 2k Pk

E”_E;_%Z “d, -—(z U),

i=1

where ds is arc-element of the U-curve. Now

Ser=1=% 5] @or=[4]vor

*See M. 1., § 2, for an explanation of this invariantive notation.
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Hence
p__1
4 v(fUy
Then the direction cosines of the U-curve on &, referred to the original system
of axes, are
, 2 U sy /4
14) =0 e 20D
vV (SfU) 40429
If there is given also a V-curve on I2, by equations similar to (10), its direc-
tion cosines may be written

o= ZV) w1 (21T
VY T TV Ty
If o is the angle between the two curves, we have from (14) and (15)
W, (FU)(T) (STYST)
16 == nt = ) ——— = .
(A0 = T = 2 UV~ VTV (7T
Thus a necessary and sufficient condition for orthogonality of the two curves i3

(17 (SU(SV)=0.

Equation (17) also defines the orthogonal trajectories of a system of U-curves
on .. An illustration is found in the case of curves on an ordinary surface.

(15)

§ 8. Lines of Curvature on R.

A line Z drawn on R, such that the normals to %, along L (with respect to
the enclosing space S, ) generate a developable surface is called* a line of
curvature of £ in §,_,.

At a point P of R, there is a unique normal to &, in §,,,. Let the direc-
tion cosines of this normal be ¢’, - .., {**'. Choose P as origin of the system
of x-axes on I . Then, since the normal to 22, at P is orthogonal to every
direction on 2, at P, we have from (7)

n+1

(18) S tizi=0 (k=1,---,n).
i=1

The coefficients a,, of the first fundamental form of %, given in (3) are the
first fundamental quantities. The second fundamental quantities are defined by

the equations
n+4-1

a.'ksz’z{,. ' (i 6=1,+-+, n).
5=1

*Ct. BIANCHI, Lezioni di Geometrin Differensiale, vol. I, p. 125.
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By differentiating (18), one obtains

n41

n41
19) a, = {Jz{k=—-2§1‘z{‘ (i, k=1, -+, n).
j=1

j=1

+

The letters g and +y are to be used in this paper as symbols of the second funda-
mental quantities

(20) Ay =99, = YV = %;-

Let C be the curve of S, which is the envelope of the normals along L.
Let M(%, ---,7z"*") be any point of L, and J?Ii(E’, - -+, 2**1) be the point where
the normal at M meets C. Denote by r the distance M, which is positive or
negative according to the direction of M from 2. Then

(21) =2 —rl, oo, B =t pEntl,

Take derivatives of equations (21) with respect to the arc s of Z. Then, since
C is envelope of the normals along L,

a7 de d;
s=ds " d - 2=

22) Ce e

dz"*t!  dzt! dz 1 r

&= T T

where ¢ is a factor of proportionality to be determined. Multiply equations (22)
by ¢, -+, £"*' in order and add. We get

n41 . n41 . n+1 d d n+1
(29) OITIE S S R N T
Now - -

n41 . n41 d{l n+41
TEr=1 Ty 3 0% o,

since {’, - .., {™*! are direction cosines of the normal and d2’/ds, ..., dz"+'/ds
are divection cosines of L. Substituting these results in (23), one obtains

q == e % .
‘Then equations (22) give
dz d¢’ dz"+1 dgrt!
@4 ds=Tds' " ds T ds
or

dz  d#? dzrt!
(25) ;i?=a—§—.2=o--=a—c—;_ﬁ=r.
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This result is expressed in curvilinear coordinates as follows:

vide 4 - 2 de,=r(L de,+ e + Cda,),
2tlde 4 oo + e, =r(ET e+ - -0 + 0 dR,).
Multiply these equations in order by z;, .-, 2;*' and add. We find
n41 o n41 o n+1 L n+1 L
Xnnde + - +Zz;z;dw,.=r[2z;€;dsvl+ et Zz,:t;dw,.]-
i=1 =1 i=1 i=1

Then, by (4) and (19),
(26) a,de, + -+ +a,de,=—r[a,de, + .- +a,dr] (k=1 n).

Equations (26) hold for every line of curvature on 2,. Conversely, if equa-
tions (26) be true for any curve L on R, , then there exists a curve C' in S,
whose tangents are normal to R, along L, so that L is a line of curvature on
R, by definition.

When equations (26) are written in the form
(ay, + oy r)de, + -+ + (@, + @, 7)da, =0,

(27) . . . . . . . . .
(ay+ ayr)de + - +(a, +a,r)de,=0,

it is evident that the curvature (1/7) of each line of curvature through a point
P on R, must satisfy the condition

a, +a,r a, +aur o0 @, +a,r
Ay + 0T Gy F AT e G, + gl

anl + aﬂlr an2 + anzr te arm + annr
since otherwise equations (27) would have no solution except
dxl=dw2= =dxﬁ=0.

Hence the reciprocals of the roots of (28) are exactly the curvatures of the »
lines of curvature through a point 2 on Z,.

The coefficients of  in (28) are called the curvatures of 2, in §,,, and are
discussed in §§4-7. Before proceeding to that discussion, we derive an im-
portant property of lines of curvature.

Expressing (26) in symbolic notation, one finds

(29) ‘f;‘z‘f;dw‘=—rgk‘2gtdw (k=1)""n)
=1 =1
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If now a line of curvature be represented as a U-curve (10), one gets from (13)
and (29) ‘

(30) f;c(fU)=—rgk(gU) (k:l,-~-,n).

A symmetrical expression for r is obtained by multiplying equations (30) in
order by the cofactors of f;, - .-, f, in (U ) and adding:

U )2

If any two lines of curvature through 2P be given as U and V-curves, and
their respective curvatures be denoted by 1/ and 1/”, one gets from (30)

1(9T) = — 2 (FD)s -+, 9.(90) == ST,

9TV )= = 5 iV s gV ) == B S ST).

Multiply the equations of the first line in order by the cofactors of f,, - - -, £, in
(V) and add. Also multiply the equations of the second line in order by the
cofactors of f,, -+, f, in (fU) and add. Then

(GUY(gV) = — S(SUNFV) == 3 (SUY(ST)s

%0 that either 7" = r” or (SUYSV)=10. Hence by (17) we have
Theorem I. Any two distinct lines of curvature through an ordinary point
P of R, are orthogonal to each other.

If the lines of curvature through 2P be taken as parameter lines, then, by (9),
a, =0 (S k)

It follows at once from (26) that also
a, =0 (5, k=1, -, n;ispk).

Theorem II. If the lines of curvature at an ordinary (not umbilic) point of
R, be taken as parameter lines, then

a‘.k=0, a'.,‘=0 (¢, k=1, -, n;isk).

§ 4. Definition of the Curvatures of R, in S, ,,.
Equation (28) may be written in the form
(32) Hyt Hyr oo+ H_ 4 Ha* =0,

where *
Ho=la.'kl’=1/32’ H =|a,l|,

*M. L, 9).
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while for j=1, ..., n, H_ is the sum of all the determinants obtained from
|@, | by replacing in all possible ways j columns of |a,| by the corresponding
columns of |a,|. Dividing (82) by /| one obtains

(33) 1+ Kr+ .-+ K_rm '+ Kr=0.

n—1

The coefficient &, (the product of all the curvatures) is the Kronecker-Gaus-
sian curvature of hyperspace. It has been shown to be expressible in terms of
the first fundamental quantities and their derivatives (cf. K-G. C.). In this
paper the coefficients of (33) are called the n curvatures of B in S . By
definition

"1,..,m

1,..,n 1,..,m a. a.
: 2 i1k ik i1
K'I=B2 Z aa‘kAl:’ K /3 Z allal ’AI::I‘;= E AH".'AII:I::’ DR
— bk iyig, kykg | Fighy Figky iyighike Kok
1,...,n .
(34) K =8 Y A e Az (m=1,---,n),

FIT DY SR O O
where A; is the cofactor of @, in |a;|, A}z is the algebraic complement of

a
a

a
a

i “itky

ighy " ighy

in |a, |, while A, ;, is the second minor of |a,, | indicated for K, above; and

similarly for the A’s and A’s in X,. Bothsetsi, -..,¢ and %, ---, & are
considered as being in ascending numerical order.

'1'2

§ 5. Invariant Symbolic Forms of K, .., K.

n

If F'; be the cofactor of /% in the functional determinant {f’, ..., f"},
Maschke * has shown that
1
(n—1)!

Bz foiyn ,
m tzl; gingiFk

A = F.F].

A
]'(l =5 E aikAl‘; =
ik

1
=(———nfz1)z{ﬂfz“’f"}z=(n_ )1 (&)

This suggests a method for reducing all the curvatures to convenient invariant
forms. Let #}:::7% be the algebraic complement of

* M. L, p. 450.
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in { ... f"}. Then the product 277 }‘l -™_may be written
fm-l-l v e. fmtl £mtl m+l fm+l m+1
1 ‘ H—1J 4 +1 im—1J imt1 iy

l...m
kyoookny®

fll' "'f?)—lf?p“ "'f?,.—lf?,..ﬂ f:.
If the first determinant of this product be expanded, one finds (n — m)! terms
of the form

(__ 1)uj; .o '.fi,—l g1t '.ﬂ,,.—lfc,ﬂ . ‘fn'Fi{“"i,,.s

where the suppressed upper indices of the first factor are understood to be any
permutation of the numbers m + 1, ..., n, while u represents the number of
inversions in the permutation. Since the equivalent symbols f™+!, ..., /" may
be interchanged in all possible ways without altering the value of the term, let
them be so interchanged for each term as to reduce the first factor to (— 1)~
times the principal diagonal term of #'; “""m. This causes an interchange of
rows in the second (determinant) factor £'}-"  so that it becomes in each case
(— 1)* times its original form. Hence the above produet becomes

(n—m)L et fOrp=tfaiy - S fn - S FL;::.”L,_-

Multiplying each £ into the corresponding row of the determinant £} (which
has a form similar to that given above for F} ' ), we have

Pt Flith,=(n—m)l A,

or
35 At 1 LR
( ) Ky oo kom (n—m)' &y .
Also
‘]ai,r;, %y ke :.’7:'..'//’.-, cee .‘/i,{//.',,.; Iy "’9;,,,
1 « Km i ” m "
ity R | 190k g gh oo gi |

’ P ’r oy
PG g e g
(36) L P P

L. g m m m‘
g"'l ./'mi .q/-'u gl i

Substituting (35) and (30) in (34), one finds, by a well-known theorem of
determinants, i
1 4 m £m n 1
(37) Km= —v;ﬂ—!(g...gf-f-l...f )2= ,’n_m)'(g .gmf)z.

mi(n—
In particular,

where, by M. 1. (22), 4, ¢ is the first differential parameter of the first quad-
ratic form ().
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Since the other .coefficients are corresponding differential parameters (the
number of g’s being the same as the subscript of A7), it would seem fitting to
generalize the notation and set *

(38) K, =

m m'(n

)v(g -g"f)’=A4a"g,

with the note that A'g = A g.

§ 6. Expression of K,, in terms of the first Fundamental Quantztzes
and Derivatives.

The generalization of the Gauss equation shows that any second order deter
minant of the second fundamental quantities is equal to a Riemann quadruple
index symbol, which is expressible in terms of the first fundamental quantities
and derivatives.} By K.-G. C. (27),

Qi gy Riky 1 (fa);cl(fa);cz
= (i,,k, k) = —— fi. f? .
Oy Vi, (ihk) =Gy /el (fa)i (fa)?

By an easy induction, any even order determinant of the a’s is expressed in terms
of the symbols of the a’s as follows:

o | Y| (T
39 At, ., = Vo |
kg, (2v)! ( fa) (fa)¢2y PR "2vi

where e = 1/(n — 1)!; the symbol ( fa)’ contains f’ and a®... a", while the
symbols @ in every consecutive pair (fa®...a")®', (fa*... a*)™ are equal
when they have the same index, otherwise they are distinct but equivalent sym-
bols of the first fundamental form (3).

Now from (34), (35), and (39),

Bte lin ((-fa)ﬂ : (fa)‘zv (f"x "f;czv
Ko = @i (n= )l
(2v)l(n=20)1 . .y, (fa)¥ (fa)lz.. ( .. i;v
xFiut By,
or
(40) Kz,—(%),(n gyt ((Ja) - (fa)f ) (f)-

* The use of Amg would conflivt with the second differential parameter of ordinary differential
geometry, which has an entirely different meaning. Cf. BIANCHI, Lezioni di Geometria Dif-
Jferenziale, vol. I, p. 67.

M. I, (117)-(126).

tCt. K.-G. C., (28).
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This gives Maschke's expression * for K when n is’even:
1 , .
K,.--mqm((fa) s (fay) (f) (m even).

Theorem. Zhe mean curvatures K,,, with even subscript, are represented
in (40) as rational integral functions of the coefficients of the first fundamental
Jorm and their derivatives.

§ 7. Expression of K,,,, in terms of the first Fundamental Quantities
und Derivatives, when v is greater than zero.
Use is made of the determinant theorem
Thoam| %, R, -Di,-k, Di,-k,
gt T2 £ D, D,
where v 4 0 and the D’s are cofactors of the corresponding a’sin A,1::: ,"g:ﬁ and
are therefore all of even order and expressible by (39). The results are

(8,t=1,:--,2041; ga=t),

CIN)

a‘ikl a‘rk t

'Dik""(z )'F, (FA)I:9 i)k, (2 )I :}(@B);‘,
D, = (2v )IFI (FA ), Doy, = (2 )Icp A PB),,
where F'; is the cofactor of f} in {f7, --- ) -, (®BY),, is the cofactor
of (¢b);, in {(Pd);, --- (b Ygrl ). Also, by M. I (120),
Fik, Pk, f:, ¢:,
e J =€ C ¢ ) ) , B
Ak, Xx, (f )k (#) S A ¢4,

Substituting in (41), we find

Af: -'2y+1 [(2 )']z(fc),"(FA),,.(¢c),,‘(‘I)B),,t

% . 2v+1 f" qS" ,f (D;j
. 2 jlr f"‘ ¢"‘ "‘ ¢:'
This last sum expands into
1 1.0 2p+1 , ,
2 jzr [f’i,F’i,‘f"i,q) fz,qy 4’;, —ft,q) 4’4 Ft, +ft,Ft,4’¢, ]
—_ {f.'"'- ?;:3:‘ {f"l ig "t 3;::1
- ’ v ’ v ’
{ 95,.1 '2'2 te %2:1 {¢‘1 tee ¢32::1
80 that
M= [(2)IJ’(f R(ER SR EEL
{f'x %;:41-1 {f‘l gttt %;:-:1
{¢'1 %;;:1 boA ¢"1 U ?;:'41-1

*K.-G. C., (29).
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By (41) this equation holds for all values of s and ¢ from 1 to 2v 4+ 1 except
s=1t. When s=t¢, the second member vanishes. Sum the equations given
by using all values of s and ¢ from 1 to 2v + 1 and divide by (2» + 1)2v;
ilso multiply by B*. Then

A2 et ’ 2 . 2 +1

42) Ai}f:fig:ﬂ T (v+1)(2n)[(20)']? ((fc)kl(‘fa)"2 (Ja "2v+1)
{(fi Sy {fudly- il
x ((d’c)' ($b)2 - - (db)2r+! ) i 241 17 241
" * a { &, ?2f3;::-1} {4)'14“3;::-1

And by (34)
1,...,n
K, . =, 2 [34A2i1...i2”+1]&Atl...i2v+l (v>0).
(RRDL S LR MO8 | Fy.okgy,yy Ry.okgy, iy

Thus by (34) and (42) we have K, ,(v> 0) expressed in terms of the first
fundamental quantities and derivatives (but only in the irrational form of a sum
of square roots).

The case of A, presents special difficulty :

,...,n )
K =§ 3 2,4}

In K.~G. C. (p. 24), Maschke suggests a method for expressing the a’s in terms
of the a’s when 7 is odd. His formula (24) should, however, be written,

A
A

.. A
A

n2 ° nn

22 ° 2n

(43) o, A =

If n is odd, the elements of the second member of (43) are of even order, and
therefore expressible by (39), and similarly for every a. But A itself is of odd
order, and is raised to an odd power (n — 2 instead of n — 1).* Equation (43)
is true also for even values of n, so that the a’s are always expressible by (43)
in terms of the first fundamental quantities and derivatives (if n>2 )s but in
all cases irrationally.

Using (43), the author has calculated irrational values of &, when n is greater
than two ; but the notation is so complicated that the presentation of the results
seems impracticable, if not also useless.}
~ If 2v 4+ 1 =n, the sum reduces to a single term and formulas (84) and (42)

*Ct. BOCHER, Introduction o Higher Algebra, §11.

1 In a recent paper the author has calculated the value of K, as well as of the other curvatures
of odd subsoript, for a space of # — 1 dimensions defined in R, by the equation U(x;---zn) =0,

These values involve only the coefficients of the first fundamental form of R» and their derivatives,
together with the function U.



1911] IN HYPERSPACE 31

give a rational value for K2,

) ()
44) K2=p'N= ((feY(fa)- - - (fa)')((pec)($d)- - - (¢b)" .
(44 Ki=pii= o g5 (() (fa)'- - (fa)) (($o)(4D) @) 6 h @)

By the method used in K.-G. C. (p. 86), this may be reduced to Maschke’s
form (81):*

(45) Kim e (GO0 () (B0 - (B0 ) (S5 XS89,

The rather unsatisfactory results of this section are then as follows :

If n 18 odd, K? is expressed by (45) as a rational function of the first funda-
mental quantities and their derivatives. Equations (34) and (42) give irra-
tional expressions for the curvatures of odd index except K, , for which no
expression is here given.

PART II

INvarIANTS OF R, IN R_.

The quantities K,, and K?, for n odd, are by their forms (40) and (45) dif-
ferential invariants of the first fundamental quadratic form (8). When (8) de-
fines the arc-element of a space R, of n dimensions contained in an euclidean
space S,,, of »n 4 1 dimensions, these A ’s have the geometric meaning already
assigned to them. It is our object } to find corresponding invariants of a space
R, of A dimensions, represented as differential parameters of a general space 1,
of higher dimensions containing R, .

§ 1. Definitions and Preliminary Formulas.

In the general space R, , of n dimensions, whose coordinates are z,, - .., x

n

and whose arc-element is defined by equation (8), let the space &, of A dimen-
sions (A < n) be defined by the n — A equations

(46) UM' (=, -+, ) =const, ..., U"(x,, -+, x,) = const.

If A other arbitrarily chosen functions of «,, ..., x, , say %, - .., w*, such that
A= (0 D UMY 40,

are adjoined to these, the space £, may also be represented in parametric form

(47) wl=wl(u', cee, u)‘), ...,xn_.—.:wn(u', ceny u*),

* In MASCHKE's reduction there are two slight numerical errors which balance each other. His-
equation (30) differs from (44) above in that he has divided by n? instead of by n(n — 1); while
in his reduction of (30) there are n — 1 of the terms which become equal, instead of n.

tCL. K.-G. C., §5.
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by solving the n — \ equations (46) with the A equations
(48) wW(wy, yx))=uy ey ur (2, oo, x,) =l
Any n differentials satisfying the n — A equations, found by differentiating (46),
> Ude, =0, ..., > Utde,=0

i=1

i=1
determine a certain direction in £Z,. In order to find these differentials in tewms
of du', - .., du*, we differentiate also equations (48) and solve the set

uda, + +-- + u,de, = du,
wde, + « - + uhde, = du*,
Ude, + - +U'\+‘dw =0,

U n doz:l -+ U da' = 0
If A* be the cofactor of w* in A, then

A
Z z A du*

and therefore,

(49) > p,dv, =

r=J

i [V]>«

{ Ccu pur L A T}

where p is any ordinary functlon ofx, . ---,x,.
In order to find the expression for ds in terms of v/, - .-, u*, we introduce for
the differential quantic (3) the symbolic form

Then (49) gives for the length element in £,

A 2
(50) i=1 .
— [Z(u “ee u‘._lfui"l e u}‘U)dui].

We may also introduce for ds? as given in terms of ', - - -, u*, the symbolic
form

A 2
(61) ds’ = [ > f‘.du‘] .
i=1
By comparing (50) and (51) we find

(52) f‘=%{u' coou futt o r U = —v~A(u coeut futt oot UO).
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If we use the symbols of form (51), the invariants K, and K} (A odd) of R,
may be written, by (40) and (45),

(63) (2)!(A—=20)![(A=1)1]" K, =G, =((f0) - - - (Fa)fo+t - P)(F - -+ ),
MO =D E]= G =((fo) (fa)’ - (fa))
x ((ge)(gb)t--- (g3 )(Fg'f -+ P)(Fa’--- ¢),

where @,, and G? are introduced merely for convenience. In all invariantive
brackets containing the new symbols, of the quadratic form (51), the differentia-
tion is with respect to the A variables «’, - .., «*. This is indicated sufficiently
by the German type and the number of symbols inside the brackets. B, is de-

fined by the equation
(f--- ) =8AF---1}.

We now proceed to compute the values of the invariantive expressions used
in (63) and (54) in terms of the symbols of the first fundamental form (3), of
R, and the functions U+!, ..., U" which define B, in .

By means of (62) and D. P. (3), we obtain

(54)

1
{f""f'\}=“Al_A{f,"'fAU}{u""“'\U}'\-I=Z{f"'~f‘\U},
80 that
(55) Bl(f’f'\)_-_—_ﬂlz(f'f»\U)

To calculate the value of B,, square (565) and simplify the result by placing
(f+--)*=2!, according to M. I. (17), and (f’- - fAU ) =Al(n—A)!AU
by (88). This gives

Then

1
(n=2)1A=AT
(f - P)=w(f - frU).

The other invariantive forms in (53) and (54) are reduced by the same method,
and by interchanging equivalent symbols, giving *

() =0 (D),

py (87 Py =872 S U) (Pt g) = o(f?¢" - $0),
((fa) -« (fay»f+.- )

= o(e(faU), 0(faUY, -+ o(faU ), f2*1 - f1U),

*Iunside the invariantive brackets, we have followed M ASCHKE's custom of omitting commas
between symbols, except where ambignity might oocur. Cf. M. L, p. 448.
Trans. Am. Math. Soc. 3
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((feY (fa)?--- (fa)) = @(@(feUY, 0(faUY, -+, o(faUPU),

(87)
((ge)(gh)? -+ (gb)) = w(w(¢cU), w($pUY, -, a(UYT).

§ 2. Euxpression for K,,.
By (563) and (57),
Gy, = H(@(falY, oy @(fal)™ fo o AOYS - D).
Applying D. P. (4) to the second member, we get

Gy=a*((faUY - (JaU Y fret e frUN(f oo fAO) 4@ (- f2T)
X g(faU)k((faU)' e (faUY @, (faU)y+ o (faUy fo+t ... fAU).

It will now be shown that each term of this last sum vanishes. Aside from the
factor @*+!, each odd term of this sum may be written in the form

= (=)' S SO (ST
X ((faUY -+ (faU)*"s 0, (fal)* .o (faU)> f24 ... fAU).
Applying D. P. (1) to the first two brackets of the second member, we obtain
(f"f"“ ...fkf’ .. .fk(])(fk+la2 a/‘U)
H@P L SO )
T (=1 (@S P PO @S 2 D)
L@ PO e D)
X ((faUY - (faUP~, o, (JaUY - (JaOPrfo oo f2U).
‘Of these A terms, the first vanishes because of two identical rows in the first

bracket, while the others become equal to each other if we interchange /**+' with

@’ ... @ in turn and in each case restore the original order in (faU )**' by the
interchange of two rows.* Thus

T= (=1 (1= A)(f* - fof o PO (" - D)
x ((faOY - (faUY=", 0, (fal)*" . ) = (= 1)L =N) T.

Hence 7= 0 for odd values of %.
If % is even, each term 7" may be written

T=(f*" e S f2P0) (faUY
_M((fa(]) (faU ), o, (faU)+t ... (fal ) fro+! .._fAU').

*Cf. K.-G. C,, p. 92.
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By applying D. P. (1) to the first two brackets, and proceeding as above, one
finds 7= 0 also for even values of %.
With the help of these results (58) becomes

sz — wZv+2( (faU)' .. (faU)2vf2v+l . f'\U)(f' .. f"U)
Then, by (53) and (56),

. (A =D)((faO) .- (JaUPf>" - AU - SA0)
(59) K, =~ I =20)![(A=1D)(n—=r)IAAT ]+ '

If 2v < A, (59) becomes
((faUY -+ (faUPU) (S --- *0)
(60) K, = x[(x_1)!(n_x)!A"-*U]<*+Z>/2 ’

which agrees with Maschke’s form, K.—G. C. (60). The symbols f and a belong
to the quadratic form (8), expressing the length element of R, . Further,
(faU) =(fia*... *UM" ... U"),in which f* isequal to f*in (f"-.. f2T),
while the sets of symbols a® ... a* are equal in any two consecutive brackets

(SfaU)* =1, (faU)* and otherwise distinct.

The result is then that K,,, for the space R,, is expressible rationally in
Lerms of the coefficients of the first fundamental form of R, and their deriva-
tives, together with the functions U, ..., U" (which define R, in R) and
their derivatives.

§ 3. Expression for K} when \ is odd.*

The invariant K 2(A odd) can be expressed in a manner similar to the above.
Substituting from (57) into (54), one gets
o G2 = M0 (feUY, o(faU), - o(faUPU)
x (a(peUY, a(@b U, -+, o($pU YU ) (f ¥ - - SAU) S -$'U).
By D. P. (4),
1(w(_f'¢:U)', w(faU)z’ ceey w(faU)ALr)= wA((fCU)I(f(lU)z v (qu)’\U)
+ & fe Uy (o, (faUY - (faU)YU)
+ 0 3 (ST Sl (al) 0, (faU)(faU YD)

= wf\al + (D'\"laz + w“"aa.
(w((ﬁc(])', m(¢bU)2, . .,w(([)b U)A U) = w‘((¢cU)’(¢b U)’ .. (¢5U)"U)
+ @ (pcU) (o, (([:50)2 o (GQUNT)
+ w'\—IkZi:z(‘ﬁb U)k((d’c UY(@bU)-- (b U), o, (@bU 1. .. (¢b U Y U)

= w8, + 08, + 0B,
* See K.-G. C., p. 93.
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The notations a,, a,, a,, 8,, B,, B, are used for brevity to represent the expres-
sions whose relative places they occupy. If we also use

th Y= (LS SAU),  S=(F¢ .. $U),
en
(62) G = o™ oo +a,+ o, ][, + B, + B,] 7.

The nine terms of this product (omitting powers of ) will now be considered
in the following order:

1) «,8,v8, 4) a,8,v8, v) a, 8,79,
2) a, 8,78, 5) a,8, 73, 8) a3,3378,
3) a,8,79, 6) a,8,78, 9) a,8,99.
For the first we have a, 8,96 = L, where
) L= ((feUY(faU) - (faU)U)
X ((¢cUY@DUY - ($UPU NS S> - SrONS* - 6 T).
The second is shown to vanish as follows:
2) a8 = (F§f - LLUNES - AT
x((SeUY(faUY- - -(FaUPUY S -4 U) (w, @DUY- - -($bUY V)
@G- UV - T) [by D. P. (1)]
(@S SUNGS S T)
= | +(@$S5 - SUNFES e T) | ((feUY(faU) - (faUPU)---
1(6*¢'f" S SRUY G D)
=(A=N(F S FONFS - AU)((SeUY(faUY - (faUPU) -
=(1-\)a,B,vs.

Hence the second vanishes. The third and fourth are shown to vanish by apply-
ing D. P. (1) to exactly the same expressions.
For the fifth term,

5) aB8yd=(F 62 SAUYFE - AU (SeUYGBUY- - -($bUPT)
x (@, (faUY- - -(faUPT)( S ¢ U)
=SS SO SE T (peU)Y(@OU Y- (9T PT ) - -

By applying D. P. (1) to the first two forms and simplifying as for 2), we

find
a,B,78 = (1—2)a,B,9d.
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Hence 5) vanishes, and the sixth term is shown to vanish by a.pplymg D.P. (1)
to the same forms.
For the seventh term,

) a 373=§(¢kb2... RO 9 U)
x (($cU) (U - ($bUY", @, ---)
X (S OV fOY(faUY - (faUPU).

This sum is shown to vanish for all values of % by the method used for (58),
and the vanishing of 8) fo]lows by the same method.
For the last term,

9) a,8,v6= g (faUY(fef*---fU)
x((feUY(faUY - (fall )y o, (faU)y+ . (faUPU)
X (f2% - $U)(($cU) (DU --- (9T YT ).

The terms in which ; > 8 vanish by the methods used for (58), but the terms
T, (for ¢ = 2) and T, (for i = 3) do not vanish and require special treatment.
WehaveT_(f3. - ALY U)(far .- a*U) N, where

N=((feUy,w, (falU) .- (faUYPU)(f?¢*--- ¢AQ)
x (($eUY (@BUY - - ($bUPT)),
(2t fALEUN( P - @)

(@t PALYU)(SSa - @ 0)
T,= +((a3;"- AP U)(f‘«‘ 2f3 at.. -a"U) N [by D. P. (1)]

+ .
+ (St f‘f¢U)(f2a a"‘f"U)

=S YT @U)N+ (1 —=2)T,.

Hence
L=t(pr PPSUNSE e @ON
If now, we interchange f* and f* and then restore the regular order of symbols,
we get
Tym = X(f 81 PO SO RSO (faU Y, 0, (fal)- - (faUPD)
X (9 - $U)($UY@UY - ($UPT).
Next, 7, may be written as (f?¢* --- $*U)(f*a* --- @ U)- P, where
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P = ((.ﬂ'U)’(fa[])z, @, (faU)& - (faU)"[f)
x (f'ofs ~'-,f*U)((¢CU)'(¢bU)2 (qbbU)*U),

(f3?--- ¢AU)(f202 a"U)
+ (a*¢? - - ¢"U)(f"‘fzas car )
Ty= |+ (a*¢* --- $*U)(fPa’fat ... @ U)| P [by D. P. (1)]
+ (a)‘¢2 .. ¢AU)(J(‘3a? .. a;\—l.f'2U)
= (¢ - $U)(f?@--- *U)P+ (1 -\ T,

so that 7', = — 7,.
Thus all nine terms in the second member of (62) vanish except the first, whence

(64) G2 = L.
Then, by (54) and (56),

. L
(65) = A[(M=1)I(n = A)IAU ]2

where L is given by (63), in which the symbols £, ¢, a, b, c belong to the
quadratic form (3); the form ( faU )= ( f*a* - .. a*U"' ... U"); the f’s (also
¢’s and c’s) with same index are equal: the sets of symbols a?, ..., @ (also
b, - .-, b*)are equal in any two consecutive brackets of which the first has even

index, and otherwise distinct.

Hence K} (X odd), for the space R,, is expressible rationally in terms of
the coefficients of the first fundamental form and their derivatives, together with
the functions U, ..., U" (which define R, in BR) and their derivatives.
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