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Asymptotic Evaluation of certain Totient Sums.

By DErrick NorMAN LEHMER.

INTRODUCTION.

This investigation is the outcome of an attempt to account for what seems
to be a remarkable law first observed in particular cases in 1895. It may be
stated as follows :

Consider any set 8 of % linear forms, an+3, (=1 .... k), all of which
have the same modulus @, and where [a, ] = 1.* Consider, further, a function
O, (x) such that ©,(x)=1 or 0, according as each of the prime divisors of «
belongs to one of the forms of the set s or not. If then » (x) denotes the num-
ber of distinct primes in «, we have

N

2 2@ @, (x)
lim ”L‘T— = constant.
N=o

In the following we shall prove this law where s is the set of linear forms
belonging to a binary quadratic form. We shall also determine the constant in
this case.

In the investigation of this law, it seemed necessary to construct a more
general theory of what Professor Sylvester has called the Totient Function—the
function which denotes the number of integers not greater than a given number
and prime to it. Kuler, the first to discuss the function, denotes it by = (x).
Sylwester denotes it by 7 (x). Most continental writers follow Gauss, and denote
it by ¢ (). We shall denote it by ¢,(x), as a special case of a more general
function ¢,, (x), which we have called the Multiple Totient of « of multiplicity
m, or the m-fold totient of x. -

[N

¢ [a, b] here, as always, deno‘;es the greatest common divisor of @ and b.

39
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CHAPTER 1.

MuoLtipLE TOTIENTS.

The ordinary totient of an integer x being defined as the number of integers
y such that
z2y21

and [x,y]=1,

we have as a generalization the following definition :

DEFINITION : The m-fold totient of an integer x 18 the number of different sets

of integers
Ty Xy o Xy

which satisfy the conditions
z2x 21, (E=N....m),
and [z, %, 2 .-, (] = 1.

Two sets are considered different unless they contain the same integers arranged in the

same order.
Let = be given in terms of its component primes

r
a:..—_Hp;‘.

Disregard for the moment the second condition. The number of sets is then «™,
since each of the m elements z; may run independently through the values

1,2 .... 2. Now, among these values there are -;— multiples of p,. There
i

will then be (2—":- )msets where each element is a multiple of p;. Similarly, there
4

will be z > sets where each element is a multiple of [J »;. The familiar

8
t==1

Tl »

=1
principle of cross-classification® gives as the required number of sets,

- T 1 .y .
=[] (1— ET‘) , which is the formula for the m-fold totient of =, for z=£ 1.

$=1

*See note on the principle of oross-classification at the end of this chapter.
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For x =1 we have the m-fold totient equal to unity. Denoting it by ¢, (), we
have the theorem :

TaeoreM 1. Forx= [[p~#1,

t=1

¢,,,(£c)=a:”"]i]l: (1—;%

and | Pa(1)=1.

The formula for ¢™(x) may be written in different forms easily obtainable from
this. Thus: ’

on(@) = E’”"‘"‘" (oF —1),

with again the understanding that ¢,,(1) = 1. A third important form is given
in the theorem :

TaeoreM II. o (2) =" 2 p%_;i_) ’

(d)

the sum extending over all d’s which are divisors of x, and u being Mertens’s Func-
tion (cf. Crelle's Journal, vol. LXXVII, p. 289, 1874), defined as follows :

w(l)=1,
and u@)=(—1)Yoro,
according as each of the A distinct primes in x occurs to the first power or not.
We shall see that for every theorem connected with the ordinary totient
¢, (x) there is a corresponding one in the theory of the function ¢, (x). The

following theorem is evident :
TaeoreM IIL.  If « and y are relative primes,

P () P (9) = P ().

Also we can show the following
TaEOREM IV. 2 bu(d) = 2"

)

the sum extending over all d’s which are divisors of x.
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For we have, when > 1,
Pn(2) = I_Il (pr=— pre—D);

and the sum in question may be written
I1 D oa (D).
t=1g=9

Now for k£ =0, ¢, (pf) =1. Otherwise, it is given by the formula above as
mk m (k—1)

Py — P
The terms of the sum are then seen to cancel in pairs except the last one, which is
p™ The expression is then equal to H p¥™=2x". Hence the theorem.
=1

The following theorem is of importance also:

TaEOREM V. Pn(2*) =™ Vg, (),
We have @) = 2™ 1_'[ (1_ L)
Pml@) =1L "
and 4 1
m =z" 1——
oa(®) =2~ I (1~

By division the theorem follows.
We shall need to express ¢, (xy) in terms of ¢, (y). To this end we prove

the fundamental theorem :

TrEOREM VI.

Pn (xy) = I_Il [pr= —pr“—YA(y, p)] Pm (%),

where A (y, p;) = 0 or 1, according as p, is or is not a divisor of y.

Let y =1 ][ p#, where [1, ] =1, and 3,20.
i=1
We have : !
¥n (@) = T [pF " (2P — )] @a (1)

=TI (zr* =" (¢ — 1] [T 229 0.
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If, now, B3 0, the expression pP®~Y (pl* — 1) P, (!) is equal to Pn (p0).
If, however, B; = 0, this change cannot be made, but in this event p, is not a
factor of y. Thus the product of the pf's that do go over into the ¢, function is,
when multiplied by [, precisely y itself. The factor left outside when 3, =0 is
pre—V(pr—1). If 8,5 0, the factor is p, and the theorem is proved.

It follows from this theorem that if y runs through the values 1, 2,3, ....,
the coefficient of ¢, (y) on the right will be periodic of period [ p.. For if

t=1
y=y ( mod J] p‘), then p; divides y when, and only when it divides y or
i=1
2y, p)=2(Y, ps),

For example, in the case of the ordinary totient, (m = 1), we have for x = 18:

$:1(18.1)= 6¢,(1),
¢, (18.2) =12¢, (2),
¢, (18.3) = 9¢,(3),
¢1(18.4) = 12, (4),
$.(18.5) = 6,(5),
$1(18.6) = 18 ¢, (6).

The coefficients now recur, the period being 2.3 = 6.

 We define now two functions by the following equations:
[£]
Do (2, 1, k)= Y P (" F"),

t=1

and [+] .
Oz, )= > Z’;:%‘,). :

=1

where m, n and k are positive integers greater than zero, and * is positive but

not necessarily integral. [%] denotes here, as always, the greatest integer in ﬁk .

In studying these functions we shall also need the function S(x, k) defined by

the equation
[2)

S(x, k) = Zi".

=1
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We shall also need the well-known theorem,
1
[F1=[%1.
2]

2,7"“" Vo, (—,n 1) S (x, mn).

Tarorem VII. -

To show this theorem, we take the first difference of the function on the
left with respect to [#]. This may be written

J‘g’lj,.m_n{q,m (_ajc_n 1) o, (x;— 1, 1)}

Now, if j does not divide [x], the expression in the braces will vanish. If, on
the other hand, j is a divisor of [xz], d sa.y,—then the expression in braces

becomes
2 ().
But this, by Theorem V, is equal to

=1 e, ().

The first difference in question may then be written :
[‘n]m(n—l)¢ [“’]
) (%)
where the sum is extended over all d’s which are divisors of [x]. If we put
dd’ = [x], this becomes

» Z [2]™"—Dg, (d),

@
where again the sum extends over all the divisors, &, of [z]. By Theorem IV
this is [«]™. Since now ®,(1, n, 1) = 1™, the theorem follows.
In precisely the same way we can prove

TaeoreM VIII.
(2]

% <—,n l) S(xy —m(n— 1)).
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Making use of the well-known recursion formula for Mertens’s Function (cf.
Bachmann, ‘‘Zahlentheorie,” vol. II, p. 310), we easily derive from the formula
of Theorem VII the following:

TaeoreM IX,
{z)

Bu (@, n, 1) = p(i)i"*18 (.Zi , mn) :

tm]

This theorem is of cardinal importance for the sequel, as is also the corres-
ponding theorem for the Q function, which is proved in precisely the same way
starting from Theorem VIIIL.

THEOREM X.

Q,(x,n,l)=§ tL.sn':)S(%,—m(n— 1))

Similar formule for the general case where %> 1 do not appear to be
obtainable, but we may find a general reduction formula by which we may
reduce the general formulse.

r

k
—— &4 - — then
TreoreM XI. If k= ] pf and ¥ g

i=1 r

@, (z, n, k) = pre= (p, — 1), (;’_ .n, k’)
+ presn=n @, (;_ n, p,k’) :

To prove this formula, we observe that when i is prime to p,, we have, by
Theorem VI,

Pu (" F) = PPV (p, — 1) P (" &7).
Assuming for the moment that ¢ is prime to p, fort=1, 2, .... [%] , we get

on the left by summing
[£]
zq;.. (") =D, (z, n, k),
t=1 ’
by definition. On the right, we have
[£]
et (pr—1) Y o ().
N t==1
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Now, since

11- 5|

this last is by definition

pretP(p,—1) D, (pa; k’) .

We must now correct for those terms where % is not prime to p,; that is, for

x
t=p,, 2p,, 3Py, .-, [[—ZIZ—]]p,.

For such terms we have, by Theorem VI.

P (8" &) = P77 P (" K.

But we have already taken such terms with a coefficient p*®-*—? (p,— 1), so we
have only to add the sum

pren—D 2 Pm (" F™);

(O}

where the sum is extended over the values of ¢ as given above, viz. :
x
t=p, 2p, ... [[ k ]]p,..
D

We might write this sum,
P D0 (1),

(%)

where now ¢ takes the values

1=1,23, ....

that is, r[' x ]
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But - [ ]

pren=D 2 On (. P E™)

fam]
is by definition
" (a8 — 1) x
pf.' ¢n(p: 1”'1_prk,>'

and the theorem is proved.
By using the last theorem as a recursion formula, we obtain the theorem :

Treorex XII. Ifk= II pe, and ¥ =pf’ , then
=1 r
]
@, (2, 7, k) =pre=— (p,— 1)) prr-Dig, (E.%—, )7, k’) ,

J=0
where 1 is the first value of j for which [ p—;T’] =0.
This then is a reduction formula, by means of which the general function
®,, (z, », k) may be expressed as a rational integral function of @, (z, n, 1).

Similar theorems may be obtained for the Q function. Corresponding to Theo-
rem XI, we have

Tasorex XIIL I k= [ piv and ¥ = ;‘7 | then
t=1

—m( n—1+1) —
(@, m, B) =pr=T10 (p,— 1) Qu (G50 7 )
—m (w1 +1) x
+ pme Q. <p}'" n, p,k’) .
Corresponding to Theorem XII, we have

Tasonsu XIV. Jf k= T] ot and ¥ = i?" then

Qm(x, n, k) —m(%ll-l+l)(p —_— 1) Zpr—""lfﬂ ( , n, kl)’

=0
where 1 is the first value of § for which [P—fﬂ] =0.
40
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It is remarkable that the theorems for the function Q may be obtained
from those of the function & by changing n into — (» — 1), as if, indeed,

Q. (x, n, k) =P, (x, —n—1, k),

or as if the formula of Theorem V held for negative values of n, and

o) = o= o () = g (=),

If, in fact, we take as a definition of ¢, (x™"),

Pn ()

¢,,.(a:‘")— m(n—l) ’

the functions Q and ® are identical.
The special case of Theorem VII where m = n = % = 1 was discovered by

Sylvester (Philosophical Magazine, 1883, p. 251).

Note.—The principle of cross-classification referred to on page 4 of this
chapter, may be stated as follows (cf. H. J. S. Smith Works, vol. 1, p. 36):
Suppose, in a collection of N individuals, there are n different classes which
are not mutually exclusive. Suppose there be given the number of individuals
belonging in each class. It is required to determine the number of individuals
which belong to none of the n classes.
With the notation N, (a, @, ---- @) to denote the number of individuals
belonging at the same time to each of the 2 classes a;, . ... as , the answer to the

problem may be written

_n
n AT m—ayl

Z 2(_ 1) N(a‘x 'a R a‘x)’
t=1
where N, = 0.
For, consider the effect of the above on an individual that occurs in »
v(v 1)

classes. For A =1 it is subtracted v times. For A= 2 it is added
times, and in general for A = r, it is added or subtracted

vir—1)(r—2).... (v—r—1)
r!
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times, according as 7 is even or odd. The resulting effect for A=1, 2, 3, .... v

is expressed by the sum

v_y@—4)+v@—lww—%_h“.iV@—J%~-@—W_Ui.“,’
21! 3! 7!

which is — 14 (1 —1). If » =0, the individual belongs to none of the sub-
classes and remains undisturbed by the above process. If » 30, the indi-
vidual has been rejected once as was desired.

In certain cases of frequent occurrence in the Theory of Numbers, the above
sum may be greatly simplified. If the number of individuals belonging simulta-
neously to the classes a; ,a,, .... a, be given by N.¢(a; ... a,), where ¢ is
such a function that

¢ (=) ¢ (y) =9 (xy),

then the above sum may be put into the product form:

N,lj,(l — ¢ (a)).

CHAPTER II.

ApPROXIMATIVE ForRMULE FOR MULTIPLE TOTIENTS.

We propose in this chapter to develop certain formulse of approximation
for the functions @ and Q. The results are, in fact, generalizations of the well-
known formula for the totient function (Dirichlet, Werke, vol. II, p. 60; Mertens,
Crelle’s Journal, vol. LXXVII, p. 289, 1874).

It will be necessary, first of all, to obtain a formula for the sum S(x, n)
defined on page 8. Such a formula has already been obtained for positive inte-
gral values of z and » by Noel in Quetelet’s Correspondance Mathématique, vol.
1, p. 124, where use is made of it to prove certain theorems in geometry and
mechanics. For our purposes, however, it will be necessary to remove the
above restrictions on « and n except that = is supposed positive.

THEOREM 1. For all positive values of x and n,

wn+l

S (x, n)=n+1

+As (z, n)1
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where | Aga, m| S

We assume first that « is an integer, and show that in this case

0 =_<— Aﬂ(s, ) é x".
We have
o +1 (:t + l)n +1

n+1 n+1

Ayavim = Bsem +(xz+ 1)+
If, now, we assume Ay, , >0, then

n<41 n+1
B2 (ot 4 B -

But by Taylor’s theorem,
(m -+ 1)n+1 _ oz +H1

n+1 _n+1+(“’+0)?’

where 056<1. We thus obtain

AyerTm2 (@ + 1) — (z +0)
20.

If, therefore, Ag(,, 2= 0, we will also have Agz71,»=>0. But Agy = ﬁ_—l>0,
for n > 0. Therefore, in general, Ay, , i8 positive. Again if we assume

Aa(-, n) 5. x",

we have
(w + 1)n+1 ac"“

Ag(;“:f,n)ﬁw"""(w"'l)”_ n + 1 n4+1"

But again, by Taylor’s theorem,

(m:-{l_);+l=m”+l+x"+n(x+0)" 1

where 0<60<1. We thus obtain '
Agari,m S(x+ 1) —n(z 4 0)"",

which, being positive, is less than (x 4+ 1)*. Again, since Agy, . = _"_ <1

n+41

the theorem as stated is true for all integer values of x.
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Let, now, = be any positive number. Then we have

n+1
S(m, n)——.%].*._f + Aﬂ(z,n),

as above. Put now [«] =x—o¢,, where 0<0,< 1, and we have, by Taylor’s

theorem,
n+1 — n+1 »n+1
[= — (x—o0.) I — 6, (x — 00,)",

n+1 n+ 1 n+1

where 0<0<1. We have, therefore,

n+1

x
S (x, n)‘= | + Afa, nys
where Afﬂ (3, n) — AS @n) — Oz (x h oaz)n‘

Now, both terms on the right are essentially positive, and their difference is less
than the greater of them. The greatest value of o,(x — 06,)" is obtained by
putting 6, =1, 6 = 0, which gives z*. The theorem follows.

TaeoreM I1I. For 2> 1,

S(x’ - l)= log x + AS(:, —1)

where | Ay, —1y| S 4.

We have a well-known formula for §(z, —1), (cf. Boole, “Finite Differences,”
p- 93), when x is integral, namely :

S, —1)=logx + Ay, -1)»
where

B 1
By, -y =¢ + +§ (—" 1)‘ (2’;) |l (2,5):63

(e denotes Euler’s constant .677215 . ..., and the B’s are Bernaulli’s numbers.)
It is seen at once that

> B 1
| Bge, | Se+ 3+, B -
s, -] ',21(2@)! 2
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But we also have (Boole, * Finite Differences,” p. 109),

&
L
|
2o
‘MS
IA
')
c:l{,

Also, since (2n)* > L:; i, we have

(2”2)-'1 <

lAS(z 1),<E+§
<s.

so that 1
"&T ’

v

In case = is not an integer, we have as above,
S(w, - 1) = log [x] + As(z' -1)
and putting [«] =x—¢,, where 0¢,< 1,
g
S(m, -_ 1) = logx— log (1—" —w:':—) + As(,' —~1)°

We wish to examine the absolute value of

log (1— %;) , or of log (l-— _[:_v%—z) .

Now, for [x] >1, we have
- a2l 520
log (1 [x] + a,) = 10g<1 1+ a,) ’

and since 0, < 1,

Slogi<1,

Gl
, log (1— =T +o.
and the theorem follows.
Taeorex III. Forx2>1,and n > 1,

S, —1) =D+ Agiz, —ns

where 1
= — ,and |A 2, —n
(n) 21 .7 I 8 ( ) ! [m]

We have o1
Aﬂ(z —n) - —

T
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80 1

Bl S3 G DS BT

J=[=]+1

We can now find an approximate formula for our function

d, (x,n, 1).
TaroREM 1IV.
nm+1 1
D, (x, n, 1) = mn¥1 Dars + AD,, (x, n, 1),
where

Dy 14 2 - and |AD, (x, n, 1)| < Ax™ log z,
=1/
A being finite and independent of x, m and n.
We start from Theorem X of the preceding chapter,

@, (, 7, 1)_2,4@) jm(n— ”S(-— mn)

=1

17

Writing in our formula for § (f-:—— , mn), this becomes equal to M + N, where

and [2]

N= Zy (2) ™™=V A (——, mn)

since now

As(—‘;—,mn) S‘f..,. :

we have, putting u (3) =1,
[z]
1
N|Za™)y ——.
M= w

Since m> 1,
(=]

¥ SamY +
t=1

5 A‘l ™ log X,

where 4, is finite and independent of z, m and n.
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We break up M into two parts:

M=P+ @,
where ™t QO ou(e)
T mn 414 FY
_ ™t 1
T mn+4+1 Dy iy’
and 0= —a™t & u(
mn + l‘=m+li’”“'
Now am™+1 >~ 1
< —
|@l =mn +1 s=§+1 e’
<2y
n+ 1, 6,,t0—1)
mtl g
< * 2
=mn+1 [z]’
§A,a:"”',
< 4;2™ logx,

where A, is finite and independent of x, m and n. The theorem follows.
TreoreM V. For any prime p > 1,

4) (x n pa)= xﬂ’l”‘l p—l 1 +A¢ (m n pn)
m ] ’ mn+ 1 pa_j(pn.,.l__l) .D(m+1) m , ’ ]

where Dy, , , ts defined as in the preceding theorem, and
|AD,, (x, =, p*)|< Az™ log x,

A being finite and independent of x, m and n.
By Theorem XII of the preceding chapter we have

1
D, (x, n, p*)= p"—V(p— 1)2?"‘"‘””<I>,,. (
=0 P

X
a+J)n7 1)1

] = 0. Put in this expression the

where [ is the first value of j for which [p'f”

value of &, («, n, 1) obtained in the preceding theorem. We may write the
result equal to M 4 N, where
_(p—1a™" Dy 5 1,
(mn + 1) po*t™ “~ pFD
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and d
N=p=@=1(p—1) Zp-(-—nl AD,, (_:”_H . n, 1) .
i=0 P

We have then
|N|< 4, (P "‘"loga:z

<4« loga:
where A4, is finite and independent of x, m and n. Also we may write
M=P+ 9,
where — (p—1) am+? 1 SR
p= " man+1 Dy, Z; p™tY
and Q= — p—1 g™+! 1 2“’ 1
' .p‘+- mn + 1 D(Il+l)j_l+ P(‘H- Ve
Now 2 1 1
. J=l+1 Pm“” P(““)‘.Pmﬂ‘—l '
and from our definition of /,
P-.-{-l-l- 1 > x.
Since p occurs to a higher power than this in the denominator on the right in
the equation for @, we may write -

| Q| S dsa™ < 4;2™ log z,

where A4; is finite and independent of =, m and n.

Finally, since
- =+ 1 p—1
T mn+1 Dpyy pr (P —1)’
the theorem is proved.
We will now derive a formula of approximation for &, (z, n, k). For
shortness of expression, we define a function P (m, k) by the equation

r

—1
Poon= Il pe=rlrr=y)’

tm}

where k= [] pi, and where also we understand
§=1
P (m, 1) =1.

41
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We denote also, as in the preceding theorems, by D, the sum ?l— .

@
i=1

We prove now the general theorem :

TrEOREM VI.
— xmn-{-l I)(m, k)
D, (z,n, k)= 1 D(,.+1)+A¢m (=, n, k),
where | | AD,, (2, n, k)| £ Ax™ log «,

A being finite and independent of x, m and n.
Suppose that the theorem holds for &, (x, n, ¥), where ¥ = Z_’Zf:’ & being

equal to ﬂ i

=1

We have, by Theorem XII of the preceding chapter,

1
P, (z, n, k) = pr"= (p,— l)jzopr("—l”(b“ (p:+l 1 T k’) !

where [ is the first value of j for which [17;17] = 0. By the hypothesis we may
write this equal to M 4 N, where

—1 g™+! P . 1
M= Pr. (m, ¥') ,
pr+"~r mn + 1 D(m+l) :;)pgﬁ'i‘])j

and !
V= (o= )R a0 A (5 m K).
We may, then, proceed exactly as in the preceding theorem, and the result
shows that if the theorem is true for ¥ it is true for .. But in the preceding
theorem we have proved it for k= p*. It is, therefore, true in general.

For the particular case of the ordinary totient, we have m=n=%k=1,

and P (mk) =1, while Dy = i Our formula gives, therefore,

6
3
1—‘3:'%’+A’

where |A|< Axlogz; a well-known result (Dirichlet, Werke, vol. II, p. 60;
Mertens, Crelle’s Journal, vol. LXXYVII, p. 289, 1874).
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The above results may be looked upon as theorems in connection with the
function Q,, (x, », k), where n is negative or zero. The case n = 1 is important
for the sequel, and a treatment precisely similar to the one used above will give

Traeorem VII.

P

Q”(x, l, ]C)=x—D-(!'—k—)' +Ag.(x, 1, k),

(m+1)

where | Agw (2, 1, k)| S Alogx,

A being finite and independent of x, m and n.
This is seen to be the same as would be obtained by the formula for

P, (x, 0, k).
The case Q,(x, 2, X) must be treated separately, since in that case

S( —g’— y—m(n— l)) becomes § (—‘;i , — 1) , and the formula of Theorem II must
be employed. We start with Theorem X of the preceding chapter and write

(2, 2, 1)= 2"") 2, -1);

which gives Q, (x, 2, 1)= M + N, where
m l‘(.?) log( )

and &
N= AZ: 6N
Therefore, INj<4 8 n” <A4,,
4, being finite and independent of =.
We also write M=P+ Q,
where 210)) (J)
| P ‘,_2, log ,

and 1QI< 2 log 7
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Now logjy < j4, 80
. -
QIS -
i=1J

which is a finite series (cf. Dirichlet-Dedekind, “ Zahlentheorie,” p. 304).
Finally, we put P = R + 8, where

(.7) —logz
logxz “ =D,

< log z -

SIS T8 T S B <

f=imi+1J

and

Collecting results, we have
Q (z, 2,1)= lnga: + Ao, (2, 2 1))
3 .

where | Ag,0,5,1] 4

A being finite and independent of z. From this point the discussion runs par-
allel to the discussion of Theorems V and VI. We obtain thus the theorem :

Taeorex VIII.

Q,(x, 2, k)=logx + Do, 5. 15

P(l k)
Dy
where | Ag, 4, 3, 1| S A, where A is finite and independent of x.
The remaining values of ux are now readily disposed of. We can prove the
theorem :
TreorEM IX. Forn>2, 21,
D,

Qm (a:, n, k) = ﬁ) + An..(a:. n, k)

where |AQ, (x, n, k)| < +—— [ 2] , where A 8 finite and independent of x.

We start with Theorem X of the previous chapter and write
[x]

©() (.7) S(Z, —m(n—1 ))
j= Ve J

and, by Theorem III of this chapter, we write this equal to M+ N, where

[2]

M=D ni= Z l‘(])
=~

Q,(x, », 1) =
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and N—m “(")A ( m(n—l)),

1-1
and by that same theorem,

This we may write

'N'iz-u[ T Tw( =)

Now the expression 5? (_.7— — l) is & minimum when j= —‘;« . QGiving it this

value

|V} < [‘ﬂ + [E];
4
A
<+,
[=]
4, being independent of 2z, m and n.
Also, M= P + @, where

and ®
| Q| i-D(m.vi—_l)z

Jj=[0]+1

< 4

-z -[;]- 1
where 4, is again finite and independent of «z, m and n. The theorem is thus
proved for k= 1. The proof then proceeds as before.

CHAPTER III.

ToTiENT POINTS.

We define a totient point in space of m dimensions, as a point whose m
coordinates are integers having unity for their greatest common divisor. Not
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to restrict ourselves to positive or non-zero values of the coordinates, we define
the greatest common divisor of any set of positive or negative integers, as the
greatest common divisor of their absolute values, while the greatest common
divisor of any number and zero is the number itself.

The existence of any one totient point with m coordinates involves the
existence of m! other totient points, obtained by permuting the coordinates of
the point in all possible ways. These points may or may not all be distinct.
This is a special case under the more general theorem which follows :

TrEOREM 1. The cffect of a linear homogencous substitution with positive or
negative integer coefficients and determinant positive or negative unity, is to trans-
form totient points into totient points.

From the equations of transformation it is manifest that any common
divisor of the old coordinates must appear in the new. Solving for the old
coordinates in terms of the new, we get again integer coefficients ; and again, any
common divisor of the new coordinates must appear also in the old. The theo-
rem follows.

We define now an ¢-compartment of space of m dimensions, as the locus of
points which are such that the ¢*® coordinate, x;, of each is a fixed positive or
negative integer, not zero, and if «; 'is any other of the m — 1 coordinates,

[—::—’] is a definite fixed positive or negative integer (or zero).
]

Any given point lies in m different compartments, since the compartment
may be taken with respect to any one of the m coordinates. We obtain an
infinitude of compartments for each coordinate a; by choosing different values

of [3"1-

&X; .

TraeoREM II. There exists a one-to-one correspondence between the totient points
of any two compartments, obtained by choosing different values of [—%’-] , both com-

partments being taken with respect to the same coordinate ;.

By addition of suitable multiples of w; to the remaining coordinates of a
totient point in one compartment, we derive a totient point in the other. But
we derive only one. For if any coordinate @; go by this means to two coordi-
nates ] and ', we may write ’

' %+ M, =g,
% + Ay = wj”r
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z, 4’

whence .
o A =
[Z+x]=[
and z, x;'
et B = | =
[ x; + 2"] [ x; ] )
But if «f and ;' belong to points in the same compartment,
iy
[mi ] - [-E;T ’
and it follows easily that A, = A,, and that the coordinates are the same.
TreoreM III.  The number of totient points in any compartment with respect

to the coordinate x; is Pp_, (x,).
It will be remembered ¢,,_, () indicates the number of sets

x‘, xl’ xs, PR ,w‘_l, w‘-{-l PR w-,
where ¢, >a; >1, forj=1, 2, .... m, and 5 5= ¢, and where also
=% = y ’
[mh &y, Xgy « o v vy Xgmy, x(+11 z,,]: 1.

If, then, whenever any coordinate x; is equal to x,, we subtract z;, thus
reducing that coordinate to zero, we get a set satisfying the conditions
x>z >0, J=12 ....mandj 1,
and also still
[wh Lyy Xgy ooy Lyyy Xgppy - - v ,x,..]=1.

We have, then, exactly ¢,._,(«) totient points where the coordinate x; is the
same in eé,ch, and where [—:i-] =0. All these points have positive or zero
]

coordinates. They all lie in the same compartment, which, for convenience, we
may call the zero compartment. Since the number is the same for each com-
partment, the theorem follows.
Example I. Take m=2, ;= 6. Then ¢,._, (x;) = 2. The compartments
lie on the line # = 6. In the zero compartment are the points (6, 1) and (6, 5).
Example II. Take m=3, ;= 6. Then ¢, _, ()= 24. The compart-
ments lie in the plane x = 6. In the zero compartment the points are arranged

as in the figure :
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The points in the other compartments are arranged in precisely the same
symmetrical way. One obtains the points in another compartment by adding
multiples of six to the coordinates y and z of the points in the zero compartment.

Example III.  Take m=4, ;=2 Then ¢,_,(x;)=7. The compart-
ments are cubes. The zero compartment contains the seven points:

(1,1, 1), (0,1, 1), (1, 0, 1), (1, 1, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0),

being the vertices of the unit-cube, with the omission of the corner (0, 0, 0).

For higher values of m, of course, geometrical illustration fails us.

CHAPTER 1IV.
TotiENT POINTS IN THE PLANE. APPLICATIONS.

The theory of totient points in space of two dimensions is itself so extensive
and furnishes such a variety of applications that we devote a separate chapter

to it.
The mere fact, as indicated by the well-known equation

Z%(w) 6
3 p=]1 o—
llm _—ﬁ—— ? y

N=o
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that the number of totient points in the triangle bounded by the lines y = 0,
*=y, =N, is proportional to the area of that triangle, proves nothin g as to
the uniformity of distribution of such points in the plane. In this chapter we
propose to prove this uniformity in the sense that if N(k) is the number of
points in or on the boundary of a region of area k, then

. N(k 6

tim 0 = %,
the area K increasing in a sense to be explained and the region to be character-
ized more definitely.

LeuMa.  Let ¢, (x, k) denote the number of integers less than or equal to [%]

and prime to x, then

¢1(x, &) = %‘@1 () + JA VR

where | By, 0| S %2,
For >0 we know that

n@ =Y e@[£],

(a)

where the sum extends over all d’s which are divisors of z. Put

k7 _ &k
[7] = 7—0(1;. a
where Oéﬁ(k, d) <1.
th
We have then ¢ (w' k) = kZ ﬁ%_il + A% (@ &)

@)
where A, (x, k)= -—Z O, ot (d). Suppose z=]]py. Since now u(d)=0,
=1
when & contains a square factor, we have A, (, , = _‘20(1:, a) 1 (d'), where the
(d')
sum now extends over all d”’s which divide o/ = [ p;. Give now ¢ and g their
t=1

maximum value, unity; then

| Ag, (=, k)| <2,
2" being the number of divisors of 2. Now, unless « is 1, 2 or 6, we have & > ¢,
where ¢ is the Naperian base, or r<logz. With these exceptions, therefore,

I A¢1 (m’ k) ' g 2logz 5 mlogﬂ.
42
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But if z=1, Ap,(1, k) =0, < 182
x=2, A9, (2, k)=1o0r0 <L 28
x=16,Ad, (6, %)=0, 1 or 2 < 6982

and so the lemma is completely established.

The same proof applies to totient points with negative ordinates. The
lemma shows to what degree of approximation the number of totient points on
any line is proportional to the length of that line.

It is important for certain applications to generalize the problem before us
in that we subject the points to certain conditions. We discuss first the follow-
ing problem :

ProBLEM, 7o find for every real number a, and every angle a. (0 <a< —%’-) '

the number, N (a, o), of pairs of integers, (x, y), which satisfy the following con-
ditions :
[z, y]1=1,
x =0 (mod %),
Y <tan a,
x

z<a.

We are seeking, in fact, the number of totient points whose abscissa are
multiples of a given number %, and which lie in or on the boundary of a triangle
AOB whose angle at the origin O is a, and whose side O4 lies in the direction
of the axis of «, the angle a being acute.

The number of totient points on any ordinate y whose abscissa is Xz, is the
number of integers less than or equal to y and prime to Xz, which, by our
lemma, 18

ka
y%—) + Ay, e, 9

where | APy (B, y)| < (Fox)'os2.
The number of points in question is then

[+
N(a, a)= 2 Y ‘ﬂg‘fﬁ) + A¢, (b, y),

2=1
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But the length of any ordinate y is kx tan a, 80

[£]
N(a, a) =2 tan a ¢, (kz) + A, (kz, y),

=A+ B,
where (4]
A =Z tan a ¢, (kx),
z=1
and (4]

B =EZI A¢1 (kx, y).

By our lemma (]
[B' g 2 (kx)logz’
zr=1

S wlozz’
2,
iAl alog2+1’
where 4, is finite and independent of a (Theorem I, Chapter II). Now the sum
4 is nothing less than &, (a, 1, %) tana, and by Theorem VI, Chapter II, this

is equal to

2
—;— —%tanaP“, k) +tanaA¢l(a7 1’ k)’

where |Ad, (a, 1, k)| S 4;aloga. A, being finite and independent of a.
3
Now, 32— tana is equal to the area, K, of the triangle O4AB. Putting

together the above results, we have

N(a, o) = ;‘Z__ KP, , + AN(a, a),

where |AN(a, a)| £ 4 tan a log a + Ba'*s?11,

4 and B being finite and independent of @ and a.
.Take, now, another triangle OAB' having the same base OA =a, and a
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smaller central angle «. We see at once that the number, N (¢), of points

(2, y) where
[z, y] =1
and =0 (mod %),

which lie in the triangle BOB/, is given by the equation
N(t)= -%tP(L o+ AN(D),
where ¢ is the area of the triangle BOB/, and
|AN(£)| £ A tan a a log a + Ba'*s?*!,

A and B being independent of a and a.
Consider, now, a curve, PQ, whose polar equation is

r=7(0),

P

o

f being a single-valued, continuous function of 8, for

O§a0§0§a1<—7-2£ .

We suppose, to avoid unimportant exceptions, that P@ is not a straight line
through the origin, nor made up in part of such lines.

Join P and @ to the origin O and call the area POQ = K and the angle
POQ =p3. Suppose, further, that the line 0@ makes an angle a with Oz,
where a <a,; and, for simplicity, suppose the figure OP@Q to lie in the first

quadrant. ‘Divide 3 into » equal angles 6,, so that 6, = —g . Let the separat-

ing lines of these angles cut P in the » =1 points, p;, and through these
points draw parallels to the y axis. We thus get n triangles ¢ (j=1....n).
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Let K, = z {; be the sum of the areas of these triangles. By choosing n large

j=1
enough—say n,—we may make
K— K,
K

where ’7(...)<—;- where ¢ is an arbitrarily small positive number taken in

= Nng)?

advance.
By what precedes, the number of points (z, y) such that [x, y] =1, and
= 0 (mod %), which lie in or on the boundaries of the triangles ¢;, will be

6
N(K,)= = Py wKey+ AN (Ky,),

he
where IAN(K(M))|<2A tan a a; log @; + Ba,°s*+1,

J=1
where a; is the abscissa of p;. Let R be the largest of these abscissz, then

|AN(K,)| < (n.—1){4 tan a R log R + BRs?+1}

< 03 {A tan o R log R 4 BRos*+1},
Now we have K, =K—(K—K,),
= K_ Kn(ﬁc)'
Also N(K,)=N(K)—N(K—K,),
and since NEK—-K)<K— K, <4, K
6
we have N(K):FKP(L,,,-FAN(K),
where

|AN(E)| < 03 (4 tan @ Rlog R + BR*+1} 4 CKr,,,

where, further, [C|<14+ = n” Py, <2

We have then

AN(K) l A tan a R log R BR“""“}
I - 0(».) K + K + Mo
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Multiply, now, every ordinate and every abscissa by M. This multiplies B by
M and K by M® It leaves 8, @, 0,, and %.,,, unchanged. Calling the new

area K, we have

N At Rlog RM , BR°s*+1

By making M arbitrarily large, we may make this ratio approach as nearly as
we please to the quantity 2x,,, which is less than the arbitrarily small quan-

tity e. The ratio JL}(E)— approaches, therefore, the limit —2; P, ., as the area
K is increased in the above manner. It is now seen why we restricted a to be
less than % . Since totient points are symmetric with respect to the axis of z,

the curve may cross the x axis. By horizontal summation we can establish the
same result for curves crossing the y axis as follows:

Writing « = mk, we see that for a totient point it is necessary that
[m,y]=1.

1st. Suppose [%, y] =1. On any abscissa of length equal to x, there will
be as many totient points as there are values of m such that [m, y]=1, and

<% whi is & 1) x
m < T which number, as we know, is Z ” +A¢l( % ,y), where

| A, (% ) y), Sylost,
2nd. Suppose [%, y] 5 1; then, instead of the above result, we should count

none at all, since on such an abscissa [, y] 3 1. Our plan is naturally to effect
the sum for all absciss@ under the first supposition, and then correct for those

where [%, y] F 1.
Take our triangle now as in the figure, with base & on the y axis, and let
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the angle AOB=0. Then x=y tan§. Under the first supposition the sum is
2] [2]
z  ¢1(y) ]
2% B+ 28 (g 0)
y=1 y=1

For the absciss® where y is a multiple of p;, one of the factors of %, we have to
reject
(5.

x ¢1(P‘y)+ZA (k ,p.y>

”=

By applying the principle of cross-classification, the result is easily seen to be

b

NO=3 37 u@ 2D + 09, (5, 9a),

y=1 @

where the inner sum runs over all d’s which are divisors of 2. For each value
dy of the argument, « = dy tan 6, so the result may be written, changing the
order of summation,

N(t)—t”‘noZﬂ(d)Z% yd)+2 ZA¢,(Z ,yd),

y=1 (d)

or, in our usual notation,

tan() L]
No=20S e 1,9+ Sap (L, ).
@) y=1 @)

We then have
N(t)_t__anﬂ "7%‘ 5 Zﬂ(d)P(l o+ AN(2);
() )

where |AN(f)| < 4 tan 0 b log b + Bb'°s?+1,

Now, it is easily seen that

2 p(@ Py q = H(l'— 1, 90)

(a)

where the product extends over all the primes p; which divide 2. But since
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1
e+ 1

Py, = , the above product may be written

TP
‘,___]];p;+l’

3
which, when divided by %, is precisely P, ;, and since further %tan =K,

the area of the triangle, we have

N(@#)= % Py w K+ AN(2),

the limits of A being as above. The rest of the argument now proceeds as
before. We see incidentally that we would have obtained the same result in
the first instance if we had used the condition y=0 (mod %), instead of
=0 (mod k). A finite number of additions and subtractions will not alter the
degree of the residue function, and we now may state the theorem :

TaroreM I. Qiven a closed contour decomposable into a fintte* number of seg-
ments of the type considered. Let the area of the region bounded by this contour be
K, and let N (K, |k) be the number of points (x, y) in or on the boundary such that

[xy] =1,
x=0 (mod %),

. 6
then ‘l=1=12 N—E—L—(K’ k) = Py, v,

where K increases by ordinary magnification, all the lines of the figure being length-
ened proportionally, and where for k=[] p¥,
i=1

1 r
Py = 76—5_.1111‘)—5%:——1-' but Py, =1.

The condition, = 0 (mod %), may, as we have seen, be replaced by the condi-
tions y = 0 (mod %), the limit remaining as before. Also, the second part of the
above discussion shows that if we assume =0 (mod %) and y =0 (mod #)—

* The theorem might be applied also to curves where a finite decomposition is impossible, provided
the total area is a definite thing and the infinite series of residue errors suitably convergent.
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where necessarily [k, #'] = 1—the result would bave been

. N(K 6
lim 24 = 2 P Pasy

which may be written % Py -

It is further possible to impose the conditions [z, z] =1, [y, 7] =1, so
that our point (x, y) now shall satisfy the five conditions

I [z, y]=1,

II. =0 (mod %),
III. y=0 (mod %),
IVe [z,2]=1,

V. [y,.7]=1,

where necessarily for totient points to exist,

[z, ¥]=1,
[k, 2] =1,
¥, 2] =1, .

but where z and 7 may or may not be relative primes.

The number of points satisfying I, II and III is, as we have just seen,
6
'3

(] o .
2= H r&and 2= II s¥ where 7, and s; are not necessarily distinct. We reject
=1 tam]
first those values of # which are multiples of the primes r»,. By applying

the principle of cross-classification, the remaining number of points is
P

M‘=IPI1 (1= P(1, 7)), which equals MT] ;7. which equals MzPy,. If

=1
now we suppose [z, #] = 1, we reject in the same way those points where y is
a multiple of s;, and get MzP, ,,.2'. P, ,,, which is the desired result when
[z, 2] =1. Suppose, however, in addition that = and y are both to be prime to
2'. Rejecting those values of # which are multiples of the primes of 2/, we have
the above result multiplied by 2’ P, ... From this we need reject now only

43

KP ., which, for shortness, we denote by M. Suppose, now, that
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those points where y is also a multiple of the primes of 2. This multiplies the
result again by ¢, (2’). We may put all these results in the following theorem :

TraeoreM II.  Qiven a closed contour decomposable into a finite number of seg-
ments such that for each segment the radius vector is a single-valued, continuous func-
tion of the amplitude. Let the area of the region bounded by this contour be K, and
let N(K|, &k, ¥, z, 2, 2") be the number of points (x, y) such that

I. [=,y]=1,
II. =0 (mod %),
III. y=0 (mod %),

IV. [z,7] =1,

V. [y,7] =1,

VI. [xy,7']=1,

where also VII. [k, ¥] =1,

VIIL. [%,2] =1,
IX. [¥,7] =1,
X [2,7] =1,
N\, k¥ 2772)__ 6

then Il{i;"“ K = 22 P1(2") Py, aay Py, ey P, 2oy

where K increases, by ordinary magnification, all the lines of the figure being length-

ened in the same proportion, and where, for k = II y 2
=1

. l r
Py, = %*.1_11 P‘_{t =, but Py =1.

It is not difficult to show that the restriction axz ¥ by (mod %) introduces a
factor P, .

We have seen that in space of any number of dimensions the effect of a
linear transformation of determinant positive or negative unity, with positive or
negative integer coefficients, is to throw totient points into totient points. We
know, further, that in the plane such a transformation leaves areas unaltered.

Let such a transformation be
2 =az + By;

¥ =yz+ dy;
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where ad — By =1. The ten conditions of the preceding theorem are now,
dropping accents,
I. [=,y]=1,
II. 8z =By (mod %),
III. yx=oay (mod %),
IV. [dx—By,z] =1,
V. [yz—ay, 7]=1,
VI [(0=— By)(yx—ay), 2']=1.
The remaining conditions are not changed. The formula for lim

k=

N(K|, &k ¥#,z272, 2
K
is not disturbed.

We are now prepared to write out an indefinite number of theorems which
are merely applications of the preceding theorems. It has been noticed (cf. Syl-

vester, Philosophical Magazine, 1883, p. 2561), that the number of proper frac-
tions in their lowest terms whose denominators are less than or equal to =, is

approximately ;% n® This follows easily when thrown into the language of our

theorems. We are, as a matter of fact, finding the number of pairs of integers,
[#, y], such that [z, y] =1, and also such that 1Sy <ax<n. Here we have the

nz 3 3

2 -
area X = 322— and the number is, therefore, —:2— 5 or 7 More generally

we might ask for the number of such fractions, where the numerators lie between
7 and ! 4+ m, while the denominators lie between # and I’ 4+ m'. The area K is

’
here mm’, and the number in question is 6:’::" . Manifestly, the number of such

theorems may be multiplied indefinitely, the one difficulty in any case being the
determination of the area K which stands for the conditions of inequality.

Another class of theorems has to do with integral right triangles. By an
integral right triangle we mean a right triangle whose three sides may be repre-
sented by integers. Such a triangle is said to be reduced if the three numbers
which represent the sides have no common divisor except unity. It is well
known* that the three sides of such a triangle are given by the formulae

* See Frenicle, ‘ Traité des triangles rectangles en nombres,’”” Paris, 1676, §§ xxiv, xxv, pp. 59, 61 H
Euler, * Commentationes arithmetics, vol. I, pp. 24, 25. Also Annals of Mathematics, vol. I, 3d series,

No. 8, p. 1.



38 LenMER: Asymptotic Evaluation of certain Totient Sums.

a=m’+ n,
= m®’—n?

c=2mn.

If the triangle is to be reduced, it is further necessary and sufficient that
[m,n] =1, and m 3= n (mod 2). If we take the further condition that the
hypotenuse a shall be less than or eqnal to N, we have m*+2*<N. If the
sides are to be positive, we take m >n. We may take m and n both positive,
since — m and — n give the same triangles as + m and +n. These conditions

give an area K equal to N . Our number, therefore, is LA Nn 2P, o Or X .
8 w 8 ’ 27
Thus for N=100, El_vi =15.9, and actual count gives 16 triangles.

If, instead of restricting the hypotenuse as above, we restrict the sum of the
three sides to be less than or equal to NV, we easily get the formula % log 2.

Manifestly, here also the number of special problems may be indefinitely
extended.

The foregoing problem is of special importance in that it suggests a class of
theorems of which it is a very special case. For any number to serve as the
largest side of such a triangle, it is necessary and sufficient that it should be
expressible as the sum of two squares which are relative primes. But the neces-
sary and sufficient condition that it be so expressible is that every one of its
prime divisors be of the form 4n+ 1. Further, if the order of the squares be
left out of account, a number « of this sort can be so expressed in 2*®—1 different
ways, where » (z) is the number of distinct prime divisors of z. We have, then,

the theorem

N
2 2" @, ()

. z=1
lim N

1
—.

where the function @, ,,(x) is equal to 1 or 0, according as all the prime factors
of x are or are not of the form of 4n 4+ 1. This is, then, a pa;ticula.r case of the
theorem noted in the Introduction. -
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We now proceed to consider representations of numbers by the binary
quadratic form
ax® + 2bxy + cyf,
where [a, 2b, ¢c] = 1, these representations to conform to the three conditions
I [z, y]=1,
II. 0<aa®+ 2bzy + cy* S N,
III.  [ax® 4 2bxy + ¢y, 2D] =1,
where D = b* — ac.
We may suppose [a, 2D] =1 (Dirichlet-Dedekind “ Zahlentheorie,” p. 233),

and, therefore, [a, b] = 1. Now we have
a (ax® + 2bxy + cy®) = (ax + by)* — Dy
We may, therefore, replace condition III by
[ax 4+ by, 2D] = 1.
Our result is, therefore, £ kop Py ;5. The area K is to be determined

from the second condition, and is very different in form according as D is posi-
tive or negative ; that is, for Definite or Indefinite forms.
For Definite forms, where D is negative and equal to — A, the area is

bounded by the ellipse
ax® + 2bxy + cy’ = N.
nN

We have, then, X = JA’ and the number of points in this case satisfying the

given conditions is
12 —
';t— NVA P(l. 24)°

For Indefinite forms, we may have an infinite number of representations of
a number m by one and the same form. Thus, if

ax’ + 2bxy + cy’ =m

be a representation of m, so also is
at® + 2bkn + en® = m,
where E=Uq.(bx +cy) = T, .=,
7= Up (a2 +by) F Ty.y,
where (7., U, is any one of the infinite number of solutions of
f—Dut=1.
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Now, it is well known (Dirichlet-Dedekind ‘‘Zahlentheorie,” p. 247) that
one of these solutions may be isolated from the rest by the conditions

y>o0,
U(ax 4 by) — Ty >0.

These conditions define a hyperbolic sector within which all our points must lie,
which is bounded by the lines

ax® + 2bxy + c= N,

y=0,

Uax+by) — Ty=0,

the area of which is
N

57D log (74 U~ D),
(T, U) being the fundamental or smallest solution of the Pellian equation
&—Du*=1. This being our area K, our number of points in this instance is

6 .
‘?VDP(I‘gD)NIOg(T"'" UA/D).

If we multiply the above results by A, the number of properly primitive
classes of determinant D, we get the total number of properly primitive repre-
sentations of numbers less than or equal to NV and prime to 2D. This number is
otherwise expressible as follows: Let = be any number prime to 2D, and let
v () be the number of its distinct prime factors. If D is not a quadratic residue
of each one of these prime factors, # is not capable of primitive representation
by any form of determinant D. If, however, D is a quadratic residue of every
prime factor of z, then the number of primitive representations of « by properly
primitive forms of determinant D is £2°®, where ¢ is the number of solutions. of
the Pellian equation # — Du? = 1.

In the case of Definite forms ¢= 2, except for the single case D= —1,

where ¢ = 4.
In the case of Indefinite forms, the number of solutions of the Pellian equa-

tion is infinite, but our isolating conditions noted above amount to making e = 1.

Now the primes, of which D is a quadratic residue, belong to a certain set s
of linear forms (Dirichlet-Dedekind, “Zahlentheorie,” p.121). If z is then made
up of primes belonging to these forms, we get 2" primitive representations,
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otherwise none at all. If, then, as in the Introduction, we define a function
©, (x), which equals 1 or 0, according as each prime divisor of z does or does
not belong to a form of the set s of linear forms, we may write for the above
number of properly primitive representations

N
£2,2%0, (),
For Definite forms this gives ==
N
Z 2"® Q,(x)
elim=L =12, /7 p
e N po a, 22
For Indefinite forms, we get
N .
2 r90 (=)
e lim EIT— = ? }t\/FP(l' D) lOg(T+ UN/D).

N=o
We have thus established, for a large number of cases, the theorem men-
tioned in the Introduction. The method will not avail to establish the law for
other systems of forms s, such as for example the single form 4n — 1, where the
law seems to be

f: 2'® @, (x)

z=1

I 2
TN T

The form 4n —1 belongs to quadratic forms only in connection with other linear
forms,
From these last equations we may derive new expressions for the number

k of properly primitive classes of determinant D.

For Definite forms
N

2 2@ @, (x)

— 7 1 i z=1
k_eTi vAPa.zA))lv‘fi N

For Indefinite forms,

N

2 @@, (x)
U 1 lim 2=!

h= . =1
6D Py Ig (T UJD) ;=" N
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Again, from the well-known formule for % (Dirichlet-Dedekind, * Zahlen-
theorie,” §§97-101), we may write the equation for Definite forms,

N
Z 2"® @, (x) "
B 1 an 5 (D),

N=o
where, on the right, the sum (which is not independent of the order of the terms)
is arranged according to increasing values of 4, the symbol <-1}> being Jacobi’s

symbol.
For Indefinite forms, the equation is

N
2 2@ @, (x) -
1 z= — 2 .D
BT, 5 (2,

From these last two expressions, we observe that if s and & denote the sets
of linear forms belonging to binary quadratic forms of determinants D and — D

ZN 2@ @, (z) _ Zl_:_ (:{Q)

lim 2

N=o ZN 2r® @, (x) g '7,,1— <%> |

2=1

respectively, we have

Let us restrict ourselves to numbers m;, which belong to a particular form
of the above set s of linear forms. (Clearly the factors of m; may or may not
belong to this particular form.) This restriction might be written as a congru-
ential condition on m,. It might then be written as a congruential condition on
xz and y. The modulus of this congruential relation would depend only on the
modulus of the forms of the system s, and so would be the same, whatever par-
ticular form we have selected. Each linear form of s, therefore, furnishes the
same number to the above sum, and the number thus furnished by each is the
total number divided by the number of forms in s.

Now, the total number of linear forms belonging to a quadratic form of
determinant D is well known. (Cf. H.J. 8. Smith, Works, vol. I, pp. 206, 207.)
If we write D=2 4,

i=1
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where the p/s are odd primes, the number in question is

19.(2" D),

where D’ =] p; and % is given as follows:
! k=1, when D=1or5 (mod 8),
k=2, *“ D=3, 4o0r7(mod8),
k=3, “ D=0, 2or 6 (mod 8).

But 3 ¢, (28 D) = 22 H (p: — 1), so that we have for each fori

i=1

12 D P
— T a2

E(Pt—l)

This is not a case of the theorem noted in the Introduction. In this we have
imposed the further restriction that the number x should belong itself to a
particular form, its factors belonging to the forms of s.

CHAPTER V.,
FurTHER RESULTS AND DESIDERATA.

The theory of totient points in space of m dimensions is as yet incomplete.
Proofs of the following theorems have been obtained, however:

TaroreM I. Denoting by @, (x, &y, Ksy - - - -, k) the number of sets of integers
Xy Xy . - - X such that [x, T, 25, - - -, Tw] = 1 and & > l; 2 x; > 1, we have

Pu(@r s - ) =3 1:1, [%],,(d),

the sum extending over all d's which are divisors of x.
By means of this we get

Taeorem I1. @, (@, &y, - -, k) =[] % ‘P—':';S.?—) + AP, (, Ky, -« ., K), where
=1
| Adw (, By - -+ 5 Fom)| S A" 282, where A is finite and independent of x, and

% s the largest of the paramelers k.
This theorem is seen to be a generalization of the lemma of Chapter IV. By

means of it we have established a certain ‘‘density theorem” for totient points
in space of m dimensions. We use the following notions and definitions :
44
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An m dimensional surface is the locus of points (x;, z,, . ... , x,) satisfying
a single relation F'(z;, 2, - ..., 2,) = 0. Two points not on the surface will
be said to lie on opposite sides if, when their coordinates are substituted in
F(x,, =, . ... x,), the two resulis are different in sign.

If all the points lying on one side of a surface have all their coordinates
finite, the surface will be called closed, and the points will be said to be on
the inside.

The content of a closed surface will be defined by the integral

V(,..,=‘L:‘L:...~ hdx,dx,....dx,,‘,

the limits beirng taken so as to include all the elements d,d, . . .. dx,, lying on
the inside of the surface. :

We speak also of the intersection of two m dimensional surfaces as the locus
of points satisfying the equations of both. Points lying on a definite side of each
surface may have all their coordinates finite, in which case we may speak of the
content enclosed by the two surfaces.

We have then established the following theorem :

TueoreM III.  The number of totient points within or on any closed surface of
m dimensions being denoted by N (V), where V is the content of the surface, we have

lim ¥(V) - __1

-~ ¥V > 1
v ZF

i=1

’

where the content V 18 supposed to increase by multiplying the coordinates of every
point on the surface by the same multiplier.

We have not discussed those cases where the coordinates are subjected to
further restrictions. It is hoped that theorems concerning primitive representa-
tion by m-ary forms may be obtained, with perhaps applications similar to those
obtained in the case of binary quadratic forms.

A method of discussing the following problem is also still lacking :

“To prove or disprove the equation
N
> 2@0, (<)

lim =1
N=o x

= constant,
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where O, ,, (x) =1 or 0, according as all the » (x) distinct primes in « are or are

not of the form an + b where [a, 8] =1.”

A proof of this theorem, if it is true, would furnish easily a proof of Dirich-
let’s theorem that the number of primes of the form an + &, where [a, b] =1
is infinite. We have, as we have seen, proved the theorem for the forms 4n + 1
and 6n + 1, which belong to the forms a«* 4 3* and a* 4 3y respectively. For
quadratic forms in general, we have to reckon with more than one linear form.

In connection with this last theorem, we have established the following
equation, which may be of assistance in solving the problem :

() (]
N
2@0, @)=Y T(=)u(x),
27 Oun@=27(5 )ul
m o _r r s
where 7(k) = I, (14 2a), where also j = [] pi [] ¢f, where, we suppose,
= i1 i1 i

p: and g; are primes > 1 such that
P = an + b,
q:Fan + b.
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