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ON THE ASYMPTOTIC CHARACTER OF THE SOLUTIONS OF
CERTAIN LINEAR DIFFERENTIAL EQUATIONS
CONTAINING A PARAMETER®

BY

GEORGE D. BIRKHOFF

The aim of the present paper is to develop the asymptotic character of the
gsolutions of linear differential equations of the form

drz 'z
P = tPre ..-1(“’ P)dwn—l+ c+pia,(x,p)z=0

for large |p|. The functions a,(x, p) are analytic in the complex parameter p
at p = oo and have derivatives of all orders in the real variable . SCHLESINGER }
has proved asymptotic properties for lim p = oo on some fixed ray argp = a;
in this paper we prove similar properties for a region § = argp = v, but by a
different method. In 1837 LiouviLLE } treated the important special case

dz .
G+ [P Hg(2)]z=0

when p is real, the first problem of the kind to be considered ; the method of

attack used in this paper is of a similar nature.

It is purposed to make an application of the results here obtained to boundary
value and expansion problems in a second paper.

I desire to make acknowledgment of the kind encouragement ‘and valuable
suggestions received from Professor E. H. MOORE, for both papers.

We consider functions z(x, p) of a real variable = on the closed. interval

* Part of a paper presented to the Society (Chicago), Mar. 30, 1907, under a different title.

Reoceived for publication Ootober 23, 1907.
tMathematische Annalen, vol. 63 (1907), pp. 277-300. This paper appeared after the

writing of the present paper. See also a paper by J. HORN, Mathematische Annalen, vol.
82 (1899), pp. 271-292.
tLiouville’s Journal, vol. 2, p. 16. Cf. in particular ¢ 3.
219



220 G. D. BIRKHOFF: ASYMPTOTIC SOLUTIONS [April

(@, b) and of a complex parameter p, |p| > R, which satisfy a linear differ-
ential equation of the form

A 'z
M dor T PO (25P) o+ - + Pay (2, p)2 = 0.

Here we assume that the functions a;(«, p) are bounded by the inequalities

(2) la.(x,p)| =M (a=z=b, |p|>R),
and that
®) a.-(w,P)=j)__;a.-,-(w)p-f. (le|>R).

The coefficients @, of this last series we assume to be continuous with continuous
derivatives of all orders on («, b), but not necessarily real. As a consequence
of (2) and (3) the a;(x, p) are continuous in x and p, for the series (8) are series
of continuous functions of x and p converging uniformly for |p| = B, > R.
Further we postulate that the » roots

, w (), wy(#) -5 w,(2)
of the equation

4 WPy o ()2 o (@) = O

are distinct for every  on (a, b).

By R(u) we denote the real part of the complex number u.

DEeriNITION. By a region S of the p-plane we understand a region for
which the indices 1 to n can be 3o arranged that

®  Rlew(x)]= Rpwy(2)] = - = Rpw, ()]

Jfor every x on (a, b) and every p on S.

If p=p, is an S point, so that (5) obtains for p = p, it is clear that (5)
holds if only arg p = argp,. By virtue of this fact the half line arg p = arg p,
belongs to the same region S. For a given x the relations (5) define a certain

closed sector,

0: é arg P é \P‘z’
containing the half line argp =argp,. The largeét closed sector common to
all these sectors, .

(6) ogargp§\]r, A

forms the region S, degenerating to a half line when 6 =+. The funda-
mental theorem refers to the solutions of (1) on these regions &, when such
regions exist.
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An important set of inequalities on a region § is

M ’ FSEmoa| < (ep jfwg(c)dt{ =...= lep B wutrat

(a=e=B=0).
In an expression of the form

% [ey ()~ + ¢, (2)p 4 -]
the term

e ()P~
shall be called the principal term.
Finally we introduce the notation

¢ (=, P)—-P 4’(‘”’ P)s
so that (1) becomes

® A(z) =2 4 a_, (2, p)e™Y + - + a(, p)= 0

and also the notation Z as a generic notation for functions of p and other vari-
ables bounded for |p| = R, when R’ is sufficiently large.

Lemma 1. For every value of i from 1 to n inclusive there exist an infinite
number of functions wu,(x), u, (%), - - -, continuous and with continuous deriv-
atives of all orders, such that u,(x) does not vanish at any point of (a, b)
and such that if the functions

w(, p) = ¢

wytyae ™!
S (@)

be substituted for z in the expression A (z), the coefficient of
LY AR L i=1,2, ., n
e P (’:0’1'...,”;

in the expression thus obtained vanishes identically.
To prove this, write

p_/;"w(t)dc

u(x,p)=e v(z, p),

where w () is some definite one of the n roots w;(x). We find then
ue, pyme* O [w(@)o(x, p) + 0% (2, )],

ul(e, P)Ee YALOL [( [w()]*+ = . dww(m)) (@, p)+ 2ew(@)v(x, p) + v (=, p)] ,

and, in general,
w( )de

®) ul(z, p)=e¢ Z (20 )0 (2, P)s
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in which a,(x, p) is a polynomial in 1/p of degree j — 1 at most, whose
coefficients are functions of « continuous on (@, b) and with continuous deriva-
tives of all orders. We note that the principal term in the coefficient of v (2, p)
in (9) is

(10) Ge () = [w(=)]7,
and the principal term in the coefficient of v!)(x, p) is
(11) @ () =j[w(=)]’;
also we note that
a,(x, p)=1.
Hence we conclude
(12) Alu(z, p)] = ¢/ " A o(z, p)]
where
(13) A(z)=2"4a,_ (x,p)2lP N+ + @2, p)2,

the @ (x, p) being conditioned as the g (, p) are in equations (2) and (3).
For convenience we write

a(z,p)=1, a(x,p)=0 (1>n).
We see from (10), (11) that if we place

a,(xz, p) = 26‘/(:1:);)"/,
then =
(14)  Gg(z) = [w(x)]" + @, o(®) [w(w)]"‘l + ot () =
and
(16) Gy(x)=n[w(x)]"" + (n —1)a,_ () [w(x)]"" + - + a,(2),
80 that @, () + 0 on (a, b), the n roots w, (=) being distinct.
If then we write in (12) 9 '
v(x,p) = Z u(2)p~,
we find the condition that the coefficient of

Zw(t)dt
SO gt (8=0,1,--:,m)

in 4 [u(=, p)] vanishes to be
(16) | ; a,(x) dx’u"(w) 0.

The equation (16) is true for s =0 by (14). For s £ 0 we gan write (18) in

the form
k<s—-1

@) alo(w)dw .—1(”)""“01(”)“.—1(”)‘" E u(“’)d luk(w) =0,
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since, if in (168) k= s, then / =j = 0 and the term corresponding to this set
of values has a coefficient G, (x)=0; if £=8—1, we have either /=1,
J=0o0rl=0,j=1, and the corresponding terms are the first terms of (17).

It appears then that w,_ (x) can be determined in terms of
u,_, (%), u,_4(2), ---, u,(2) as a solution of a certain linear differential equa-
tion of the first order which has no singular points on (@, ) since G,,(=) 4 0.
Thus u,(x), w,(x), -+, %,_,(x) are obtained in succession from (16) for
8=1,2,...,m. For each w,(x) we obtain in this way a sequence of func-
tions u,(x), u,(2), - - -, such that if the expressions

) 'z m—1 ’ :
u, (2, p) = 7o "% g,ua(w)f’"
be substituted for z in 4 (z), the coefficient of

%,
dt
ep/; e /_)" (i=1,2,:--,n;8=0,1,:-:,m)

vanishes by (17) since the conditions(16) are now satisfied for s =1,2, ..., m.
Furthermore the differential equation for w, (%) is homogeneous, so that by
' taking for u,(x) a solution which is different from zero at one point of
(a, b), we are sure that w,(xz) does not vanish at any point of (@, b).
Since the a,(x) were continuous with all of their derivatives, the functions
U, (), u, (%), - - - are also continuous with all of their derivatives. The sequence
of functions u, (), %, (), --- has then the properties stated in the lemma.

If the formal developments :

p_/;w(t)dtzu (W)P_I (6=1,2,---,n)

converged and admitted of n-fold term by term differentiation, we should have
in them the asymptotic developments of solutions of our differential equation
which we desire. This however will not in general be the case. We shall,
nevertheless, show in the theotem below that by breaking off after m terms of
these series (i. e., by retaining the part u,(<, p)) and putting in certain remain-
der terms we can get true solutions of our differential equation. In order to
prove this we must first prove another lemma in which the form of the dif-
. ferential equation is established which is satisfied by the sums of these m terms
(i. e., u;(x, p)) without any remainder :

Levma II.  The homogeneous linear differential equation of order n with
n solutions u,(x, p) has the form

B(z)=mzM+b,_ (2, p)2 U4 ... + b(2,p)2=0,
where for |p| > R®
(18)  [d(=z,p)| = HM°; b‘(w,;p)-;bv(w)p‘f (§=0,1,. ,n—1).
=0
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The coefficients b, (=) which appear here are continuous together with all their
derivatives, and

(19) . bv(w)'_‘:aﬂ(w) (¢=0,1,---,n—1; j=0,1, -, m).

The homogeneous linear differential equation of order » with solutions v,(x, p) is

zln] z[r-1] oen 2
uf) (2, p) (2, p) - w(p)
(20) . . . =0
wi (2, p) ul(2,p) o (2, p)
For the elements of this determinant we have
‘w m4-j—1
(21) wf (=, p) = &2 " T A ()
where by (10)
(22) Ao () = [0, (%)) ().
Thus if we factor out of (20)
I"I ¢ ST w)de

i=1

the differential equation takes the form
(28) B, (2, p)2 + B,_ (2, p)2l 4 ... 4 By(x, p)z =0,
where 8,(x, p) are polynomials in 1/p. We have for the principal term of

B,‘ (w » P ) y
)"1. n—1,0 7\'1.,.—2,0 cce Xloo
. )"z, n—1,0 xz. n—2,0 X’ZOO
By(x) =
X”' n—1,0 xn, n—2,0 )’MO

In view of (22) this last determinant may be written '

[w, (2)]*" [w(2)]"? -0 wy(x) 1
» [o,(2)]" [wy(=)]"? -+ wy(x) 1
g“«»(“’)' T

[w,(2)]"" [w,(2)]"* -~ w(2) 1
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This is not zero at any point on (a@, d) as the w, (x) are distinct and the
u,(x) 4 0 by Lemma I. Therefore for |p| = R"

SI05 b(m ) = BB =St (a7

B.(z\ p) (2, p) B.(x, p)
But we can write (23) in the form
(24) 2 4 b (2, )2l 4 oo 4 By(2, p)z=0.

Now the functions () and their derivatives are continuous since the w,(x)
and u,(x) are of tlns character. The first part of the lemma is thus proved.
Now let j, be the smallest value of j for which, for some i and =,

b,(x) + ay;(x)-
From (21) and (22) we see that the principal term of
@)  Blu(z,p)] — 4 [u(w p)] = B—4[u(p)]
is
26) [ £ ()= (@] [0 ().

Assume j,=m if possible. In each part of the difference (25) the coefficient of
¢ A xw‘.(t)dt p o
must then vanish, in the first part since w,(2, p) are solutions of B(z)=0

in the second part, by Lemma I. Therefore from (26)

n—1
g[bk/o(w)—aklo(w)] [wi(x)]*=0 (=1,2, - n).

We conclude that -
bkl;(w)= a"lo(m) (k=0,1, -, n—1),

the w,(x) being distinct. This is a contradiction. Hence j, > m.

THEOREM. On a region S there exist n independent solutions

7 (2, P)s 2(%s P)s + -5 2,(%5 P)
of

n—1

arz a1z
d P (2 0) Tt o gy (2 )= O
analytic in p such that if’ the integer m is chosen at pleasure and p is on S,

0@ p) = w (s p) + ¢/ " Eypom,
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d d u
(27) %z‘(m’ P)= %u‘(w, P) + ep./; (‘W‘EIP'""“,

n—1 dar! o e
d_wnflzg(m’ P)=d—wﬁu‘(m”’)+e a 'E.—-lP_m'”"l,

where ,
’uu m—1
u (@, p) = /=" T u ()

and u,(x) does not vanish at any point of (a, b).

Proof. We proceed to effect a comparison of the solutions of the given dif-
ferential equation with the solutions of the differential equation of Lemma II.
First we write the given differential equation in the form

d*z d'z . e
(28) P pb,_ (2, P)d—“‘w,...l + -+ p°by(2, p)z=p"B — A(z).
The development of the coefficient of 2[*] in B — A (2) begins with a term in
p~™, in view of (18) and (19), so that

(29) |bk(w7 P)—ah(w9 P)I§D-|pl‘"‘l

for [p| = R°.
The general solution of a non-homogeneous linear differential equation

dn dn—l ’ .
(80) b () S e (@)Y = $(2)

may be written* in terms of a set of linearly independent solutions
¥(2)s Y3(®), + - +» Y, () of the reduced equation in the form

G) y=3eu(@)+ [ | Zu@n®]e@ae,

where the funetions z, (), 2,(2), - -, 2,() are determined from the conditions

» dt p— e —
;(—a—;,y,(m)) z,(x) = {2 §:=:,—1.,1), , n—2),
while ¢,, c,, - - -, ¢, are arbitrary constants. Any y and ¢ satisfying (30) also
satisfy (81) for some choice of ¢,, ¢,, ---, ¢,; and if y and ¢ satisfy (31) for
Some c,, C,, -+, C,, they also satisfy (80); hence (80) and (31) are entirely,
equivalent.

* (1., for instance, SCRLRSINGER : Handbuch der Theorie der linearen Differentialgleichungen,
vol. 1, p. 78.
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Thus treating (28) as a non-homogeneous equation we find an equivalent
equation

(32) 2(2.0)=Toa(er ) + [ [Suce,p)o(E o) | B ALt 1

where the v’s are obtained from the equations
s 0 (1=0,1, -, n—2)
U] —_ y 4y ’ ’
‘Z_;;“.' (=, p)v;(2, P)_{P-n-n (1=n—1).
If in place of these functions »; we introduce functions %, defined by the equation

. (@ p) =P (w, p),
equation (82) becomes '

©8) (s,p)= S e(orp)+o [ [Sula PVt )| F=ALs(E P2,

where the #, are determined from the equations
» 0 (1=0,1,---,n—2)
(U] = - rdyty ’
(34) Sull paten)={y G

=1

In order to prove the existence of a solution z,(z, p) of the character stated
in the theorem for some definite Z we make the final transformation of the
oconstants c, in (83),

ci=c; (i=113)”‘1k)0

) °‘=_Pf'-‘e(f’P)B—A[Z(E,P)]dE+c§ (i=k+1,k+2, -, n).

This transformation is reversible. The given differential equation thus appears
finally in the form of an equivalent integral equation

2(,0) = Bociue o) +p [ | L. e, o) | B=AL(E, o))
(36) i
+of [ £ v v | E=ALxE, at,
that is, the solutions of (36) and A (z) = 0 are the same. In the form (33) we

could infer one and but one solution z (2, p) for a given set of ¢,, ¢,, -+, ¢, ; in
fact, that solution of A4 (z) = 0 which satisfies the conditions

& L7 ‘
(@ P =Teggu(ap)  G=01, 1),

but a similar inference is not possible for (36).
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Write
L o _ o f¢" wnerae
‘—Zlu‘ (wa P)u;({:’ P)=6 4’1‘1(“”53 P)s
(37
2 - T wy()de
> ull(w, p) (£ ) = &5 "y (2, 5 p).

t=k+1
For the consideration of (86) it is fundamental to establish that the functions
$,, and ¥, are bounded in the following manner for |p| = R*:
¢, (x, E; =T C=E=x=0b
(88) |Pu PI=T (1=0,1, -+, n—1).
[Vu(z: £5 )| ST,  a=a=Esbh

To prove this we note first that from (21)

© wy(t)de
(39) ull (2, p) = &/ 0 (2, p),
in which », (2, p) denotes a polynomial in 1/p. If now we substitute in (84
(1] P poy P
- —p f7 wit)ae _
(40) w(z,p)=c¢ v (2, p),
we find for the determination of 7,(x, p) the n linear equations
n _ 0 (1=0,1,:--,n—2),
1) T en@e={]  LIvhy

The determinant of these equations is a polynomial in 1/p which we called
B,.(x, p), and has the principal term B,,(x) [see (23)] which is not zero. We
conclude that for [p| = R?

(42) EMCHDIEE M ACHDIEE
Now from (39) and '(40) we have

(43) |l (2, p) (8 p)] = [ "1,

whence

(44) |l (=, 07, (€, p)] = |75 g1,

if we make the restriction

E=Sx (i=1,2,-%), EZ@ (i=k+1,k+2,-0,n).
To see this one recalls the inequalities (7). Hence '

% z
2wl (a, p)a, (€, P)‘—f‘k eP,/e wk(‘)d"lz ((=2),
(45) = .
2 ull(w, p)a (£, p)'é("—k) oS g (£=2),
t=k+1

which are in effect inequalities (38).
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We now consider that solution z,(x, p) of (86) for which

19 (i+k),
(46) “=1 (i=#k),
and we will show

(@) that for |p| = R’ one and but one such solution exists, and this is
analytic in p;

(b) that the solutions z,, 2,, - - -, 2, thus defined fulfill the relations (27) of
our fundamental theorem.

The linear independence of z,, z,, - - -, 2, is then an immediate consequence of
their form (27), since %, u,, - - -, u, are linearly independent. The demonstra-
tion is thus completed.

Proof of (a).

We know there exists one and but one solution of (33) for all sets of values
of ¢,. To each set corresponds a definite transformed set ¢; which we will show

has the form
c; = ;'YV(P)G,:

where the y,(p) are analytic in p. To prove this statement we define
Z,(x,p)y(k=1,2,--,m), to be that solution of A(2) =0 which satisfies

the equations
a’ d’
32 (a,p) = gw(a,p)  (G=0,1,-,n—1).

If 2 is the solution of (82) for the set ¢,, c,, - - -, ¢,, we have then

z= jzzlcjzj(w, p)-

The Z,(x, p) are analytic in p since the coefficients in 4(z) =10 and the
u,(x, p) are. If this value of z is substituted in (35), we obtain the transfor-
mation in the stated form.

From this we see that either a unique solution for the set c; of (46) exists, in
which case this solution will be analytic in p, or there is a solution of (36) for
;=0 (i=1,2,.-, n). If then we prove that the latter alternative is
impossible for |p| > R’, we shall have proved statement (a).

Let us now write down (36) and the equations obtained from it by differ-
entiation, using the definitions (37). We then obtain

2, p) = ;";l o ufd(@, p) + p f' FIEHO% (o & ) B—A [dE, p)]dE
(47) R -
+Pj: 3"‘/; "o Yul(, & P)B—A[Z(E9 p)]dE

(1=0,1,:--,n—1),
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These are a set of linear integral equations in z(z, p), 2[')(z, p), - - -, 2["(z, p)
of the FREDHOLM type. .
Assume if possible a solution z(x, p) to exist for ¢; =0 (i=1,2,...,n).
If we write
2l1(x, p) = A “’"“wz,(m, p) (1=0,1,---, n—1),

the equations (47) become
(48) =z(x,p)=p f b, &5 p) g [=(& p)]dE + p f V@ &3 P)y[z(& p)1dE

(1=0,1,---,2—1)
where
n—1
(49) glz(2: )] = 2 [3,(=: p) = a,(=s P)]5(= p)-
If W 4 0 be the maximum of ,

|2,(=, p)| (1=0,1, -+, n—1)
on (a, b), we conclude from (29) that for |p| = R°
(50) lg [2(§, p)]| = nD-W-[p|™".

But in one of the equations (48), e. g., ! = [, |2,(x, p)| has the value W at
x = x,, 8o that

(1) W'—‘-.lP f “bun(an £ P [a(E PIdE+ f (oo P)gEZ(E,p)]dE-
Applying to (61) inequalities (50) and (38), as is possible since £ =z, in
i, (2, E; p) of (88) £ =, and in ¥y, (=, &5 p), we find

(62) W=n(b—a)T -D-W:|p|™

which is not possible for
lp| Z Vn(b—a)T- D.

Thus the set of values ¢; = 0 is seen to be impossible for [p| = B. Hence a
unique solution for (46) exists.

Proof of (B)
By (46) we have

o0 (2:0) = (e, 0) 40 [ [ S (o 01008, p) | B AL (8,018

3)
o | 2 e p)ae, 0| B=ALn(E 01087

Writing then
. © wp(e)de
zIEIJ(w’ P)=ep/; - 2.(2, P)s
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we obtain

2.(%, p) = (2, p) + Pf‘ﬁm(‘m & p)gl=(£,p)]dE
+ [ Vulz £ p)g[5(E £)1dE,
where 7,,(x, p) and g(z) are defined as in (89) and (49). This equation (54)

is analogous to (48).
Let W denote the maximum of

(54)

|2 (, P)| (1=0,1, -, n—1)
on (@, ). Then we find in analogy with (50) that for [p| = B®
(65) l9[z (=, p)]| =nD - W-|p[™

If this maximum be attained for ! =/, # = «,, we find in analogy with (52)
W = |ny (205 )| + (b —a) T-D- W|p|™,

whence, if m > 0 and |p| is large,
(56) W=e,

since

But from (54)
103 £) = (2 ) = [p [ dus(s £5 p)g [ma (8 )]

4o [ Ve & P[5 (8 )12

|"h¢t,(wu P)I = n.

Therefore, using (88) and the inequality
l9[2(z, p)]| = nD- Qlp[™

which is a consequence of (56), we see that for a large enough |p|

|2 ,(m,p)—n”(w,p”f.n(b—-a)TD Qle|™

Recalling that £ is a generic notation for functions of p and other variables
bounded for large | p| , we conclude from this at once that

x
w(t)de -
a Eo p m ,

2,(%, p) =u, (2, P) + ¢
d _d AL
,;,;czk(wm)—,%uk(w’ P)+e P

dn--l

P "_lz,.(w, P) d e oo | ,‘(w, p)_'_ P./a wx(t)th .p-"'+"-1_

n—1






BOUNDARY VALUE AND EXPANSION PROBLEMS OF ORDINARY
LINEAR DIFFERENTIAL EQUATIONS®

BY

GEORGE D. BIRKHOFF
Introduction.

Let p,(x), py(®), --+y p,(x) be functions of the real variable = on the
closed interval (@, b), which are continuous with their derivatives of all orders.
‘Write

n—2z

drz d
L(Z)E dx® + * +p3(w) Exn_—»i-*- "'+pn(w)z’

@) drz a2
M(z)m (= 1) Got o + (=1 o [py(@)e] + -+ 2, ()2

With the linear differential equation of the nth order in »
(2) L(u)+r mu=0%

and n linear homogeneous conditions in u(a), v'(a), ---, vV (a), u(bd),

W(b), -, utD(B),

®) W,(u)=0, W(u)=0, .-, W,(u)=0
we associate the like adjoint differential equation

(4) M)+ w=0

and n like adjoint conditions

®) Vi(v)=0, V(v)=0, .-, V,(v)=0.

For certain characteristic values of the complex parameter A there will exist

*The second part of a paper presented to the Society (Chicago), March 30, 1907, under a
different title. The first part of this paper has been printed on pages 219-231 of this volume.
Received for publication May 12, 1908.

11t is not an essential generalization to write instead of (2)

2o() r i (2) S o pa(2) 2 4 AP (2) =0

if py== 0, P== 0, and p,/P is real. We therefore restriot (2) as stated. MAX MasoN has
treated a special case n—=2 with the restriction P«=0 removed, by different methods: these
Transaoctions, vol. 8 (1907), p. 427.

Trans. Am. Math. Soc. 85 373
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a solution* u(z) of (2), (3) or v(x) of (4), (5). These values are the same in
both cases: let them be

My Agy oo
with corresponding solutions
' v, (%) 2 (2)5 + s

v (@), v(2), -

These functions u,(), v,(x) are such that

6) fu‘(w)vj(w)dacao (idj)-
This property leads us to the formal expansion of a given function f{x) on (a, b),
[ #(@)o(n)de
M - Sfle)~ Zf» L)
=t | u (x)v,(x)de

How are the characteristic values distributed in the A-plane? What is the
nature of the solutions u (=), v,(x)? In what sense does the expansion repre-
sent f(x)? These are the questions considered in this paper.

‘We begin with the derivation of the formal properties of the boundary value
problem (§1), and of the expression for the sum of n terms of (7) by means of a
contour integral (§ 2).

There follows the more intimate study which is based on certain facts concerning
the asymptotic nature of the solutions of (2) and of (4) when |A | islarge. These
facts are derived as an application of my paper in a preceding number of these
Transactions (§3). The distribution of the numbers A, and the nature of
the expansion is then obtained, (§4 and §5). Finally the contour integral is
evaluated and the representation theorem proved (§ 6). The expansion is found
to behave like a Fourier series except in the vicinity of x =0 and x=5.

LIOUVILLE was the first to introduce the notion of adjoint conditions in a special
case T and to consider the related expansion. The results of the present paper are
kmown for the real self-adjoint case n=2.] WESTFALL has proved a repre-
sentation theorem for the real self-adjoint case n = 2m, providing that f(x)
and its first » derivatives are continuous. §

* By a solusion we mean always a solution not identically zero.

tLiouville’s Journal, ser. 1, vol. 3 (1838), p. 561. Professor E H. MOORE suggested
to me the possibility of generalization.

t+ A. KNESER, Mathematische Annalen, vol. 58 (1901), p. 81; DIXON, Proceedings
of the London Mathematioal Society, ser. 2, vol. 3 (1905), p. 83,

3 W. D. A. WESTFALL, Zur Theorie der Integralgleichungen, A. MYLLER, Gewihnliche Diffe-
rentialgleichungen hiherer Ordnung in ihrer Besichung zu dem Integralgleichungen. Gdttingen
Qissertations (1905 and 1906). Reference should aiso be made to HILBERT’S antecedent papers on
integral equations in the Gttinger Nachriochten for 1904. .
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§1. The formal nature of the boundary value problem.

‘We must first make precise the adjoint conditions referred to.

DerintTION.  Let W (%), ---, W,(u) be n given linear forms in u(a),
W (@), e, W0(a), u(B), w(B)s -y woD(B) and W,y (u), s Wy (u)
be any n further linear forms so chosen that W,, ..., W, are linearly inde-
pendent.” Then in the identity

z=b
®) [(er)tnm Py, 2)| "+ [ yM(z)dee
where P(y, 2z)|*=} is a bilinear form in y(e), ¥'(a), ---, y™V(a), y(b),

y(), -,y (d) and 2(a), 2(a), - -+, 2" (a), 2(3), #(?), ---, Z*(d),
we can write

© Py,2)| = % Wi(9)Vas®),

in which V,(2) are linear in z(a), 2(a), ---,2""?(a),2(d),2(d), -+, 2™"(d)
and linearly independent. Then V,(v)=0 (i=1,2, ..., n) are the adjoint
conditions to the given conditions W,(u)=0 (i=1,2,...,n). Any set of
conditions W(u)=0 (i=1, 2, ..., n) equivalent to W (u)=0 (i=1,2, .-+, n)
by linear combination, with any choice of W, (%), ---, W, (u) leads to a set
of adjoint conditions V,(v) =0 (i=1, 2, ..., n) equivalent to V,(v) =10
(¢=1,2, ..., n) by linear combination.

Conversely, given V,(v)=0(¢{=1,2,...,7n) we choose V, ,---, V, a8
above and find W,(u)=0(i=1, 2,.-., n) to be the adjoint conditions.
Hence if the problem (4), (5) is adjoint. to (2), (3), so also is (2), (8) adjoint to
(4), (5)-

The properties which this section proves are stated in I-III.

L If for A =2X\" a solution u"(x) of (2), (8) exists, a solution v*(x) of (4),
(8) will also exist for A=\"; if u™(x) is unique (except for a constant factor),
v"(x) is also unique (except for a constant factor).

Let »"* be the given solution of (2), (8) for A=2". Then we have

Wy(u) = Wy(u')= .= W,(w") =0,
Wes(w') %0,

and for some j

as otherwise we should infer
u*(a) mu(@) = o = 00D (@) m w'(B) = (D) = - m w00 (B) = O

In the n-fold linear spread of solutions »(x) of (4) at A = A there will be at
least one, say v'(x), which satisfies the » — 1 linear homogeneous conditions

Vi(v')=0 (i 5)-
*Cf. SCHLESINGER : Handbuch der Theorie der linearen Merenmlgkwhungm, vol. 1, p. 54,
formula (1).
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Substitute in (8) y = u", z = v" and we obtain

> )
—x'f vu'de= W (u)V, ;(v")— Xfu'v'dw.

Therefore V,_,(v") = 0 also, and v" will satisfy (4), (5).

If »° is unique, v° is also unique. To prove this assume if possible that
there were two linearly independent solutions v and v™ satisfying (4), (5) when
A = A', while u* is unique. Then we could choose i and j so that

Veri(v") Vg (v°)
Vori(07) Vo (07)
otherwise we should have constants ¢, d, not both zero, such that

.
’

V(' +dv™)=0 (1=1,2,---,n),
and v = cv* + dv™ would fulfill the 2» conditions
Vi(v)=V,(v)="--=V,(v)=0
which is not possible since the V), ..., V,, are linearly independent. Choose

now u" linearly independent of " to fulfill the n — 2 conditions
W,(u")=0, (lfn—iorn—j)
where /=1,2,-..,n. Writing in (8) y =u",2=1v"and y = 4", 2 =", we
obtain, on simplifying,
n—t(u ) "+‘(/v') + —j(u ) +j(lv )— 0
n—o(u ) n+|(v ) + —j(u ) +j(v )—
From this we deduce that also
ﬂ—‘(u") n—j(u..) = 0‘

Therefore »™ would satisfy (2), (8). This is impossible. Hence if %" is unique,
v" is also unique, which we were to show.

DerFintTION. If A = A’ is a characteristic value of A for which one and but
one solution of (2), (3) and (4), (5) exists, A" is said to be a simple characteristic
value.

IL Ify,s Yss > ¥, are n linearly independent solutions of (2) at A =",
the condition that X" is a characteristic value is that the determinant

W) W) - Wi(w.)
Wo(y) Wi(y) -+ Wi(w.)

..............

W.(%) W.(%.) - W.(9.)

A=
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vanishes ; the condition that \' is a simple characteristic value is that not all
the first minors vanish.
The general solution of (2) is

Uu=0CY +CY,+ - + €Y, -

Under the condition A = 0 at least one determination of c,, c,, - - -, ¢, is possible

such that
W(u)=0, Wy(u)=0, .-, W,(u)=0.

This determination is unique when not all the first minors of A vanish.
IIL. If u,(x) and v,(x) belong to distinct characteristic numbers A, and A, ,

then is
f'u'.vjdw =0.

For write y = u,, 2 =, in (8). Because of (9) we deduce

b
_xij‘: vju‘dx=—7\jfu..vjdw,

whence the desired relation follows.

In important particular cases the problem (4), (5) may be precisely (2), (3)
with v in place of u. We then say that the problem (2), (8) is self-adjoint.
Or (4), (5) may be precisely (2), (8) with v in place of u, except that M (v) is
the negative of L(v). We then say that the problem (2), (3) is anti-self-adjoint.

§ 2. Fuxpansion as contour integral.

It is easy to prove that when \ is not a characteristic number there exists a
unique G'(x, 8; A)* such that the solution ¢ of

L($)+M =0, W($)= W,($)==W,($)=0,
is given by \
¢=f G(x,8; N) w(8)ds;
and likewise that there exists a unique H(x, s; A ) such that the solﬁtion ¢ of
M($)+r=0, Vi(¢)=T,($)=:-=V, ($)=0,
is given by \ :
¢=f H(z,s; M)o(s)ds.

* Professor BOCHER has defined the Green’s function G for an ordinary linear differential
equation of order n under a special form of conditions, and has stated the principal properties in
the Bulletin of the American Mathematical Society, vol. 7 (1901), p. 207.
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The explicit formula for @ is

%(®) y(=)

.y, (@) Gz,852)
Wi(v,) Wi(y,) -

W(yl) Wy(9,) -+ Wy(y,) W, (@)

Wi(v.) Wi(&)

[October

. N(z, 85 1) W(yl) ,.(3/2)~-'W,(3/n.) .W,..(G'.)
A0 G 0 =86y = Wilw) Wiw) - W)
(—=1)" W(y,) W(z/z) W, (.)
in which W(yl) W(yz) : W.(y,)
3/1(“’) AED Yu ()
¥WP(s) T(8) - (s
v 1 (8 w(s) Ya(8)
(11) g(w, 8, 7\.)—212% n—l)( ) y(u—l)(s) y“‘“’(s)
n—2)(,) y""”(a) . y(n_z)(s)
?/1(3) %(8) ?/n(‘)

(+ ifx>s, —ifx<s).
Here y,, y,, - - -, y, are any n linearly independent solutions of (2). - There is a
like formula for H(z,8; \). Furthermore
G(x,8; \)=H(s,x; \).*
The function ‘@ is analytic in A (since y,, ¥/,, - -, y, may be taken analytic
in \) except for a possible pole when A(N)=10,1i.e. by I, § 1, when A is a

characteristic value.
If A =\, is a simple characteristic number for which G has a pole of the

JSirst order, the residue is

% (2)v:(8)
fu‘(w)v..(x)dw
where )
fu..(w)v‘(w)d:c 4 0.
Write )
12) G(x,8; \) = 5—@-’—3) + o(x, 85 L),

* For formulas like these and their proofs see WESTFALL’S dissertation, ¢ 6, 7.
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where o (2, 8; ) is analytic at A = A,. In view of (10) we have

R(x,s)= "AL(—A‘?E):—;)X‘)-,

where IV is continuous with its first » derivatives since the coefficient of & is zero.
Further XV satisfies (2), (8) for all A so that R (x, s) must be a solution of
(2), (8) in @. Because of the relation between G and H, we infer also that
R(x, 8) is a solution of (4), (5) in s. By the definition of a simple character-
istic value it follows that the residue is

B(x, 8) = c;u,(x)v,(8).*

It remains to determine c,.
By (12) we have

lim [(A —X,) G(=, 85 A\) —cu,(2)v,(8)] =0,
A,
whence N»
lim [(x - x..)fG(ac, 83 N)u,(8)ds — cu,(x) v‘(s)u‘(o)ds] =0
Az=Ng a a
But since
L (%) + My = (A=), Wi(w)= Wy(u;)="--= W, (%)=0,
we have by the fundamental property of &
b
(= x‘)f G (=, 85 M)u,(s)ds = u,(x).
Substituting this value above we find
lim [u‘(w) —cu,(x) 'v‘(s)u..(s)ds] =0
A= a
Therefore "
c‘fv‘(s)u'.(s)ds= 1,
out of which ¢, is determined ; this proves that the residue has the stated form.

If T be a contour in the \-plane which encloses A,, A,, - - -, A, we conclude by
the above that

o fg( A)f(8)dsdn »f(”)vs(w)dw ”
Ty 8, 8)as = a u(@).
21!’1/ ¢=1 f“c(w)”g(w)dw

*In this proof oertain points of logio are obviously slurred over.
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This is the sum of 7 terms of the formal expansion, providing that X, N, - -+, A,
are simple characteristic numbers at which G has a pole of the first order. At
values A, for which these conditions are not satisfied, the corresponding term
of the formal expansion (7) is to be replaced by

[ Bz 0)f(a)as

where R, (2, 8) is the residue. Thus in all cases we have an expansion each
term of which is uniquely determined. We omit the development of B,(x,s)
in these more complicated cases.

§ 8. The solutions of L(u) + M =0 and M(v) + v = 0 when || is large.

As a preliminary to the deeper study of the problems which have been pre-
sented, I apply the results of my paper printed on pages 219-281 of the present
volume to the differential equations L (%) + Au = 0 and M(v) + Av = 0.

If we write A = p", the first of these differential equations can be written in
the form there treated [see (1), loc. cit.],

d"u a—u
g T Pl (%5 P) g + -+ P (2, p)u =0
p,(w) 1’,.( ).

R N

a,_,(x,p)=0, e _,(2,p)=
The coefficients obviously satisfy the restriction imposed, and the equation for
w,(x) [see (4), loc. cit.], is
(14) w4+ 1= 0.

Thus w,, w,, - - -, w, are constants. We also find (proof of Lemma 1, loc. cit.)

~

(15) u.’o(w)=1 (t=1,2, - n).

In order to state in explicit form the theorem for this case, it remains to con-
gsider the regions S (definition, p. 220). Inasmuch as w,, w,, - -, w, are con-
stants we can for each p choose the indices 1 to 7 so that ‘

R(Pwl)gR(sz) = éR(Pw”)

for every x on (a, 5). Hence every p is on some region §, 0 =argp =+,
At the bounding rays the ordering changes so that for some ¢ and j
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B(pw;) = B(pw;) (i)
An easy computation shows that the regions S are the regions
(16) %réargpég—-%l—)z (1=0,1, ..., 2n—1).

The differential equation M(v) + Av = 0 also is of the same type when we
put A = p". The roots w;(x) are

amn — Wy, — Wy vy —W
and in the formal solutions we have

(18) uy(2) =1 (i=1,2,::+,n).
The regions S are the same as for Z (u) + Au=0.

Let Z be a generic notation for functions of p (and other variables), bounded
when |p| is large. The application of the theorem referred to gives:
On any region of the p-plane

l 141
(19) 80 Tsagp=UET

there exist n independent solutions,
Yirv Yoo+ Yo of L(u) + pru=0,
Ziy Zgy 0y 2, 0f M(v)+ po=0,

analytic in p and such that on this region

(20)

[ E,
¥i=u (2, p) + epw‘(z—a)?g,

dy; _
(21) 1 T dx

E
u(a, p) + o 21,

dn—l y‘ dn—l En-
~ W = (%”—_—l u‘. (w, P) + epw((z-a) Pm_,,.,l.l )

( 2, = vi(w, p) + e-Pwt(z—a).g‘?,

‘_li-' —_ i —pwi(z—a) EL
22) I @ wmEeIte Pk
dle, A E_,

It = doi v,(%, p) + e7P =D pm-n-ﬁa

where
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u(x, p)= em(z~a)[1 + ‘ﬁn’()_w)_,_ R “m;)s"”)],

(23)
v,(%, p) = e~ [1 + v () L. +,v,.m(w)]’
4+ P pm

W,y Wyy +++y W, being the n roots of w* +1 =0, m any positive integer.

§ 4. Distribution of the characteristic values.

The condition that A" is a characteristic number is that the determinant A
vanishes (II, §1). The i-th element in the j-th column of A is W,(y,) where
Y1s Yg» -+ s Yo Te any 7 linearly independent solutions of L(u)+Nu=0.
In order to treat the equation A = 0 we take y, to be the y; of (20) §3 where
A =p". In addition we assume the conditions W, to be normalized as follows.
Reduce the number of conditions W,(u) =0 of order n — 1 [i. e., containing
either 41 (a) or ™ (3)] to a minimum, at most 2, by linear combination.
Then, in those that remain reduce the number of order n —2 to a minimum,
at most 2, by linear combination. Continue in this way as long as conditions
remain. The normalized conditions will have the form

(24) W,(u) = W,y (u) + Wy tu) =0,

-1 -
W, (u) m au%(a) + 3 4,85 (a), '
= (MZhZ k),

Wa(w) = B (b) + 5, Bu0(0),

in which no three successive %’s are equal.
DErFINITION. Lot the w, be taken in every order such that for some p 4 0

R(pw,) < R(pw,) <--- < B(pw,).

If n = 21 — 1 and always neither §, = 0 nor 8, == 0, where 8, and 6, are defined
by the identity

alw’{l v dlwﬁl_l (al+3:8|)w,,:‘ Blw:}-i-l et Blw:l
@5) 0.40,0m|00 1 GOl (Gtafur Buwha oo Bl
. awh .. anw,’i-_l (a”+sﬁ,,)'w:- Bawkn, -e- B, wk

or if n = 2u and always neither 6, = 0 nor 6, == 0, where 6, 6,, and 6, are
defined by the identity '
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(26) 6,+ 0,s +%'—=—=

X .
aqwit - gl (@ +88,)w (“1’*‘ ;B,)w{:‘“ Biws -+ By

1
et o aglr, (aekoByls (ak 38, by Bl - Bk

awin oo awbn (a,‘+s,8,‘)w":~' (a+ ,8) wh, Bawkn g - B ke

the conditions W,(u) =0 (i=1, 2, -.., ») are said to be regular.*

We now proceed to prove the '

TeEoREM. If the conditions W (u)=0 (i=1, 2,..., n) are regular, the
characteristic values of \ for (2), (3) and (4), (6) are in general simplet and
Jorm a pair of infinite sequences Ay, My, (! =1, 2, ...) such that

m - () (4 2 )

Jj=1
— m~1
xm=—(————-2;"_’ 1) (1+Z“q‘“+€f.“)

where gy, gy, are constants and | Ey | < M, | By | < M.

‘We consider the equation A = 0 in the p-plane, fixing attention on some region
(19) for I =1,. The transformation A = p* makes two adjacent regions §
correspond to the entire A-plane. It is convenient to consider separately the
cases n =2y —1 and n=2u. The starting point is the set of relations
[deduced from (21)]

m—1 ‘- E
() = (o[ o+ 3 %4t + 2.

@n

(28) ‘g
Wao(y,) = &= (pw, )"‘[B +Z "' P..]-

* This apparently gives one condition for each region §, but these reduce to two for n —=2u —1
and to one when n=2x. It is worthy of note that the STURM-LIOUVILLE boundary conditions

(n=2) of the form
hu(a)+kw (a)=0, 1u(d)+4mu (b)=0,
and also the periodio boundary oqnditions (n=2)
w(a)=u(d), o (a)=w(d),
are regular. An example of non-regular conditions (»n =2) is

t8e§1 u(a)=0, o' (a)=ku(d).
ee § 1.
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Casel. n=2u—1.
By definition of the regions S.we can choose indices 1 to n so that

B(pw,) = R(pw,)=---= RB(pw,)

for the region (19) under consideration. Making this choice we find readily that
on §

R(pw,) <0 (i=1,2 -, u—1),
(29) (pw;) i p—1)
B(pw) >0 (i=p+1,p+2 -, n),
while
(30) R(pw,) =0, argp.—.(l°—n—+%)vr

From (28) and (29) we see that in the formula
Wi(y) = Waly) + Waly,)  G=12 - u—1),

the term W, (y,) can be absorbed into the term W, ( y,;) since %= ig gmall
of an infinite order in 1/p on §; that is, we can write

'm—l E
(31) Wiw) = o[+ & 4+ 2] G=nanm.

By like reasoning we find

@) W)= ooy B+ B 4%

Also from (28)
69 W)= (e[ a+ X %+ |

] (J=e+1,p+2 - n).

—1
+e""’n(b—a)(Pw“)k4[ A ‘8“’+5E;].

If we substitute in A these values of W (y,) as given in (31), (32), (83), and
remove the factors p% from the i-th row (¢=1, 2, ..., n), and the factors
e***=® from the j-th column (j=p +1, u+ 2, ..., n), i. e, altogether the
non-zero factor

I+ I o,
J=pn+1

the condition takes the form
m—1 m—1
09 B=(04Z %432 )+emem(64F S+ 3)=0,
A= Hﬁ/“ . H eP‘MH).E.

=1 F=n+1
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The quantities 6, and 6, are the 6, and 6, of (25). In fact (25) was formed to
give these terms.

Since A was analytic in p, A will be also analytic in p.

The expressions of the first minors of the u-th column of A,

a+ b +- 4+ é,.:,
P P

cannot have all their first terms @ = 0 since then 6§, = 6, = 0, contradicting
the hypothesis. Hence for large values of |p| not all these first minors vanish.
If we return to A, we see that accordingly not all its first minors vanish. The
characteristic numbers when |\ | is large must therefore be simple. This was

part of the theorem.
From (84) we obtain the equivalent condition
m—1 8
i, e E
1

l

by solving for es*»®-?, From this we infer
(85) pw, (b—a)=1log 8(p),
m—1
log 8(p)=log( ) + Z‘, i+ Z + amy =T,
l

the final form of the condition, in which of course % is analytic in p on S.
In view of this condition, it is obvious that the values of p on S which satisfy
A = 0 have when |p| is large the form

1 b
ory/—1 8 0) nih E

(36) p=E Gt atma t ET R
where [ is a large positive integer. Since by (30)
+
a,rg (D“ = ( %) 2 L]

we see from (86) that the == sign is to be so chosen that the p, approach asymp-
totically (in an angular sense) the bisecting ray of S. Let now p describe a
circle of fixed small radius » about

0,
oy —1 o8 ( ~ 3 )

:’:wn(b_a).{_ wu(b_a).

This will be wholly within S when |p| is large; and
arg [pw,(b—a)—log 8(p)]
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increases by 2+ if the inequality
m—1 E
lr(b—a)|>| T+

4
g’ﬁ’ Pl

obtains as is true for |p| large. This proves the unique existence of p, when
|p| is large, and the distribution of values p is determined.
It remains to return to the A-plane; S becomes S’

S’ lim=argN=(+1)m.

The values of A apth the positive or negative axis of imaginaries according
as I, is even or odd, and by (36) have the form stated in the theorem where for

some 6, 6,
n log (-— ﬂ’)
_ o\ &)

gIl or gin = E= 271/:‘—1

This completes the proof when n = 2u —1.

CaseII. n=2u.
The proof is analogous to that for Case 1. 1f pw,, pw,, ---, pw, have

increasing real parts on S we find

\
R(pw.)<0 (¢=1,2,-.+,p—=1),
. R(pw,)>0 (i=p+2,p+3,y8),
while
. i I+ 1)
R(Pw»)=R(P'"’p+1)=o’ argpa:e]ther-ln—- 01-_(__0__7_{_)_.,

and w,,, = —w,. The region § is of course defined by (19) as before. We
now find W,(y,) to be of the form (31) forj=1,2,---, » — 1 and of the form
(32)forj=p+2,y.+3,---,n;a.lsoforj=y,p-+1weﬁnd

m—1 E m—l ~
W(on) = (o et B i |+ om0 B s ]
(37) L= PP =4
m~1
—ptw a =y B‘.u+l,l E‘
+0P“@‘)(—Pw“)~ B'l'z—-‘—,—-{--; .
: = P P

writing v, ,, = —w,.
These expressions W,(y,) are substituted in A and a factor

n . N
. err®—a)
U 11,

is removed. The equation A = 0 becomes then of the form
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R4,
O N 1)

m'—l
+ e—pw“(b—a) (0 + Z Ez) = 0,

A=ITp II ee-o-A,

t=1 J=n+2

0,, 6,, 0, being defined as in (26). The equation (88) is gquadratic in e#*sx~9,

This equation (38) will yield the forms stated in the theorem for the charac-
teristic values A, A;; on 8. They must lie near to one of the bounding rays,
say argp = ([, +1 )7r [n. If we consider the necessary form of the expansion

on the other region S adjoining this ray, i. e., on the region

(l°+1)w.§argp§ (b+2)m
n n

we obtain the same equation (88) except for different E-terms perhaps; hence
the same necessary form for Ay, A, as before. Thus we have the necessary
form for the entire A-plane.

The final fact of unique existence is demonstrated as before unless

0 0

either arg g, = {ﬂ_ -oor arg gm = {,,,.

when the values py, py, may come indefinitely near to the bounding ray
argp=(l,+ 1)m/n. By considering first the case

Ppy(%) =py(2)=---=p,(2)=0,

when the solutions y, are known, and by using continuity considerations, the
fact of unique existence can be established for this case also.

§ 6. Nature of the expansion.
In this section we give a notion of the character of u,, v, and of the expan-
sion (7).
Let us first develop the character of vy, in the case n = 2u — 1. Clearly

(89) up=c,y, + -+ + ¢,
where we have for the determination of ¢,, ¢,, -- -, ¢, the equations
(40) aWin) +6Wi(y,) + -+, Wil(y) =0 (i=1,2,,n).

Substitute in the matrix || W,(y,)|| the expressions given in (31), (82), (88)
and remove the factor g% from the ith column (i= 1,2,...,n); write for p
the values (86). This matrix then takes the form



388 G. D. BIRKHOFF: EXPANSION PROBLEMS [October

 Wutl , 10a
P, P, ..o P, ¢ Twu Py e el“’qu
w,,_+1 ’__!
(41) P, Py, ... P, & Py, e Py, ||
, W +1 . r Wy
P, P, - P, &0 P,,, - P,
where the P‘.f are of the form
b E
(42) a+7+“'+l_""
and
2 —1
1'=21m/—1+ilfn—lgi‘.

The c, are proportional to the minors of any row, say the first. The minors

of the elements 1 to x contain all the factors

n PR}
e Yu,
i=p+1

besides a factor like (42), while the minors of the element i, ¢ > p, contain all

these except ¢"*/“x besides a factor like (42). We conclude that

c,= @), (i=1,2, -

(438) w

c;=6e “rQ; (i=p+1,p+2, -

where @), is of the form (42).
If we substitute into (21) the values (36), we obtain

(44) = G=) r, (i=1,2,
where Y, is of the form

E
(45) PRGN

M),

yn),

3 n),

Placing the expressions for ¢; and y, of (43) and (44) in (39), we derive the
form of u;, ; likewise the form of uy, vy, vy is obtained. 'We have ﬁna]ly

n—1 wy [ 2—a ~b

i=1 t=p+1

1”_( _b) ( ) Iw‘ f:_a)
’“m—‘zle wu b Um'l‘e b=/ Uy +¢Z+13 wu =2 Uy
=. =
(46) { p—1 —b) _”(:51;) » l w z—a
= A At T+ 2 e @
i=1 f=p-+1

r—1 z—a

i=1 $=p+1

un_z:e'w_; b—a)U +6 (b—a)U + z”: e w (;—a).U;‘,

=)y,

vy 26 r W8 (2=
;vm=ze—l w“ D—G)I/'I“_I_e =¥ (b—a)V + Z e = (b )VII{’
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U=2lr v/ =1+ &'—‘%’_ﬁ‘, V= —2lry=1— 2_”&?2.
Here U, V are of the form (45) and n=2u—1.
When n = 24 we get in the same manner
(=T g1 g (4 505 D,
= =
um_’ge 7 (522) Uyete "(5=2) Ugate " (5=2) U;I,u+l+_§.2e Ve (=) Ui
47) { vy =':Z_:e—":u b—a)V e (=) v, +e b—a)V 1+‘ Zﬂe ‘:,”M =9 V.,

n—1 z—a

B wy (2—U "
Om=e ( )Vm+e ! ("‘“)V +€l (= Vi,

i=1

+ 23 (° )Vnn

. t=u+2

27 l/jgn + 2'"'1/:_19111
n ’ n )

U'=2ry/ =1+ U'=2ry -1

In both (46) and (47) it is to be noted that the =-terms are not important
except at = @ and = =2, since the real parts of the exponential terms are
large and negative for / large and a <x <<b. We omit the fuller discussion,
to be made by (46) and (47). It is worthy of remark that the simplest case

n=1, L(u)=1, W, (u)=u(a)—u(d)

yields the Fourier series. The general expansion is clearly of a similar nature.

§ 6. Convergence of expansion to f(x).
We have expressed the sum of » terms of the expansion (7) in the form

=§;V1,T_lj;f0(x,s; ) f(s)dsdn,

where I is some contour which contains A, A,, ---, A, but no other character-
istic values within it; & is explicitly defined [see (10)] in terms of the solu-
tions y; of L (%) + A =0. By means of the known asymptotic character of
the y, we determine the character of G, and then evaluate the contour integral
as I enlarges without bound.

For convenience let us use the notation [w] for an expression

wtlp. 42
P T

where w, a, --. are independent of p but need not be constants.
Trans. Am. Math. Soc. 26
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TaeoREM. Let f(x) be made up of a finite number of pieces in the
interval a = x = b, each real, continuous, and with a continuous derivative.

Unless ©=a or x=>b, the expansion for f(x) connected with the differ-
ential equation L(u) + M = 0 and the regular boundary conditions

(u)=0(i=1,2,...,n) converges to [f(z+0)+f(z— 0)]/2. At
x = a the series converges to

a, f(a+0)+a,/(6—0)
b fla+0)+b,/(6-0),

where a,, a,, b,, b, are constants independent of f(x).*

Proof. We restrict ourselves first to the case n = 2u — 1. At the end we
outline a similar proof for n = 2u..

Let the contour I be taken as a circle || = % in the A-plane. - If the trans-
formation A = p" be made, we find

I= ffnp"“@(w, 8; N)f(8)dsdp +ffnp""G(oc, 8; A)f(s)dsdp.
nvs ' v Ve
In this expression v, is the segment of a circle [p| = & lying on a region S,

LT < < (L+1)7
w SEEPE T

and at x="> to

N
and v, is the segment of the same circle lying on the adjacent region S,

S.: (_@_"'_llfgargpg(_{o_i_%)_".

2 n n

We confine our attention to the partial integral

(48) I;;==ffnp~—la(w,s; M) f(s)dsdp,

taking a <z <b. It is found to tend toward f(x — 0)/4. By. considera-
tions of symmetry the limiting values of the remaining partial integrals are
determined. The first part of the theorem then follows.

Let B be the bisection point of v, and 4, C its end points. Take ARB as that

segment of v, for which

(49 | B(pw,) <0
and BC as that segment of v, for which
®9) R(pw,) > 0.

" *For definitions of regular conditions see §4. The restrictions imposed on f( ) might be
lightened but only at the cost of brevity.
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The indices 1 to » of w, are chosen as in (29) and (30). We must break up
I:=% in two parts 753" and I3, both of which are attacked in the same way.
To treat G on A B, write

(51) G(x, s; X)=ﬂ=%§%(w)37a(‘) {t::zj:

where the y, of (11) have been taken as the y, of (21). Then 7, is the coeffi-
cient of 7, in

T

() #(s) e #O(s)

T, cee T

¥.(2) ¥:(8) RAC))
wW(s) yeP(s) - wrTU(s)

HWP() () - Y(s)

n(s)  y(8) o w.(s)
But by (21)
(62) Y9 (8) = er=pf [w]].

If these expressions be substituted above we find

- [ ] )
n—1 - w.‘
np

since — w,/n is the coefficient of 7, in the expression

(53) 7(s) = e

T, ceeoT,

n—32 n—2 n—2
W fw2 e w”

1 1 e 1

n—1 n—1 n—1
w} w; cee W

n—2 n—2 n—2
w 'w2 ) wn

1 1 S |

*The denominator contains the factors ¢#*®~%) which we divide into the corresponding i-th
columns of the numerator. It is to be remembered that, if ¢ 4= 0,

B[t
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In fact this coefficient m, satisfies the conditions

n n
Zw{:m‘.:_-o (j=0,1,:-,n—2) Ew';"m‘.=1.

i=1 i=1

These show that m, has the stated value.
By (51)

@, 55 )=+ S 0(2) ()
since @ < 8 <« for the partial integral 75z*. Also
W.(C_¥) =— %/2=1 Wa(y;)gj(‘) + %;l W.‘b(%)?j(")‘
From these equations it is clear that if we multiply the columns 1 to u of
N(z, 8; \)in (10) by + 37,(s) (¢=1,2,..., u), the columns . +1 to n

by —37.(8) (i=p+1,p+2, .-, ) and add them to the last column, this
last column has the elements

+ g%(x)?;(S)a g Wa,(yj)yj(s) -j;;lWaa(%)?;(s) (i=1,2,,n).

By (21), (28), and (53) these are of the forms

1 “
=P el AP

54
(64) n;—l ( z erO—ph[— 8 wml] + Z erra—ph[a, wkm]) (i=1,2,+:, n).
In the new notation equations (21), (31), (32), (33), and (34) give also
y= oo [1] ' (i=1,2,+, ),
P [aw)] (G=1,2, -+, p=1),
(55) Wi(y,) =1 p*([awt] + omse2[Baok]) (G=n),
pHe = [ Bl ] (G=n+1, 842, -+, 8),

A ==TIp TT ee-o-([8,] + ems0-0[0,]).

£=1 J=n+
‘We introduce these expressions into (10) where the elements of the last column
of V have been modified to the form (54). The factors of the denominator A()
we can divide into the numerator as follows : the factor — 1 into the last column,
the factor p* into the (i + 1)-th row, the factor ¢#®— into the j-th column, the
remaining factor A into the u-th column. We thus obtain
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(56) G(z, 5A)=, E_lx

ew,‘(z—a)[ 1 ]
(6] + =16, ]

%y u(0—a)
(ot - HIIEET DD ] S emermu]

L omeD[1] D e[ w,]
=1

eP“’l(z"’a) [1] cee

— 3 ermie—i[a, k1]
J=p+1 - .

(2,000 - tﬁ,[; l";f.’l'ﬁﬁ(:fﬁ’s ]]’ (Bak] 5oL, ]

K .
— X e~ [a wit]

J=n+1

From this form of G we can easily determine the limit of 7%3°.
Assume the sequence of circles so chosen that their distance from the nearest
point py,, pyy, is at least > 0.* Then on AB when |p| is large

67 [6,] + ers®=[6,]>M>0.
In fact if
[6,] + e*x®2[6,] = ¢,

where |¢| is small, we infer at oncé that the point p lies near to py; or pyy.

In view of (57), every element of @ given by (56) is bounded on AB since
the exponents have negative or zero real parts [see (29) and (49)]. Further,
when this expression for @ is used in 145" the factor np™' cancels.

Consider those terms of 7% which do not contain the first element of the
last column; s is confined to this column. When we integrate these terms as
to s, they have the form M/p (M bounded), as an integration by parts between
the points of discontinuity of f(s) shows. But these terms all contain as factor
an element of the first row, not the last element, beside other bounded elements ;
since these first row terms are small for | p | large, except the u-th one when p is near
to B,t we conclude that the p-integration of them will yield only small terms.{

* This refers to the minimum distance of p1, pr1; from any point of the cirole. In the proof

of the theorem of § 4, p1z, p11: (corresponding to A, A11:) were found to be approximately equally
spaoed along the biseotors of 8, and S;. The above construction of a sequence of ciroles is there-

fore posasible.

t Then pw, is a pure imaginary.

’ B ¢ L

b I —dpl<maximumofex§-".
This is small everywhere on AB it ¢ is small. Even if ¢is small exoept for a little pars of AB,
this integral is small. ‘Small’ means of course indefinitely small as |p| becomes indeﬂmtely
large.
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Accordingly we need only consider the terms which contgin the first element
of the last column. This element has a coefficient 1, as it had originally in
G (=, s; ). Here again we can restrict ourselves to terms in the brackets
which do not contain 1/p. Finally therefore

1 B s
=gy, [ (Berew) i

where ¢ signifies a quantity which tends to 0 as |p| increases.
Integrating by parts we find

fe,m(z-o)w'.f(s)ds_'—. #).ﬁ% (i=1,2, - 1)

where ¢ is certainly small unless ;i = u and p is near to B. From this we con-
clude that

B m __—_—1—
[ e P
and therefore
(58) ‘::;=£,f(w—°)+e-

To treat 7%¢ we multiply the columns 1 to p—1 of N(x,s; A) by
+ 37,(s), and the columns u to n by — 37;(s) and add them to the last
column. The elements of the u-th column can be written in this case

el w(emne D [a] + [B])
PO 6] e 6,] + [6)]

and all the elements are bounded as before. The important term again comes
from the first element of the last column, and we find precisely as before that

(¢1=1,2, -+, n),

-1
(69) Ig =" flz—0)+e
Adding (58) and (69) we find

Iy =1f(x—0)+e,
and by symmetry
I==}f(x—0)+e, IiP=}f(x+0)+e, I;P=1f(z+0)+e.
Hence we find

I;-b =f(w—0) ‘;‘f(w"' 0)+e.

This proves the first part of the theorem.
When = = b the preceding work must be modified, since now the elements
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k+ 1 to n of the first row in (56) have the form [1]. Other elements of
the last column now become important beside the first. An integration by parts
with respect to s followed by a p-integration gives us terms

blf(a + 0) + bzf(b - 0)'
The same result must of course hold at x = a.

‘When n = 2u the attack is almost the same. One obtains a determinant
expression for @ by modifying the last column and distributing the two factors
of A into the u-th and (4 + 1)-th column.* The elements are bounded on ¢,
in this case and one obtains first 7“;* which tends toward 3/ (x—0). The
remainder of the proof is as before.

*See (38) in which A is factorable into
L1+ 00 0) (] + ¢ 77101
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