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BIORTHOGONAL SYSTEMS OF FUNCTIONS*

BY

ANNA JOHNSON PELL

Introduction.

In boundary value problems of differential equations which are not self-
adjoint, biorthogonal systems of functions play the same rdle as the orthogonal
systems do in the self-adjoint case. Li1oUvILLE} has considered special non-
self-adjoint differential equations with real characteristic values of the parame-
ter; BIRKHOFF § has proved the existence of the characteristic values (in general
complex) for the differential equation of the nth order and obtained the related
expansions.

If the integral equation

u(8) = fo(s, t)u(t)de

with the unsymmetric kernel L (s, t) has solutions u(s), and therefore the
integral equation :

v(8)= beL(t, 8)v(t)dt

solutions v(s), it has been shown by PLEMELJ § and GoursaT || that the solu-
tions or functions closely related to them form a biorthogonal system. But
expansions in terms of these solutions have not been obtained, and no criteria
have been given for the existence of real characteristic numbers of an unsymmetric
kernel.q[

The object of this paper is the development of a theory of biorthogonal systems
of functions.independent of their connection with integral or differential equa-
tions. In the theory frequent use is made of the theorems by Riksz, FiscHER,
and ToepLITZ (Lemmas 1, 2, 8, and 4, § 2).

* Presented to the Society (Chicago) April 10, 1909.

tLiouville’s Journal, ser. 1, vol. 3 (1838).

tTransaotions of the American Mathematical Bociety, vol. 9 (1908).

§Monatshefte fiir Mathematik und Physik, vol. 156 (1904).

|Annales de Toulouse, 1908.

1/ Sinoe this paper was written J. MARTY has published some results for unsymmetrio kernels,

Com’ptes Rendus, February 28, March 7, April 25, and June 6, 1910. See also the note by
the author in Bulletin of the American Mathematiocal Society, Jnly, 1910.

Trans. Am. Math. Soc. 10 136
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Necessary and sufficient conditions for the existence of the adjoint system {,}
of any system of linearly independent functions {,} are deduced (theorem 2,
§3). Theorems for biorthogonal systems analogous to those of Rresz and
FiscHER for orthogonal systems are: (a) if

£(fr)

converges for every function f which is integrable and has an integrable square,
then for every system of constants {c,} of finite norm there exists a function ¢
such that ¢, = f g, (corollary 1, theorem 6); () if the system { v, ! is complete

LI

and if certain conditions are imposed on the function ¢, then (theorem 8)

The equivalence of two biorthogonal systems is defined and a classification
into types is made (§7). With each type satisfying a certain condition there
is connected uniquely (§ 6) and in a reversible way (theorem 20, § 8) a single-
valued functional transformation * 7°( /'), which transforms every function which
is integrable and has an integrable square into a function of the same kind, and
is defined by the properties

M T+ auf) = 6, TUR) + 0, 7( 1),
@) [ —nrim =o,
3) [rrer=o.

The class of all orthogonal systems of functions is a special type, for which
7( /) is the identical transformation. Other special cases of 7'( 1) are

p() [ p()A(s) s
[ to(o)1as
7(7)= [ w(s 0re)de.

T(f)=r(s)—

b

By means of the theorems by Riksz, FIscHER and ToEPLITZ, it can be shown
that there is a one-to-one correspondence between this functional transformation
T'(f) and positive definite limited quadratic forms in infinitely many variables.

“* Linear functional transformations have recently been studied by F. Rirsz, Mathe-
matische Annalen, vel. 69 (1910), p. 449.
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§ 1. Fundamental Notations.

We consider an arbitrary interval 7: ¢ = s = 0: of the real variable s, and
the corresponding square S: @ =s = b, a =¢=0b: of the real variables s and ¢,
and real functions of these variables. We denote functions of a single variable
by 7, g, ¢, ¢, etc., omitting the argument. F is the class of all funections r
such that 7 and f* are integrable in the sense of Lebesgue* on the interval 7.
As usual, we regard two functions of F as equal if they differ only on a set of
points of content zero.t We call two such functions ¢ essentially equal.”

When there is no ambigunity we omit the variable of integration In all cases
the limits of integration are omitted, since 7 is the only interval of integration
considered in this paper.

Constants and functions with the subseripts i. j, & denote sequences of con-
stants and functions.

® and § denote subclasses of ¥ and the elements of these subclasses are
denoted by the small letters ¢ and /.

To express that a relation involving the function g holds for every function
of the class we write (¢ ) after the relation ; for example

fr=o ().

We use a similar notation in the case of several variables: for example

(frr)y=frifr (fir fi)-

Let { f,} denote any sequence of linearly independent functions of the class
&, and { ¢, | the sequence of normalized and orthogonal § functions which are
obtained linearly from the functions f; by means of the construction given by
E. Scnmior, §

i—1
NN LN
S .

- ().

" \U (-3 [ 5.1

Each ¢, may be expressed linearly and homogeneously with constant coefficients
n terms of £, £, - -, f,, and conversely :

(1) ¢, = Z aik-f;;’ f; = AEI ])i/c¢k (7).
k=1 =

*-I:E);Eﬂétm,ms:tr Vintégration, p. 115.

t LEBESGUE, 1. ¢., p. 106.

1 A function f is normalized iff/” =-1. Two functions f, and f, are orthogonal if [{, fo 0.
% Zur Theorie der linearen und nichilinearen Integralgleichungen. Mathematische .A nnalen,
vol. 63 (1907), p. 442.
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The constants a,,, b, have the following properties :

(lh‘:i:O (7.)!

a,=0 (k>1),
(2)

b0 (i),

by=0 (k>i).

The matrices formed from the coefficients a, and b, we denote by (a,.,'_)f and
(b )f respectlvely, or simply by (), and (b)f

f {¢,} are the normalized and orthogonal functions corresponding  to
{ f‘. =\, f,} where {\;] are constants different from zero, then ¢> P,

§ 2. Preliminary definitions and lemmas.

Definition. A system of functions of ¥ is called complete * for the interval
I if there exists no function f of 7§, essentially different from zero, which is
orthogonal to all the functions of the system in the interval 7.

Definition. A sequence of constants { ¢} is of finite norm if the sum of the
squares,

converges, and it has the norm A/ if

Seen
i=1

For any system { .} of normalized and orthogonal functions of ¥ we have
the three following lemmas.}
Lemma 1. The sequence of constants

{7

is of finite norm for every function f of .
Lemma 2. 1f the system { ¢, } is complete,

ffﬁ=§ff@f@ﬁ (fir 12).

*F. Rigsz, Comptes Rendus, November, 1906, p. 738.
t E. ScamMIDT, 1. c., p. 439 ; F. Riksz, Comptes Rendus, March, 1907, p. 615, and April,
1907, p. 734; E. FIsCHER, Comptes Rendus, May, 1907, p. 1022.
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Lemma 3. To every system of constants {c,} of finite norm there corre-
sponds a function f of ¥ such that

=S 1, (i),

and this function f'is essentially unique if the system { ¢,} is complete.
Definition. A matrix (a,, ) is limited if
Z A

i=

©
{ Z aik mi }
i=1

is of finite norm for every system of values of {«,} of finite norm.
Definition. A bilinear form of the infinitely many variables x;, and y,

converges for every 4, and

®

Z Z i Y

k=1 i=1
is limited if for some positive constant M

n n

‘E Zaikwiyk‘igﬂ[ (n)

k=1 i=1

for all values of {«;} and {¥,} of norm =1 ({1, IV, p. 176 *).

Lemma 4. The matrix of the coefficients of a limited bilinear form is lim-
ited (77,1V, p. 179); conversely, in virtue of a theorem by ToEprLITZ + a bilinear
form whose coefficients are the elements of a limited matrix is limited.

Lemma 5. If the matrix (@, ) is limited the matrix (@) is limited also.

Lemma 6. The product of two limited matrices is a limited matrix (/7
IV, p. 179).

Definition. A matrix (a,,) is orthogonal if

a0 { 1 J’ == l? k
Z (l'./.a’.k = 0 ; =*:= I ()v ),

- { 1 i=4hk
a.a,. = X (J, k).
Z gk 0 J =F k ’
Lemma 7. An orthogonal matrix is limited (A, IV, p. 180). If some of
the elements of the orthogonal matrix are replaced by zeros, the resulting matrix
is limited.
o ’fi{e referéi;ées to the memoirs by HILBERT in the Gittinger Nachrichten, 1904-1906,
are denoted by (H, I, II, ---, V).
t E. Scumipt, Palermo Rendiconti, vol. 25 (1908), p. 2; HELLINGER and TOEPLITZ,

Gittinger Nachrichten, 1906, p. 351, and Mathematische Annalen, vol. 69 (1910),
p. 289.
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Lemma 8. The value of a limited bilinear form for arguments {u;} and
{y,} of norm 1 is obtained by summation either by rows or by columns (X,
1V, p. 180).

Lemma 9. If a, are the elements of a limited matrix, and if a, = a,;,
then the system of homogeneous linear equations

wi_xzaik‘wk:O ()
k=1

has a solution {x;} of finite norm when and only when A is a ¢ characteristic
number,” that is, a root of a certain associated equation, and the number of
linearly independent solutions is equal to the multiplicity of the root (H,
IV, p. 198).

Definition. Two systems* (u,) and (v,) of functions of F form a biorthogonal
system of functions (u,, v,) if a one-to-one correspondence can be established
between them such that the integral of the product of two corresponding func-
tions is equal to unity and the integral of the product of two non-corresponding
functions is equal to zero; i. e.,

1 (i=j),

®) f“‘”f_{O (i)

Each one of the two systems (v,), (v,) is called an adjoint system of the
other.

The biorthogonal system (u,, v,) is complete as to w, v, respectively, if the
system (u,), (v,), respectively, is complete.

For a biorthogonal system (%;, v,) the functions »; and also v, are linearly
independent. Suppose there existed a linear relation

cu +cu,+ - +cu, =0.

Multiply by v,(i=1, 2, ..., n) and integrate; from the properties (3) we
obtain
c.=10 (i=1,2,---,n).

§ 8. Denumerability and existence of the adjoint system.

Theorem 1. A system (u,) of functions of § having an adjoint system (v,)
8 denumerable.

We follow the method used by Riesz 1 to prove that an orthogonal system of
functions is denumerable. The proof is based on the following theorem : If for

* Until after theorem 1 the subscripts ¢ and j are used to denote not only sequences but any

gystem of functions.
tComptes Rendus, November, 1906, p. 738.
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every sequence { f;} of linearly independent functions selected from a given
system

S =fr=1 (i, i),

then the given system is denumerable.
Without loss of generality we may assume that

Si=1 (4).

Let {u;} be any sequence of distinct functions selected from the system (u,)
and let v, be the corresponding functions of the adjoint system. By Bessel’s
inequality we have

1=[fvi1(uil_u&)]2§f(ui1_uig)z (11, 15).

The hypotheses of the theorem are satisfied and the system (u,) is denumer-
able. When the system (%) is complete it cannot be finite, and is therefore
denumerably infinite.

Let {¢,} and {y} be the systems of normalized orthogonal functions con-
structed linearly from the functions {«,} and {«,}, respectively, of the biorthog-
onal system (%, v,). Connected with these systems of functions we have the
four matrices (a),, (3),, (a),, (8),. (§1.)

Theorem 2. The necessary and sufficient condition that a given system of
Junctions {u,} of § have an adjoint system is, that the a, of (@), be of finite
norm for every k.

Suppose the condition is satisfied ; then from lemma 8 follows the existence
of a system of functions {v,} of § such that

4) @y, =f50i’vk (i, k).

The equations connecting {u,} and {¢,} are

i
(5) ¢, = Z @Y, (¥)
=1
and g
(6) u, = k}_;: b,

Multiply the equation (6) by v, and integrate :

fuivj=’§bikf’0kvj‘

By substitution from the equation (4):

1
f wv,; = LZ:: b,a,-
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Since the matrices (5,,) and (a,) are each the inverse of the other we obtain

O l:jy
.[%%={1 i

Thus by definition the system {v,} is an adjoint system of {w,}.
Suppose conversely that an adjoint system {v,} exists. Multiply the equa-
tions (5) by v, and integrate

a.'k=f¢i'vk (i, k).
Applying lemma 1, we see that the condition is necessary.
Example. Letu,=s""',a=—1,b= + 1. Since the Legendrian poly-

nomials P,(s) form an orthogonal system of functions for the interval (—1,
+ 1), and since P,(38) is linear in 1, s, 8%, . .., §*, it is clear that the functions
¢, defined by the equations (§) are the Legendrian polynomials multiplied by
the proper constants. The value* of a,, , is given by

4m+1135 @m*l)
n,1 =\ g 24 m

4m + 1 2
Gt > G o 4 1)

Hence

And the constants { @, ,} cannot be of finite norm. This is sufficient to show
that the system of the powers of s has no adjoint system in the interval

(=1, +1).
§ 4. Limited matrices.

Lemma 1, § 2, can be extended to biorthogonal systems only when certain
conditions indicated in the following theorem are satisfied.

Theorem 8. If { f;} is any sequence of linearly independent functions of §,
the necessary and sufficient condition that the sequence { ‘/f]:} be of finite
norm for every function f of § is that the matrix (), be limited.

Multiply the second equation of (1) by any function f of ¥ and integrate :

[r=2ofor o

By lemma 1, { f ¢.f } is of finite norm for every f of ¥, and therefore
{ f ff:} is of finite norm for every f of {f if the matrix (&), is limited.
On the other hand, if
(a1}

* BYERLY, Fourier's Series, pp. 180 and 70.
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is of finite norm for every f, then
2
{ 2 bikwk}
k=1

is of finite norm for every {x,} of finite norm because

[ = E b,

where /' is the function of § which by lemma 3 corresponds to {x,}.
Remark. We can always multiply the functions { f;} by constants A, & 0

8o that
S} 0%

is of finite norm. This is evident since it follows from Bessel’s inequality that

S(n ) =[rEmfr o).

Corollary 1. If { f,} is any sequence of linearly independent functions of
& the necessary and sufficient condition that the sequence { f jf:} be of finite
norm for every function f of § is that

= ([r15) =mfr

where M is a constant depending only on the sequence { f;} .
This is a consequence of the property of a limited matrix that

> (3 0w, S MEH,
i k

where M does not depend on ¥ «? (lemma 4).

Corollary 2. 1f {w,} and {v,} form a biorthogonal system of functions,
the necessary and sufficient condition that { [r u,.}, { S fo, }» respectively, be
of finite norm =M f f? for every function f of ¥ is that (b),, (b),, respec-
tively, be limited.

Theorem 4. If the biorthogonal system (u,, v;) is complete as to u, v,
respectively, the necessary and sufficient condition that { f fv..}, { f fu‘.},
respectively, be of finite norm for every function f of § is that the matrices
(), (a),, respectively, be limited. )

We prove the theorem for the case that {w,} is complete. From the equa-
tions (5) it is clear that the system {¢,} is also complete. Applying lemma 2
and the equations (4) we obtain the following equations :

() f So,= ,g a f @S (s ).
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The remainder of the proof is precisely the same as for theorem 3.

Corollary. When the biorthogonal system (,, v,) is complete as to u, v,
respectively, a limited matrix (a),, (@),, respectively, implies a limited matrix
(b),, (b),, respectively, and conversely.

Theorem 5. If { f,} is any sequence of linearly independent functions of
%, the necessary and sufficient condition, that for every sequence of constants
{¢;} of finite norm there may exist a function f of § such that

¢.= [ 1, (i),

is that the matrix (a), be limited.
Multiply the first set of equations (1) by an arbitrary function f of {§ and

integrate :
®) [re=%a, [ r.r (i)

Suppose first that the matrix (@), is limited ; then the sequence of constants

{ Z al'k Ck }
k=1
is of finite norm and there exists [lemma 3] a function f of { such that
f¢i=zaikck (¢).
.. k=1

Taking into consideration the properties (2), § 1, it is clear from the equations
(8) that
c=ffif (i).

We now make the assumption that to every sequence of constants {c,} of
finite norm there corresponds a function f of § such that

o= [ff (i).
By means of the equations (8) and lemma 1 we find that
Z aik ck
k=1

is of finite norm for every sequence {c,} of finite norm, and thus by definition
the matrix (@), is limited.
If the system {f;} is complete, then

[ rEMyc.
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Corollary. If {w,}and {v,} form a biorthogonal system, the necessary and
sufficient condition, that for every sequence of constants {c,} of finite norm
there exists a function f of  such that for every i, ¢, = f u, fyc,= f v.fir
respectively, is that the matrix (a),, (@),, vespectively, be limited.

Theorem 6. If {u,} and {v;} form a biorthogonal system of functions,
a limited matriz (b),, (b),, respectively, implies a limited matriz (a),, (@),
respectively.

We give the proof for a limited matrix (4),. The matrix (5), is formed
from the coefficients in the equations

v, = Zlb”‘\{"] (¢)-
J=

u?

Multiply these equations by ¢, and integrate :

1
9 ““"’.Zlbiif"'f‘/’k (i, k),
J._—

where by equations (4) a,, are the elements of the matrix (a,;),. The matrix
(@), is the product of the two matrices (b,), and (f\]rj %-) which are both

limited (lemma T), and is therefore (lemma 6) itself limited.

For a biorthogonal system (,, v,), the functions «, can be multiplied by con-
stants A; = 0 so that the resulting matrix (@),, is limited.

Corollary 1. If {u,} and {v,} form a biorthogonal system such that the
sequence { f fv‘} is of finite norm for every f of %, then for every sequence
of constants {c;} of finite norm there exists a function glof % such that

¢ =fgui'

Corollary 2. When the biorthogonal system (u,, v,) is complete as to u,
the elements of the matrices (@), and (b), are connected by the relations

( ) kZaln ; ik (1

A similar relation exists between the elements of the matrices (@), and (b),
when the biorthogonal system is complete as to v.

We give below four examples to illustrate the different cases which may arise.

Example 1. Let {¢,] be a system of normalized orthogonal functions for
the interval 7, and {@;} a system of constants such that |a;| = M where M is
some finite positive quantity. Then {w,} and {v,}, defined by

Uy y =y 15 Uy=y+ady 1 Uy = by — by, vy =46y,
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form a biorthogonal system (u,, v,) whose matrices (b),, (b), and therefore
(a),, (a), are limited.

Example 2. The same biorthogonal system as in example 1, except that the
constants { a;} are such that {1/a,} is of finite norm. In this case neither of
the matrices (b), and (), is limited.

Example 3. Let {$,} be a system of normalized orthogonal functions for
the interval 7: { a,} a sequence of constants such that { 1/a,} is of finite norm.
For the biorthogonal system (w,, v,) defined by the equations

u.'=a.'¢.' (1),

4+

’v=%: (i)'

the matrix (), is limited, but the matrix (), is not.
Example 4. The systems { ¢, } and { a,} are conditioned as in example (3).
For the biorthogonal system (u,, v;) defined by the equations

;= Py (1),
v, =y, + 4Py (%),

the matrix (a), is limited but the matrix (), is not. In this example the
matrices (@), and (), are also limited but the system {w,} is not complete:
compare with theorem 4.

§ 5. Convergence and evaluation of

g flu."f'vifz'

Definition. For the biorthogonal system (u,, v,), @ is the class of all func-
tions g for which there exists a system of constants {u, &= 0} such that
{,u.. f gu'.} is of finite norm, and,{ f fv‘,/p,‘.} is of finite norm for every
function f of .

Example. For the biorthogonal system given in example 2, § 4, the class
@ is the class of all functions ¢ such that { c f gu,.} is of finite norm, where
Cpy = @, ¢ = 1. It is evident that the matrix (b),, is limited. Any other
system of constants {u } which would make (b),, limited is such that the
ratio c,/u, is less than a fixed constant for every 7, and therefore for any function
g such that {;4'. f gu, } is of finite norm, the sequence {cj f 9y, } is also of finite
norm. .

When (), is limited, ( contains the class of all functions g of § such that
{ f qu, } is of finite norm.
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Definition. For the biorthogonal system (u,, v,), § is the class of all func-
tions A for which there exists a system of constants { v, ;=% 0} such that { f v, }
is of finite norm, and { f Su[v, } is of  finite norm for every function fof §.

When (), is limited, § contains the class of all functions A of § such that
{ f ]LTJ‘} is of finite norm.

In the definition the function g is assumed to belong to the class &, but any
function g satisfying those conditions must belong to ¥ since the matrix (3),,, and
therefore the matrix (@),, corresponding to ¢ is limited, and by the equations
(6), { f 9% } is of finite norm and therefore g belongs to . Similarly the func-
tions A4 must necessarily belong to §.

Theorem 1. If (u,, v,) is a biorthogonal system, then for every function g
of & and for every function f of § the expression

is convergent ; and for every function h of § and every function f of § the
expression

Z f uc‘ f ’U.k
i=1 .
is convergent.
The convergence follows directly from the two inequalities :

(‘E: 9“‘f”f) <§( Jom) & )2;(ff> (f:9),
(z::l f"‘f ) Zf«(ff) °°( flw) (f, 1)

Theorem 8. When the biorthogonal system (w,, v,) is complete as to u, or
when the functions v, and g are orthogonal to the functions which together with
the w, form a complete system, the integral f 9. may be represented as follows:

(11) fgf= ‘z:;fgu.-fv,-f (f,9);

when it is complete as to v, or when the functions u, and h are orthogonal to
the functions which together with the v, form a complete system, the integral
f hf may similarly be represented :

(12) f’V=§Z .f“;fv;h f, B).
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We give the proof for the first part of the theorem.
From the definition of & the matrix (b),,, is limited, and therefore by theorem

6 the matrix (a),, is limited.
The elements of the limited matrix (a),, are a,/u,. Consider the bilinear

form

a0 an a
z Z —zk kyt
i=1 k=1 M
Make the substitution
=, J g, (%),
Yi= f o.f ().
Since
J 'f Y > a
TE %,
" 2 " f o f (%)

we obtain from summation by rows

gfgukkaf.

Jre=giin fur

we obtain from summation by columns

gfg%f%f

By lemma 7 these two sums are equal, and applying lemma 2 we have the desired
result :

Since

af=2 gu;fv;.f (f.9)

i=l1

Corollary 1. When the biorthogonal system (u,, v,) is complete as to u,
then

(13) f.«/"’=Z gu.«fv.-g (9)
i—1

when it is complete as to v, then

(14) fh2=gflm,.f'vih ().

These relations do not necessarily hold for every function f of § unless
® = § and § = §, respectively. This is illustrated by the example at the end

of this section.
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Corollary 2. If the function p is orthogonal to all the functions v, %,
respectively, then it is orthogonal to all the functions of the classes &, §
respectively.

Corollary 3. 1f the biorthogonal system (v, ) is complete as to u, v,
respectively, and the function p is orthogonal to all the functions v,, «,, respec-
tively, then the matrices (), and (b), cannot both be limited.

Theorem 9. When the biorthogonal system (u,, v,) is complete as to u, v
respectively there exists no function in &, §, respectively, essentially different
from zero which is orthogonal to the system {v;}, {u,}, respectively.

This is an immediate consequence of the equations (13) and (14).

Corollary. When & = §, D = §, respectively,’a complete system {u, }, {v;}
respectively, implies a complete system {wv,}, {«,} respectively.

Theorem 10. If the biorthogonal system (w,, v;) is complete as to u, v,
respectively and the functions w;, v,, respectively, belong to the class &, 9,
respectively, then the system {v,}, {u,} respectively is also complete.

A function f of ¥, orthogonal to the functions v,, would be orthogonal to the
functions {u,} also, as is seen from the equations (11).

The following example is that of a biorthogonal system (u,, v,) complete as

to » but not complete as to v.
Example. Let { $,} form a complete system of normalized orthogonal func-

tions, and let p 4 0 be a function belonging to §F but linearly dependent on no
finite number of functions ¢; and therefore

Jr-g(fra)=

Construct the functions
[Jr-E(fre) Jor frs e[,
w  NSrE(Se) -z (fe)

¥4 f pY; .
v, =u,— *TPT' (7).
The functions %, and v, form a biorthogonal system (u,, v,) complete as to

but the function p is orthogonal to all the functions v,. The functions v, form
a system of orthogonal and normalized functions and therefore the matrix (3),

is limited. The matrix (), is not limited ; otherwise f p* could be expressed by

fpz = i:fpuaf”a[”
=1

(#)

which is impossible.
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This construction could be generalized, so that the system {u;} would be
complete and all the functions v, orthogonal to a finite number of functions

Piy Pas o0y P
A § 6. Associated functions.

Definition. The function f, is a wvu-associated function of the function f
with respect to the biorthogonal system (w;, v,) if it satisfies the following
relation :

(16) Sifo.=Ju.rf, (i)-

Remark 1. If the system {u,} is complete, then f; is the only vu-associated
function of £, and for a function p orthogonal to all the functions v, the vu-asso-
ciated function is zero, and the function /' + up, where w is an arbitrary constant,
has the same vu-associated function as f.

Remark 2. The functions v, are vu-associated functions of u;. For an
orthogonal system a vu-associated function is the function itself.

Remark 3. The sum of two funetions, which are vu-associated functions of
two given functions, is a vu-associated function of the sum of the two given
functions.

Definition. The function f; is a uv-associated function of the function f with
respect to the biorthogonal system (u,, v,) if it satisfies the following relation:

A7) Srv=Jur (4).

Remark 4. A statement of the immediate consequences of this definition is
obtained by interchanging  and v in the remarks (1), (2), and (3).

Theorem 11.  If the biorthogonal system (u,,v,) has a limited matrix (b),,
(b),, respectively, then for every function f of ¥ there exists a vu-associated g
which belongs to ® , a uv-associated function h which belongs to §, respectively.

This theorem is a consequence of the theorems 3, 5, and 6. Take any

function f of ¥ and let ¢, = f Jv,; by theorem 3, the sequence {c,} is of finite
norm, and by theorems 6 and 5 there exists a function g of (§ such that

ci=ffv..=fu‘.g (1).

Corollary. If the biorthogonal system (u, v,) has a limited matrix (b),
then for every function f of ¥ there exists a wv-associated function when and
only when the matrix (b), is also limited.

Theorem 12. If for a biorthogonal system, complete as to u, the vu-asso-
ciated function g exists for every function f of §, then the matrixz (b), is
limited.
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This theorem is a consequence of lemma 3 and the equations (5) and (7).
Multiply the equations (5) by ¢ and integrate and then substitute from the
equations (7) for f gu;. By lemma 3 the matrix (Xu,,u,) is limited and by
reason of the properties (2), § 2, it follows that (a), is also limited. Corollary
to theorem 4 shows that (%), is limited.

Theorem 13. If the biorthogonal system (w,, v,) is complete as to u and
has a limited matrix (b),, and if g is the vu-associated function of f , then the

integral f Jg can be expressed as the sum of squares :

(1) =5 5) (1)

This follows from a direct application of the theorem 8 and equations (11).

Remark. 1f the biorthogonal system (u,, v,) is complete as to » and has a
limited matrix (), and if ¢ is the vu-associated function of some function f,
and the function p is orthogonal to all the functions v,, then p is also orthogonal
to g. This is a special case of the corollary to theorem 8.

Theorem 14. If the biorthogonal system (u,, v,)is complete as to w and
has a limited matrix (b),, and if g, is the vu-associated function of f,, and g,
that of f,, then

(19) S19.=J 19, (fuf):
This is a consequence of theorem 8.

If the biorthogonal system (u,, v,) has a limited matrix (), , then by theorem
11 the vu-associated functions define a functional transformation 7,

(20) 9=T7(f) ()
which is applicable to the class &, and is single-valued if the system {u, } is
complete.
A particular case of equation (20) is
(21) v, = T(u;) (i).
When the system {u,} is complete, 7 is linear:
(22) T(a fi+ @ f)) =4 T(H) + & T(f) (fif2)-
In terms of 7" the theorems 14 and 13 may be expressed as follows :
(28) SIATSL) -LT(A)]=0 ()
and
(24) JrT(F)=0 ()

the equality sign in (24) holding only for /=0 or T(f)=0.

Trans. Am. Math. Soc. 11
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We give below some examples of this functional transformation 7'.
Example 1. For a complete orthogonal system 7'( f ) = f.
Example 2. For the complete biorthogonal system

v; = au; ' (%),
where a is a positive function of ¥, the transformation 7' is
T(f) = of.

Example 3. Let (u;.v,) be the biorthogonal system defined in the example
in § 5. The transformation 7’is given by

7(f)= -’iff =z

Example 4. Let K (s, t) be a kernel which is continuous, symmetric, bas
positive characteristic numbers { 4? }, and for which there exists no function
f in § such that j K(s, t)f(¢)dt=0. Let the characteristic functions

be {¢;}:

b.(s)=w [ K(s,t),(t)dt (i).
The biorthogonal system
¢, .
L= b, =0 (1)
= p; P =,

is complete as to «, and has a limited matrix (), because the sequence of num-
bers {1/u;} is of finite norm. The functional transformation 7’ is

g(s)= [ K(s,0)f(t)dt.

§ 7. Equivalent biorthogonal systems.

Definition. The biorthogonal systems (u,, v;) and (%, ¥;) complete as to
u and %, respectively, and satisfying the relation

S5, = [ (i, %),
are called equivalent.

As a trivial case, all orthogonal systems are equivalent. The definition may
be applied to some biorthogonal systems which are not complete.

Theorem 15. If the biorthogonal system (w,,v;) is complete as to v and
has a limited matrix (b),, then two biorthogonal systems (i, v, ) and (%, v;)
each equivalent to (u,, v;) are equivalent to each other.

This follows directly from the equations (19).
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Theorem 16.  If the biorthogonal systems (u;, v;) and (4@, ©;) are complete
as to u and @ respectively, and if the matrices (b), and (b); are limited, then
the necessary and sufficient condition that the matrix f v, be orthogonal, is
that the two given systems be equivalent.

If the two systems are equivalent, the conditions for the orthogonality (§ 2) of

the matrix f %;v, are satisfied ; for
S -5 (- ~ [l i=j
é u;’vk.f’vk?lj=,§ u,.'v,cfukvj =j:u'.fvj= {0 i:{::;' (i,4),
> (v, [(a0,=3 (o [ 1=,
E ”;“kf"‘k";—‘;f’”iukf”k",-—f“;”j={0 it (i,7)-

To prove the converse, let ¥, be the vu-associated function of i,. Then

o ® B _ ® _ _ 1 '=j
fu'.v,.=,§fu‘.kaukvj=kz=; u..v‘_.[vkuj={0 it

and therefore
fﬁ’i?j‘_‘f@ﬁa (#4,4).
Since the system { i, } is complete we obtain
V=73 (i)
and the two systems are equivalent.

Theorem 17. If the biorthogonal system (u;,v;) is complete as to u and
the matrix (b), is limited, then for any biorthogonal system (a,, ;) complete
as to w and equivalent to the system (u,;, v;) the matrix (b),; is limited.

Let £ be any function of § and write the equations

fff’s=§ff”kf“k’_’i (7).

From this system of equations we see that { f S 'T)i} is of finite norm for every
Jf and therefore the matrix (), is limited.

Theorem 18. If the equivalent biorthogonal systems (w,, v;) and (4, v;)
are complete as to w and i respectively, and the matrices (b), and (b); are
limited, then the vu-associated function g of any given function f is equal to
the vu-associated function § of f.

We have

f§ﬁ;.=ff5e=z kafuk;l—’i"—'; gukf'v,{??;=]gﬁi,
k=1 = D

Since the system 4, is complete, g =g .
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Corollary. The functional transformations 7' and 7', corresponding to two
biorthogonal systems (u;, v;) and (@, ;) which satisfy the conditions of
theorem 17, are equal.

Remark. If two biorthogonal systems have the same functional transforma-

tion 7', they are equivalent.

§ 8. Functional transformations T.

In this section we consider functional transformations 7', which transform
every function of § into a function of § and which are single-valued and possess
the following three properties : *

(22) T(a,fl-{-a2f2)=alT(j;)+a2T(f2) (an'anfnfa),
(28) SIAT( ) = /A T(F)] =0 (S 1),
(24) Srr(r)=o (),

the equality sign in (24) holding only for f'=0 or 7'(f) = 0.
Theorem 19. Any biorthogonal system (u,,v,) such that

v, = T'(u;) (i),

where T has the three properﬁes (22), (28), (24), kas a limited matriz (b),.
Let f be any function of ; then by the property (24)

f(f—kz;uk ukT(f))(T(f)—gkavhf)zo (i,f).

Transforming this inequality, we obtain

(25) i(kaf)zéffT(f) (i, 1),

k=1
and therefore the matrix (5), is limited.

Corollary. For any two functions f; and f; of ¥,

(26) (fATR V=S AT S LT (fho)-
In the inequality (25) make the substitution i =1, f'= f,, and
7(A)

AT

where f, and f, are any two functions of §, such that 7(/f,)+ 0 and
(/) * 0.

*Since 7' is single-valued, the linearity (22) is a consequence of (23).
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Theorem 20. For any functional transformation T which has the three
properties (22), (23), (24), and which does not transform every function into
zero, there exist biorthogonal systems (u,, v,) for which

v = T(u;) (i).

Let { f;} be any sequence of linearly independent functions of J, for which
T(f:) # 0 and also are linearly independent. Construct the following system :

B j}—g“kj'ukT(‘f‘)
' \/f(f,":z;::“k ukT(f,-)) (T(f.) _gﬂkfv"f‘)

7))~ S [t

g fur) (ri-Enfr)

For i =1 it is clear that the denominators do not vanish and that v, = T(u,).
Assume that the statement is true for ; — 1; then

()= S [ote=T(fi= S [wT(),

and therefore by (24) the denominators of « and v cannot vanish unless

fim o [ T(7)=0

(i),

27

or
i

—1
T(f.)—k kavk.fi=0°
=1
Either one of these equations is contrary to the hypothesis on { f;}. Therefore
v = T ( U; ) (i ) .

It can now be argued that the systems {«;} and {v,} form a biorthogonal
system. It is easily seen that the relations

0 (i+4),
f“‘”"= 1 (i=i),
hold for 4, =1, 2. Assume that they hold for i, j=1,2, -..,n—1 and

prove that they then hold for i,j=1,2, .-+, n.

Since in a biorthogonal system (u;,v;) the functions «; and also v; are
necessarily linearly independent, the vanishing of the denominator of u; and v;
gives a sufficient condition that { f;} and {7'(/f;)} be linearly dependent.
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The biorthogonal system (u,, v;) defined by the equations (27) has by
theorem 18 a limited matrix (4) ; a vu-associated function g of any function

[ exists and
g=7(S)-

Biorthogonal systems constructed from different sequences { f;} are equivalent
or belong to the same type.

There exist functional transformations 7" with the properties (22), (23), (24)
for which there does not exist a complete system of linearly independent func-
tions {f;} such that the functions 7'(f;) are linearly independent. For
example, the functional transformation

T<f>=fK<s, £)f(t)dt,

where

transforms every function f into a linear combination of the n functions ¢;
(¢=1, ..., n). If, however, there exists a complete system of linearly
independent functions {f;} such that the functions 7°(f;) are linearly inde-
pendent, then a biorthogonal system can be constructed by (27) which is com-
plete as to ». In all cases however,

o =§ g% f v,/

=1
Theorem 21. A single-valued functional transformation T which has the
three properties (22), (28), and (24), and for which there evists a complete sys-
tem of linearly independent functions {f;} such that T (f:) are also linearly
independent, is equivalent to a type of biorthogonal systems (u;, v;) complete
as to w and with limited matrices (b),.
The formulz for «; and v; may be expressed in the following form :

SRTCR) SR - JAT(fia)
ffmm fsz(fz : fsz(ﬁ ) J;

ffTu) ffT(J‘z : ffT(f_,) f
[ARAT - SR ffm AR
SETENSLTC - fsz(f_l) fm(f;) fm( AR AR

\/ ]fﬁ_lﬂ.fl)fﬁ_,T(JZ) 'ff T(f_l) JfT(ﬂ ffT(fz ~~fﬁT(f.~)
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SATG) SATSA) - [ALTU) T
ff,T(fz) fsz(fz - ff_,T(m T(f)

_ fJiT(f) fsz(m : ff-lT(f) 70
[ATA) 1T [ T(f) fx:T(ﬁ)fsz(m-- S
fflT(fz)fsz(fz ff-,T<f, ,fﬂT(JZ)fsz(fz ffT(fz)

(¥)-

\/ fﬁw_ofm(f-o ff_lT(f,-x) fflT(f)lfsz(f) ffT(f)

The necessary and sufficient condition that both the systems { f;} and { T'(f,) }
be linearly dependent is the vanishing of the determinant

SLET) [HrT) - [RT)
28) ffﬂ(fl) fsz(fz : fsz(f)

ff;T(fl ffT(fz ffT(f)

Theorem 22. If, for a functional transformation T with the properties
(22), (23), and (24), there exists a function p such that p = \T'(p), then there
exists a biorthogonal system (;, v;) for which the vu-associated function gof
a function f orthogonal to p is given by

9= T(f)-

Taking into consideration the inequality (26) and the condition imposed on
p, we see that the functional transformation

w0 =1ir) -2 }’p elC2)

satisfies the three conditions (22), (23), and (24). By theorem 20 we can con-
struct a biorthogonal system (i, v, ) such that

5, = T(@;)-
The wi-associated function g of £ is given by

_T(f)___(:?);fp.f_T(f) pfj"p(f)
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and therefore if f; is orthogonal to p,
9.=T(f)-

§9. Solutions of f=AT(f).

Let 7" be a single-valued functional transformation which transforms every
function of  into a function of ¥ and which has the properties (22), (23), and
(24) ; and let (u,, v;) be a biorthogonal system (theorem 20) for which

v, = T(u;) (i).

Then the matrix (5), is limited (theorem 19) and therefore also the matrix (a), .
The matrix (a,,), where

o0
X = ; @y Qi

is limited, by lemma 6, and is symmetric.
In this section we consider the functional equation

(1) f=ArT(f),

where A is a parameter, and f a function to be determined.
Theorem 23. If there exists a solution f of the equation

S=AT(f),
zi=ff50i (i)

i3 a solution of finite norm of the infinite system of homogeneous linear equations

then

(32) z;—hzaikzk':() (¢),
k=1

and conversely a solution of finite norm of the equations (32) leads to a solution
of the equation (31).
The functional equation (31) is equivalent to the set of equations

(33) S fu, = foif (i).

By means of the equations (5) and (7) we obtain the result that the equations
(83) are equivalent to (32).

Corollary. The functional equation (81) has a solution f when and only
when the quadratic form Y a,, x,x, has a characteristic number ; the number of
the solutions f depends on the multiplicity of the characteristic number.

This corollary follows from lemma 8.
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Theorem 24. Two solutions of

S=AT(f),

corresponding to two different values of N, are orthogonal.
Let the two values of A be A, and A, and the corresponding solutions f;

and f,:
L=NT(h), fi=XT(f,).

Multiply the first equation by f, and integrate. By means of the second equa-

tion and (23) we obtain
A
Jrn=3f1s

JIf=0,
when A and A, are distinct.
If the kernel K (s, ¢t) is symmetric, positive semi-definite, and satisfies cer-
tain continuity conditions, the integral equation

f(s)=nr [ K(s,t)f(t)de

is a special case of the functional equation (81). This integral equation has at
least one solution, the multiplicity of a characteristic number is always finite,
and if there are an infinite number of characteristic numbers the limit point is

and therefore

infinite.

We give examples in which the spectrum * of the quadratic form ¥ a;,x;x,
consists of a point spectrum with finite or infinite multiplicity, or with a finite
or infinite limit point, or of a continuous spectrum.

Fxample 1. Same as the example in § 5.

The spectrum consists of the one point unity with an infinite multiplicity.

Any function orthogonal to p is a solution of the equation (31).
Example 2. Let {¢,} be a complete system of normalized and orthogonal

functions ; and let (u;, v;) be the biorthogonal system defined by
i
U= Z ¢ (%),
v, = — iy (¢).
The quadratic form ¥ a,,x; x, becomes

® ©
2
x? +2Z90.' - 2;98;90.-“
=2 =

T OYH IV, p. 172
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and its spectrum * is a continuous spectrum consisting of the values A between
+ 1 and + o0. The equation (31) has no solution f belonging to .

Example 3. Same as example 1, § 4, in which the constants a; approach
zero as a limit, and the functions ¢, are ¢complete and continuous.

The spectrum consists of a point spectrum with limit point at 1:

2+at+a,Vai44
Ay = 92 ’

S (7)-
_24+ad—aVal+4
%5 D)
The corresponding solutions of (31) are

¢2; 1(1 7\'2;-1)'—“ ¢‘2;

A,

21— (I_KZ) 1)2+a ’
(7).
a _ b (1 =2y)—a; ¢y,
BT (=N p+a

The functions {a; } form a complete system of normalized orthogonal functions.
It is possible to take ¢, so small that
K(8,t)=z 3)(1 (t)

i=1
1—x;
converges uniformly ; 1/1 — A, are then the characteristic numbers of K (s,¢).
With this restriction imposed on @, we obtain for any function f and its vu-
associated function ¢

f(s)y=g(s)— [ K (s, t)g(t)ds.

Since 1 is not a characteristic number of & (s, ¢) we can solve this equation for

g and obtain for 7’
g(s)=f(s) = [k(s, t)f(2)dt,

where & (s, ¢) is the resolvent of A (s, t). The first equation gives the rela-
tion between any function g and its uv-associated function f.

FExample 4. Same as example 1, § 4, in which however the constants a; are
all equal to the constant a, the system { ¢, } is complete, and the functions ¢,
are continuous.

In this case the spectrum consists of the two points:

24+ +ava+ 4 1 244 — a]/a+4
= 2 T e

b

% H. WEYL, Singuliire Integralgleichungen, Dissertation, Gottingen, 1908, p. 69.
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each of infinite multiplicity. Let the solutions of (31), corresponding to / and
1/l, be {a;} and {a;} respectively. Each of these systems we may consider
as orthogonal and normalized; and each system is orthogonal to the other.
Further, the two systems together form a complete orthogonal system of con-
tinuous functions ; and it is possible to choose systems of constants {/,} and
{{;} such that they are the characteristic numbers of two symmetric kernels
K(s, t) and K"(s, t), whose corresponding characteristic functions are the
{a;} and {a;} respectively. Then the functions w, and v, satisfy the equation

S LK (s, t)+ 1K (s, t))u,(t)dt = [[1K (s, t) + K"(s, t)] v (¢)dt ().
This is an integral equation of the first kind in both %, and v;. The functional
transformation is given by *
0 t2k+1 .
v(8 =2[ (;(-—-1)" Er ﬂ‘z}?ﬂ(S))dt (i),
where

BP(s) =1 [ [P K@D (s, ¢) + K @+2(s, ¢)]w,(¢)dt

and K*+2(s, t) and K" *+9(s, t) are iterated kernels of A and A" respec-
tively.
§ 10. Complete + elementary theory of six properties.

A biorthogonal system (w,, v,) may have one or more of the following six
properties: 1) {u;} complete; 2) {v;} complete; 3) (a), limited ; 4) (b), lim-
ited; 5) (a), limited; 6) (8), limited. If we consider all the possibilities of a
biorthogonal system possessing or not possessing each one of these six properties.
there are 2°= 64 cases to be considered. To establish a complete elementary
theory we must, for each of the 64 cases, either show by theorems the impossi-
bility of the case or exhibit an example. In this way we show that there are
no general theorems relating to these six properties other than those already
obtained.

Theorem 25. There are no other theorems which are analogous to the corol-
lary to theorem 4, theorem 6, and corollary 3 to theorem 8, and which express
interdependence among the six properties mentioned above.

To denote that a biorthogonal system possesses or does not possess the ith
property (i =1, 2, ..., 6) we write + or — in the ith place.

Since by theorem 6 a limited matrix (8),, (b), respectively implies a limited
matrix (@), (@), respectively, the following cases are excluded

(ﬂ:, :t,_yi’:i:’ +)’

(i‘-9 =+, =+, +5 — —’-*:)s
of which 28 are distinct.

* H. BATEMAN, Inversion of a defimite integral, Mathematische Annalen, vol. 63 (1907).
+ E. H. MOORE, Introduction to a form of General Analysis, The New Haven Mathematical

Colloguium, p. 82.
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The corollary to theorem 4 excludes the cases
(-_-':, :’:9 +’ :j:’ ia _)a
(:{:1 :t:7 :t’ ] +a i)-

Of these there are 11 cases which are new and distinct.
Corollary 3 to theorem 8 excludes the two cases

(+, i} +9 +9 +7 +)9
("'s +, +9 +’ +9 +).

There remain 23 cases, for which we exhibit examples. Two cases which
differ only by an interchange of » and v may be considered as one case.

1) (45 +5 +5 5 45 +).

Example 1 in § 4, in which the system {¢,} is complete.

This example shows the impossibility of a theorem to the effect that a
biorthogonal system complete both as to « and v cannot have all the matrices
limited.

2) (+ + + = = +),
3) (5 +5 = +5 +5 —)-
Example 8 in § 4, in which the system {¢,} is complete.
4) (5 41— = = —)-
Example 8 in § 4, in which the system {¢,} is complete.
5) (= =+ 45 +5 +)-
Example 1 in § 4, in which the system { ¢} is incomplete.
6) (= = =+ 4+ =)
7 (== 0 = = +).
Example 8 in § 4, in which the system {¢,} is incomplete.
8) (= =5 = = = =).
Example 2 in § 4, in which the system { ¢, } is incomplete.
9) (=s = +5 +5 2 =),
10) (=1 =1 42 =5 5 4)-
Example 4 in § 4, in which the system { ¢, } is incomplete.
11) (—’ —y +y = = '—),

12) ('_‘a Ty Ty T +, "“)-
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Examples for the cases 20) and 21) below, in which the functions %, and v,
are omitted.

13) (—, it} +1 " +s _)°

{ ¢;) is an incomplete system of normalized orthogonal functions. {a,} is a
sequence of constants such that {1/a;} is of finite norm. {X} is a sequence
of constants such that {1/X;} is of finite norm and also {A,/a,} is of finite
norm. - The biorthogonal system

1
U= Ny, s v, = (b, , +ai¢z;)x ()

clearly has a limited matrix (), and unlimited matrices (5), and (3),. That
the matrix (a), is limited follows from the fact that, for the biorthogonal system

(%, 5.'):

7= ?‘;‘P,ze, 3=, (i),
the matrix (5); is limited. ‘
14) (5 = 45 = +» +),
15) (= 45+ 4+, +, —)-
Example in § 5,
16) (+5 =5 ++ = =5 +),
17) (= > = 41 41 —).

The biorthogonal system is given by
(i),

&l

u, = AU, v, =
t

where (#,, v;) is the biorthogonal system in the example in §5, and the
sequence {1/A,} is of finite norm.

18) (+9'—’—a +, +3_)a
19) (—’ +,+,—s = +)~
The biorthogonal system is given by
% =1__l_‘., v‘.=)\‘."u'.. (i)’

3
(1

where (%, ;) is the biorthogonal system in the example in § 5, and A, are
chosen so that (), is not limited and (), is limited.

20) (+9_a_9—’+’_)9
21) (_'a +, +a"a_a'—)-
The biorthogonal system is given by
=,lz—'——p 'v=)\..'. (l),

ut' A 9 i i

i



164 A. J. PELL: BIORTHOGONAL SYSTEMS OF FUNCTIONS

where (i, 7,) is the biorthogonal system in the example in § 5 and the A, are
constants such that {1/X;} is not, but {1/A?} is, of finite norm.

22) (+»“"“9“",—a—')9
23) (—, +,—a'—,—,'—')-
The biorthogonal system is given by

(fp—-il pﬁf )fszu Po,
(g on) (fr- Bl
MW%wzwwhy%%k
It L o) (-

(),

(%),

where
37— 37 —_ 2
Uy; = G, by Ugj1 = ¢2j+1 + a; by,
, .
S & ko —¢ @),
2 = a ) 2]+1 2+1

i
and {¢,} is a complete system of normalized orthogonal functions, {a;} a
sequence of constants such that {1/a,} is of finite norm, and p a function such

that
1 1
fp¢2.} a’ fp¢zj+1 = N
j J

.I

The two matrices (b); and (b); are unlimited. The function p is orthogonal
to all the functions v,; the system {w,} is complete. The matrices (&), and

(@), are unlimited for f p?,;= 0 and therefore v, = 7,. Functions f orthogonal
to p can be found for which { f fu‘} is not of finite norm and therefore (0), is
unlimited. By considering the biorthogonal system (u,, v;):

i, = L u _u_‘”‘f@&f
i+1 i s
S [r "
0] P V., =0,

which is complete both as to @ and as to v, we find that (a), is unlimited.
March, 1910.



APPLICATIONS OF BIORTHOGONAL SYSTEMS OF FUNCTIONS TO
THE THEORY OF INTEGRAL EQUATIONS*

BY

ANNA JOHNSON PELL

Introduction.

In this paper we give a sufficient condition that the characteristic numbers of
an unsymmetric kernel exist and be real, and prove the expansibility of arbi-
trary functions in terms of the corresponding characteristic functions. This
sufficient condition is stated in terms of a functional transformationt 7°( 1)
defined by certain general properties (§1), and for the special case 7'(f)=f
we obtain the known theory of the orthogonal integral equations. The method
employed is that of infinitely many variables and is based to some extent on
an earlier paper.f However, the present paper, with the exception of a few foot-
notes, can be read independently of (I) if Theorems 20 and 8 which are here
stated in §1 are accepted; and if the suggestion in Remark 1 of §1 is car-
ried out, the only reference to (I) that is necessary is Theorem 20.

§ 1. Preliminary notation and theorems.
We denote by 7 the interval « =s=0b of the real variable s, and by § the

square

IA
A
A
A

a 8 b, a t b»

* Presented to the Society, September, 1909.

t Since the original manuscript (the present paper is essentially unchanged in content and
method, but somewhat revised in form) was sent to the editors in March, 1910, J. MARTY has
announced some results for unsymmetric kernels in the Comptes Rendus. His sufficient
condition (April, 1910), which is also necessary (June, 1910) is stated in terms of a special
T(f), namely T'(f) == f K (s, t)f(t)dt, which satisfies the conditions of ¢1 imposed on the
T(f) of this paper. Special examples show that the condition () of §1 is more or less essen-
tial, see also MARTY’s correction (ibid., June, 1910). The method indicated by him is a gen-
eralization of that used by E. SCHMIDT to prove the existence and is not essentially different from
the method referred to by the author in the footnote at the beginning of § 3. MARTY states no
expansion theorems. In May, 1910, the author sent a note to the Bulletin of the American
Mathematical Society which appeared in July, 1910, and which gives necessary and suf-
ficient conditions in terms of the general 7'(f).

t A. J. PELL, these Transactions, this number.
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It will be referred to as (1).
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of the real variables s and ¢. We denote by § the class of all real functions of
8 which are integrable and whose squares are integrable on the interval 7 in the
sense of LLEBESGUE, and regard two functions of § as equal if they differ only
on a set of points of content zero. The argument of the function is omitted

whenever possible. The integral

£b¢(s)ds

is denoted by f ¢. A sequence of real numbers is of finite norm if the sum of

the squares is convergent.
Let 7'(f) be a single valued functional transformation with the following

properties :
(a) T'(f) transforms every function of § into a function of .
(b) For any two functions f, and f, of §,

JAT) =[ LT
From this property follows the linearity of 7'(f):
T(a,f, + 0,f,) = &, T(f,) + &, T(£,)-
(¢) For every function f of %,
SrTfH=o,

the equality sign holding only for functions f such that 7'(f) = 0.

Theorems 20 and 8 of (I) give the existence* of a biorthogonal system
(U, V) such that

@ V.= T(U).

(e) For every function f of ¥},

=(frv)=[frzen.

(f) For any functions t f, and ¢, = 7'(f,),

fflgﬁ;fﬁV;fUayr

For the purposes of this paper we suppose further that 7'( f) has the follow-
ing properties :
% The ;,l_\e;r; developed in (I) shows that every biorthogonal system (u:, »:) such that
E,( f Ju )' converges for every f of § gives rise to a functional transformation T'( f) with the

properties (a), (»), (¢) and such that vi— T'(u: ).
T Theorem 8 of (I) is more general than this in some cases.



1911] A. J. PELL: INTEGRAL EQUATIONS 167

(a,) T(f) transforms every continuous function into a continuous function ;
and for every continuous function f

S17H1=k 111,

where % is a constant independent of f.

(¢,) There is at most* one function p, not essentially zero, such that
Z(p) = 0 and this function p is continuous.

In virtue of (a,) and (¢,) we can assume that the biorthogonal system (U,, V,)
is such that

(%) The functions U, and V, are continuous and the system U, is complete.

Lemark 1. If the conditions on 7'(f) were stated for continuous functions
only in the form of (a,), (&) and (c), we could exhibit a biorthogonal system
(%, v;) such that the properties (), (¢) and (%) hold for continuous functions
by referring to Theorem 20 of (I), and the property (f) could be shown to
hold for all continuous functions f, and f, by a simple generalization of HILBERT’s
proof for the analogous theorem for orthogonal functions (A, V, pp. 448-445).1
The generalization consists of the systematic substitution of f SI(f) for f S

Remark 2. 1f K (s, t) is continuous on S, then the transformed function
with respect to either variable is also continuous on §. This follows from the
conditions § (@, ) and (b) and a theorem § by Professor E. H. MOORE, namely;
the necessary and sufficient condition that the sequence of continuous functions
f,(s) converge uniformly is, that for every e there exist an n, depending on e
such that for », Z»_and n,=n

[ =tz |z [ 151

for every continuous function f.
Remark 3. For every function A (s, t) continuous on S, we have

ZfK(s,t)dt—fZ:K(s,t)dt=0,

*Throughoui—s the paper p denotes a funotion such that 7(p) == 0. The condition (¢, ) is
added for simplicity ; the results obtained would hold with slight modifications if there were

more than one such function p. See Remark (7), ¢ 3.
t HILBERT’S fourth and fifth memoirs in Gottinger Nachrichten are referred to as H,

IV, and H, V.
1 These conditions are used as follows :

| J7(OITK (S, ) TR (s, ))de| = | [TUS(OILE(#, 1) —K (s, 1)) at]
=k f1TDI=w1 [ 15

4 Introduction to a form of General Analysis, in The New Haven Mathematical Colloguium
(1910), p. 5; Atti del IV congresso internazionale dei matematici, vol. 2 (1909),

p- 103.

Trans. Am. Math. Soc. 12
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where 7, denotes that T operates on the argument s. To prove this, multiply
the left-hand side of the equation by an arbitrary continuous function, integrate

and apply property (4).

In a similar manner it can be shown that
T, TR (s, t) = T,T,K(s, ¢).
A particular case of this is that 7] 7, K(s, t) is symmetric if K (s, ¢) is
symmetric.
§ 2. Integral equation with general kernel.

Let A(s,t) be a function continuous in S, f a function continuous on 7,
T'(f) the functional transformation defined in § 1and » an unknown function.
Consider the integral equations

1) u(s)+ [ K(s,t)T[u(t)]dt=f(s),
2) u(s) + [ K(s,¢)T[u(t)]dt=0,

and their adjoints

) u(a) + [ K(¢t, s) T[u(t)] dt = f(s),
4) u(s)+fK(t,s)T[u(t)]dt=0.

By means of the biorthogonal system (U, V) defined in § 1 we establish a
one-to-one correspondence between the equations (1), (2), (3), (4) and a system
of linear equations in infinitely many variables «,,

©)) a, +§kﬁaj=a‘.,
(6) a, + JZ=:1 ko, =0,

and their adjoints. In these equations the sequence { @,} is of finite norm and
ky= [ [ K (s, t)V,(t)V,(s)dsdt.

We proceed by forming the following functions and constants
k(s)=[K(s,t)V,(t)dt, k= [kV,, a=[fV,
L(s,t)=TK(s,t), L(s,t)=1T K(s,t),

M(s,t)=T L(s,t)=1T,L (s,t),
L(3)=T[k(s)]=[L(s,)V,(t)dt= [ M(s,¢t)Uy(¢)de.
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The functions %, and 7, are continuous on 7 and L (s,t), L, (s, t) and M(s,t)
are continuous on §. From the property (f) of § 1 we obtain

> (91 = [ & (s, ) L (s, ),
=1
> (497 = [ M(s, 002, 00,

k= | b

and since
Zkf,-’—“z kilaEZf(kf”'l?)

1 j=1 i=1 =1

(2

we obtain finally
2w = [ (K oz, dsars [ [ (s, 0)L,(s, ) dsan.
i=1 j=1
This last inequality shows that the bilinear form
kyy,
is continuous (A, IV, p. 203). Therefore Hilbert’s theorems (H, IV, p. 219,
and H, V, p. 449) can be applied to the equations (5) and (6).

Theorem 1. The non-homogeneous equation (1) has a unique continuous
solution if the homogeneous equation (2) has no solution. If the homogeneous
equation (2) has a continuous solution u, it is of finite multiplicity n, and the
adjoint equation (4) has the same number n of linearly independent solutions
@; and the mecessary and sufficient conditions that the non-homogeneous

equations (1) and (3) have solutions are respectively

ST, =0 (k=1,2,-,n),
and

[fT(u,)=0 (k=1,2,---,n).

After the correspondence has been established the proof follows from an
application of Hilbert’s theorems mentioned above. If the equation (5) has a
solution {a;} of finite norm the function

(7 a=Xak,

i=1

is continuous, since from property (e) the series converges uniformly (2, V,
p. 442). Multiply (7) by V, and integrate,

faV',=Zajkj'.=a‘.—a‘.

=1
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Let

u=f—a,
then
fu V; = a,.
The function u is continuous and is a solution of the equation (1), for making
the substitution
Si(t)=K(s,¢t), g.= T(u)

in the equation (f), § 1, we obtain
fK(s, O Tu(t)]dt = Sk, () = f () = u(s).
=
Conversely if u is a continuous solution of (1), the sequence of constants

a'.=qu'.

is of finite norm and satisfies the equation (5), for the series

gaik‘(s)=flf(s,t)T[u(t)]dt

is uniformly convergent, and after multiplication by V, and integration, we obtain
the equation (5).
In exactly the same manner the equivalence * of the other sets of equations

can be shown.

Applying property (&) of T(f) on the equations (1) and (2), and operating
with 7" on the equations (3) and (4), theorem 1 can be argued from the
Fredholm theory.

§ 8. Integral equation with symmetric kernel.t

From the hypothesis
K(s,t)=K(t,3)

by = kj;,

* In virtue of theorem 16, (I), any other biorthogonal system of functions satisfying (d),
(e) and (f) leads to the same solutions of the integral equations as that obtained by using the
system (U;, Vi) (H, V, p. 451). :

+ The results obtained in §§ 3, 4 could be obtained by a proper generalization of the method
developed by E. SCHMIDT in his dissertation and in Mathematische Annalen, vol. 63. In
place of SCHWARZ's inequality we have

(SAT)'= LT [LT)
(see § 8, I), and for the iterated kernels
K™ (g,t)= fK(a, r)T. K" (r, t)dr.

follows immediately
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where the constants %, are defined in § 2. By means of an orthogonal trans-
formation of the variables* {x;} the continuous (§ 2) quadratic form,

K(w) =2 kijwimja
if one assumes that not all of the coefficients £, are zero, is transformed into the
normal form (A, 1V, p. 201):

K(x)=X c.x.

=1
All of the coefficients c; are real. But some may have the value zero, let the
corresponding linear forms be

®
w;q: I; mikwk= M(x)‘

Denote the other values of ¢, by 1/, and the corresponding linear transforma-
tions by

Zlikmk = L,(x).

k=1

wl
9i

The linear forms L (=) and M (x) are connected by the following relations
(H, 1V, p. 202):

77 -1 (i=k),
©) %l = {0 (i4k),
9) > tym, =0,

(10) S o= 2 Li(@)L(0) + T M=) M(y).

The relations connecting the linear forms Z;(x) and M (x) and the quadratic
form A () are as follows:

= Ui
11) ;ljkkﬁ = 'x;,
(12) Zlmj,,kﬂ= 0.
=

Remark 4. We need to consider the exceptional cases k,; =0 for all §
and j. Since

ky=[[K(s, ) Vi(s)V,(t)dsdt=[ [T,T,K (s, t)U,(s)Uyt)dsdt,

it follows from (/) that
TTK(s,t)=0,

* By {2z} and {g:} we denote sequences of finite norm.
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and therefore, if there exists a p, A (s, ¢) has the form
K(s,t)=a(s)p(t)+ a(t)p(s) + kp(s)p(¢),

where a is any continuous function and % is any constant.

Theorem 2. For a symmetric continuous kernel K(s, t), which is not
identically zero and which is not of the form a(s)p(t)+ a(t)p(s)+kp(s)p(t)
if there is a function p, there exists at least one value of N which is necessarily
real and for which the integral equation

(18) u(s)=x[K(s,t)T[u(t)]de
has a continuous solution w(s) which is not identically zero. If there is a p
and if K (s, t) has the form

a(8)p(t) +a(t)p(s) +kp(s)p(2),

there are no solutions w.
The theorem follows directly from the existence of the constants A, and the

solutions /,, of (11), and an application of the process employed in § 2. We put

(19) 1 () = N2 1k, (o)
and show that =
u(s) =, [ K(s, t)T[u,(t)]dt.

Remark 5. If there is a function p, then the existence theorem for the
equation (13) is equivalent to an existence theorem for the equation

15) 'w(s)+,up(s)=7\f]((s,t)T[w(t)]dt, pr=c,

where u is a parameter and ¢ is any given constant.
Corollary 1. There exists at least one characteristic number A, which is

necessarily real, for an unsymmetric kernel L (s, ¢) which is of the form
T,K(s.t), where K (s, ¢t) is symmetric and is not of the form

a(t)p(s)+a(s)p(t) +kp(s)p(t)

if a function p exists. Corresponding to the characteristic numbers A, the
kernel L (s, t), and the transposed kernel L (¢, s), have continuous character-
istic functions u,, and v,, respectively, which form a biorthogonal system («,, v,)

of the type* 7(f).
Applying property (b) to the right-hand side of the equation (13) we obtain
(16) u(s) = [L(s, tyu(t)de.

*That is,vi=T (1w ).
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Operating with 7'(f) on the equation (15) we obtain after substituting
v=T(u)=T(w+ up)

(17) v(s) = [L(t,s)v(t)dt.

In both cases the processes are reversible. That the functions »; and v, form a

biorthogonal system follows from the equations (8).
Remark 6. The existence theorem for the equation (15) is equivalent to an

existence theorem for the equations
(18) T(w)=x[M(s, t)w(t)dt, [wp=c,

where ¢ is any given constant, and M(s, t) = 7, T,K (s, t) and is therefore

symmetric (Remark 3).
Remark 7. If there were more than one function p, the exceptional cases in

theorem 2 would be given* by 7/ 7, K (s, t) = 0.

If the functions f(s) and A (s, t) were integrable and with integrable
squares, the theorems 1 and 2 would hold for any functional transformation
T'(f) with the properties («), (b) and (c); the solutions being integrable with
integrable squares.

§ 4. Development of arbitrary functions.
Theorem 3. Any function f expressible in the form t
f(8)=[E(s,t)g,(t)dt= [ L(s, t)f,(¢)de,

where f, is any continuous function and g, = T'(f,), can be developed into the

uniformly convergent series

(19) £(8) = Su(s) [ Fo,+ vp(s)-
In the linear form M (x) make the substitution
wt’ == kl(s);

the resulting series is uniformly convergent. Multiply by ¥V, and integrate;
from the relation (9) we obtain

S M k()] V,(s)ds =0

- W*:ITh:it‘u;;t_i;ns U: and p; would form a complete system.
 The theorem could be stated for any function g, such that 2( f g,u;)’ converges, or even
more broadly in some cases (Theorem 8, (I)).
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and therefore, if there is a p,
M[k(s)] = Zl ml’jkj(s) =v,p(8),
i=

otHerwise, M[k(s)]=0.
In the equation (10) make the substitution

2= [0, o= [ K(s, t)Vi(t)de.

The result is

()= [ (s, 0)g,(6)de = [ L(s, 0)f,(t)de
_ ;(}:zqul )(gl‘.jkj(s)) +,p(s)

Z )fl

i t

"+ yp(s)

=X u (o) [0S +yp(s)-
Theorem 4. Any function f expressible in the form
Sis)= [ MU(s, )1, (t)dt = [ L(t, 8)g,(t)dt,

where f, is any continuous function and* g, = T'(f,), can be developed into the
uniformly convergent series

(20) f(8)=;vi(8)fuz’f‘
This development may be obtained either by substituting in the equation (10)

w=[fVe  y=JM(s, t)U(t)ds,

or by operating on the development in theorem 3 with the transformation 7°( f).

Remark 8. The kernel L (s, t) has no characteristic number A not equal to
A;; suppose it had, and let « be the corresponding characteristic function, then »
could be developed into a uniformly convergent series, but the coefficients

f uv, would be zero, and therefore v = 0 or u = p.

* This restriction on the function g, is not necessary. See footnote to theorem 3.
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Similarly we can show that there are no solutions corresponding to a charac-
teristic number A,, which are not linear in the characteristic functions belonging

to A,.
Remark 9. If there are only a finite number » of characteristic numbers A,
it follows from the developments (19) and (20) that the kernels have the form

K(s, t>=iw?i‘--(~‘~)+ a()p(8) + a(t)p(s) + kp(s)p(2),

i=1

(s, 1) =20 4 p0)800),

M(S, t) 21)(8)” (t)

Theorem 5. The maximum value which the expression
S SE (s, 0) T[f(8)] TL(2)] dadt]
can assume for all continuous functions f such that

JIT(f)=1

is equal to the reciprocal of that N, whick is smallest in absolute value, and
this maximum is attained for the corresponding characteristic function.

§ 5. Examples.

As examples of the different forms of integral equations for which § 3 gives
existence theorems we give the following :

Example 1.

u(s) = [ K(s,t)a(t)u(t)de,

where a is a continuous positive function.

Example 2.

u(s)=x [ [ K (s, t)K (s, t)u(t,)dedt,

where K *(s, t) is a positive-definite continuous kernel.

Example 3.
u(s)+p.q(s)=7\f1((s,t)T[u(t)]dt, fuq=0,

where ¢ is an an invariant function of the functional transformation 7'(f),
i.e, g=%47(g). The equations are derived from the equations (15) where



176 A. J. PELL: INTEGRAL EQUATIONS [April

¢ = 0 and the functional transformation * is

7 T
()= T( f)_zijgéz({),

which satisfies all the conditions of § 1.

As a special case of this, for 7°( f) = f, we have the integral equation treated
by CAIRNS in his dissertation. +

Example 4. Problems in the calculus of variations in which the condition

JiT(f)=1

replaces the usual condition

give rise to differential-integral equations of the form
L(u)+AT(u)=0,

du
d(l’l%)
L(u =4 -+ p,u(s),

where

and p, is a positive function which together with its first derivative is continuous,
and p, is a continuous function. The equation above reduces to the integral
equation

u(s) =[G (s,t)T[u(t)]dt,

where G'( s, t) is a Green’s function for Z () satisfying certain boundary condi-
tions. This equation has infinitely many solutions, satisfying the same boundary
conditions as G'(s, t), corresponding to real values of A, if there are only a
finite number of functions p, such that 7'(p,) = 0.

A special case is the non-self-adjoint differential equation

L[L(v)]—r=0,

where Z (v) is a self-adjoint differential expression. The adjoint differential
equation is
L[L(u)]+ 2=0.

*See Theorem 16, (I).
t W. D. CAIRNS, Die Anwendung der Integralgleichungen auf die zweite Variation bei isoperi-

metrischen Problemen, Gottingen, 1907.
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Example 5. In example (2) let the function K *(s, ¢) be equal to the Green’s
function G (s, t) of example (4). Then there exists at least one value of A for

which the equation
L)+ [ K(s,t)v(t)dt=0

has a solution v which is continuous together with its first and second derivatives

and satisfies the boundary conditions of G/ (s, ¢).
The two systems v, and —+;, considered by E. ScHMIDT,* form a biorthogonal

system of the type

7(f) = [G(s. 1) f(t)de,

where G/ (s, t) is the Green’s function, for Z (v) = — v”, which vanishes at the

ends of the interval.
Example 6. Let T(f) be a functional transformation which satisfies the

conditions (@), (b), and (a,) of §1, but not necessarily (¢) and (¢,). Let
K (s, t) be a symmetric, continuous kernel which is positive-semi-definite :

S [E (s, 8)f(8)f(t)dsdt =0,

the equality sign holding at most for one function p. Then the functional

transformation

T(f)=f1{(s,t)f(t)dt

satisfies all the conditions of § 1.
If the integral equation }

(4) u(s)=nr[ T,K(s,t)u(t)dt
has a solution » for some value of A, then the adjoint integral equation

o(s)=r [ [TK(s,t)]v(t)de

has a solution » such that
P = T (u).
Two sets of solutions (u,, »;) and (%, v;) corresponding to two different values

of \ satisfy the condition
f w0, =03

*Mathematische Annalen, vol. 63 (1907), p. 473.
+ A special case, namely T(f)=a-f, has been considered by MARTY, Comptes Rendus,

February 28, 1910, p. 515.
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that is, the solutions form a biorthogonal system of the type 7’, and therefore
the values of A, for which there exist solutions, are real. The existence of real
characteristic numbers A is shown by means of the integral equation

(B) u(s)=v [ T T,K(s,t)T[u(t)]dt,

which is of the type of the equation (14), for the kernel 7° 77 K (s, ¢)is symmetric
(Remark 3). It is evident that any solution of (A) for the value X is a solution
of (B) for v =2*. And unless 7, 7. K (s, t) is of the form

a(s)p(e) +a(t)p(s) + kp(s)p (),

there exists at least one valne of » which is real and positive and for which the
equation (B) has a continuous solution u.
Construct the two functions

2u,(8)=u(s)+ Vv [T, K(s,t)u(t)dt,

Qu,(8)=u(s)— Vv [T K(s,t)u(t)dt.

The continuous functions u, and w, are solutions of (4) for A = 1/» and
A = — Vv respectively.
Example 7. In certain cases the integral equation *

(a) u(s) =\ [ K(s, t)u(t)dt + u [ H(s, t)u(t)dt,

where K (s, t) and H(s, t) are symmetric kernels continuous on S, X and u
are parameters, and w the function to be determined, may be reduced to the

class of integral equations considered in § 3.
Let A, be that characteristic number of & (s, ¢) which is smallest in absolute

value. Then for any value of A, such that
ol <M1

there exists at least one value of u for which the integral equation has a con-
tinuous solution . For the maximum of

S SE (s, )f(s)f(t)dsadt],

* MAX MASON, Randwertaufgaben bei gewohnlichen Differentialgleichungen, Dissertation, Gottin-
gen, 1903, p. 5.
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for all continuous functions f such that

ff2=19

is equal to the reciprocal of |\, |, and therefore the functional transformation

S(8) =N [ K(s, t)f(¢)dt

satisfies all the conditions of § 1. Since A is not a characteristic number, it
can easily be shown that the inverse transformation,

T(f) =f(s) = [ k(s, 0)f(2)dt,

where k(s, t) is the reciprocal of K (s, t), also satisfies the conditions of §1.
Operating with 7(f) on the integral equation (), where A = A, we obtain

(B) u(s)=p [ T H(s,t)u(t)dt,

which is of the type of the equation (17), §3. From the equation (B) we can
pass back to the equation (a), and therefore the statement is proved.

Let H(s, ¢) be a positive semi-definite kernel, and let A be any number not
equal to a characteristic number of K (s, ¢); then the functional transformation

F(8) =2 [ k(s, t)f(t)de

possesses all the properties imposed on the functional transformation 7°(f) of
Example 6. Operating with this on the equation (a), we obtain an equation of

the type discussed in Example 6.
Let A take on a value equal to a characteristic number X of A(s, ¢) and let

H(s, t) be a positive semi-definite kernel which is orthogonal to all the charac-
teristic functions of K (s, ¢) corresponding to A. The transformation

f(s)=X [ K(s,t)f(¢)de

defines an inverse transformation 7'(f) which has the property (b), §1, and
which is applicable to every function that is orthogonal to all the characteristic

functions of K (s, ¢) corresponding to x. Operating with this 7’( f) on the
equation (a), we obtain an equation of the same form as the one considered in

Example 6, and it is not difficult to see that we again have the existence of values
of u besides the obvious one, 4 = 0.
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The following is an example of the integral equation (a) in which the kernel
H{(s, t) is not positive-definite, and to the value A = — 1 there corresponds no

real value of u.
u(s) =¥ (8)¥(t)u(t)dt + p [ [A(s)h (t)—2h,(8)hy(t)]u(t)dt,

where

Jv=fr=fr=1,
S =0, [hy=0, [hy=0.

March, 1910.
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