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INTRODUCTION.

In the fourth chapter of his ¢ Methodus. inveniend: lineas curvas
mazximi minimive proprietate gaudentes,” Euler has given an ingenious
method of transforming isoperimetric problems of a certain class to the
non-isoperimetric type. In the first chapter of this paper we discuss in a
general way the conditions impliéd in the transformations for Euler's
exampler, and the circumstances in which it is effective in removing the
isoperimetric condition in other isoperimetric problems.!. In the second
chapter we consider the transformation in detail for the solid of revolu-
tion of maximum attraction, after giving a brief critique of the partial
solutions that have already been given of this problem. We obtain the
form that the solid must take in order to furnish the maximum attrac-
tion, and show that this actually does produce a maximum. The latter
result depends upon certain relations between the senses of description
at the points of intersection of a straight line with a simnple closed curve
of a special class. In the third chapter we establish these results of
‘Analysis Situs,

CHAPTER I.

EvuLER'S METHOD OF REMOVING THE ISOPERIMETRIC CONDITION.

§ 1. The Curve of Least Arc and Given Area.

(a). The first of the problems which Euler bas solved by the
method above referred? to, he enunciates : ¢ Supra axe, AP, construere
lineam, B M,ita comparatam ut abscissa area, A BM P, datae magnitudinis,
_arcus curvae, BM, illi respondens, sit omnium minimus.” Buler does not
explicitly state whether the end-point, M, is free to move in any way or
not. Axes of x and y being chosen as in Fig. 1, the area, u, swept out

1See also Kneser Math. Annalen, 59, and Erdmann, Crelle’s Journal.
2 See pp. 143-4.
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by an ordinate, is taken as the independent variable. If a denote the

total area, the integral, I, which is to be maximised, takes the form :

-

Y I = [ VierFaf = [* Vay  aw
‘B \A M [ / ¥

in Euler'snotation. Theisoperimetric condition

%q X

K= (% .dc= [“du=a
A

0 A P L., becomes an identical equation. The
(th.l) 2 problem is thus reduced to that
of finding & minimum forfa\/dyi 4 du? without any isoperimetric con-
dition. by yr
(b). We propose to discuss briefly the transformation under more
explicit conditions, and see under what circumstances it can be applied.
We assume that our ““admissible curves”' are the totality of curves re-
presentable in the form : £:y = f (x), for z, < x <z, and satisfying
the following conditions :
(a) f (x) is of clags C’' ? on the interval, (x,.x);
() the end-point, B (x, y,), is fixed, and the end-point, M (z}, ¥,).
i) is fixed, or
ii) is free to move on the curve, @ (a, y) = 0, or
iii) is free to move in any way ;
(¥) the curve lies above O x; i.e., ¥ > 0 .cccvneer covnvncrrnnnnenna(1)

VK= [Ty .dr=a,fory=f(&) coovrrerriree e e e (2)

Zo

We have to find among these curves, £, one which renders

I =./"‘\/1 -+ (%)\ X i e, PPN (3)

a maximum.

1 See Bolza, Variations, p. 9.
? We say that f (x)is of class C, {C", cr. ... C"} in (x, x‘) it f (x) is con-

tinuous, and /'(x){f” @ . . . fr (m)} exist and are continuous: it is of class
D {D" .. } if (x5 «;) can be divided into a finite number of intervals in which

f (x) is of class C, {C”, Cc”. ... } ; cf. Bolza, Variations, p. 7.
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(c). We now introduce, after Euler, the variable, u, where

u=/'zyn’x ........... reereai e raeaans aeas )

taken along £ . From (4) and (1),
du
dy > 0,

whence we can solve (4) with respect to x,!and the inverse function,
L =2 (U) ceerrenernnieen cereonnnenn evecaruiesaenes )

will be of elass C” in the interval (0, a), and it will increase from x, tox,
as u increases from 0 to «. Further, if we define, y (u) by

yw=r{zw}

then y (u) will be of class C, on the interval, (0, a), and between x (u)
and y (u) bolds the relations :

Yo T =1 coiciiceeeieeies eveetinee reaesreans (6)

By the introduction of u, the curve, £, in the (ur, y)—plane is trans-
formed into a curve, £, in the (z, y, u)— space:

Lz =xW), y =y ),
where .
(a’) x (u) is of class U and y () is of class C' in (0 a);
B)xz0) ==x,y0) = y,and z (@) = z,y (a) = y,, where

(x, ¥y, @) 18
i) fixed, or

ii) @ (z, y) =0, or

iii) x, and y, are arbitrary ;
() y (W) >0in0a);
() yx'=1.

The isoperimetric condition is expressed by (d8'). For,if we introduce
% into X by means of (6"), we have

K = z'ydx:/“y.x’du=f“du=a

zo

Transforming I, we obtain :

I = ‘/“.‘V/_c'2 + y"‘i cdU s e, (7)

! Osgood Funktionentheorie, p. 193.
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an integral taken along a curve in the (u, x, y) space and defined by the

differential equation, (6).
(d). Now it happens that in the present problem, x can be

eliminated from (7) by (6), giving

I':/as/1+y2y'1].du. ......................... ceeevena (8)
y
From (6) and (£'), we have :

-—x——/ad.L fx du—f%‘— ......................... (9)

whence £ transforms into £,
L7y =y (),
satisfying the conditions :
(a"” y (u)is of class C' in (0, a) ;
(B") y (0) = ¥, and y (a) =y, where:

i) 2, = x, + /"’ i“, and y, are fixed, or

i) @ { +f"d“ } =0, or
iii) x, + f M nd ¥, are arbitrary ;

")y @ >0in (0 ‘a).

(e). Cases in which the problems of (b) and (d) are equivalent.

For each £ and the corresponding integral, I, there is an £” and a
corresponding 1”, such that 7 = I”. Now in order that the problems
shall be equivalent, the converse must be true; i.e., for each £ and in-
tegral I', there is an £ and the corresponding integral I, such that
I'=1". To see under what circumstances this is the case, we apply the
above transformations inversely ; i.e.,, we determine the function, z (),
by the equation.

z (W) = x, + f‘" ‘;“ ...... et ettt e s (10)

We thus transform the integral, I", given by (8) mto I glven by (7),
and the transformed path of integration, £, satisfies the conditions,
(") ... (8"), except those to which the end-point, M (=, y,) is sub-
jected. In case (8" : i), in order that L” shall pass through (=, ¥, a),

we must have, z = x, + f“ du
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along £”. 1n other words; we have a new isoperimetric condition on £,
and nothing is gained by the process. In case (8" : iii), the curve,

£L", joining (=, y, 0) and (=, -i-/"1 di‘, ¥, a) satisfies (:iii) and is

an £, since (x,, y,) is perfectly arbltraly in position. Solving (10) for u
as a function of x, we have; u () = y. Hence I’ transforms into I, and

£ to an £ joining (z, Yo to (z, + ‘i;.‘, y). In case (S : iii), the

problems of finding a maximum of I for the totality of curves, £, and of I"
Jor the totality, L' are equivalent.

(f). Incase (8" :ii), the condition that the end-point shall lie upon

?(z,y) =018
{mo"'/mdu }

This is a still more complicated isoperimetiic condition if @ (z, y) con-
tains z. If not, i.e, ify is constant, then (B': ii) is satisfied and the
transformed L£” is an L. Trapsforming into the (z, y) plane by (10),
the problems of finding a maximum for the totality, £, and of I'' for the
totality, £, are equivalent if M is free to move on a line parallel to O =.
(g). Ezxcluding from the totality, £, the cases in which we have
seen that equivalence necessitates a new isoperimetric condition on L',
we have the problems of finding a maximum for I along a totality, £
y = f(x), where: (a,) f (x) is of class C’ on (x, z,) ;
(Bo) the end-point, B (xo yo), is fixed and the end-
point, M (x, y,)
i) is free to move on a line parallel to Iz, or
ii) is free to move in any way;

(7o) ¥ > 0;
)K= [“yde=afory=/(a);

and of finding a maximum for I"’ along a totality, £/, y = y (u), where
(ao') y (u) is of class C’ in (0, a) ;
(Bo"") the end-point, B” (0, yo) is fixed, and the end-point, M (a, ¥).
i ) is fixed, or
ii ) is free to move on a line parallel to 0 z, or
iii) is free to move along ¥ = a;
" y>0;
are equivalent problems.

(h). Determination of Constants.

Euler finds for the minimizing curve in the (x, y)—plane a circle
through B, centre in AP, (fig.1). In case (fo : i), the other end-point
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lies in y = y,, and is determined by the isoperimetric condition. In case
(o : ii) we have from the condition of transversality in the (u, y)—plane'

F = vy’ = 0.
v/ vVi+yy™/
dy _ ., du

Since y>0,we havey’ = 0. Hence in the (z, y) plane ir =Y iz = 0.

N

The tangent to the circle at B is then parallel to 0 . This, with the
isoperimetric condition, fixes the circle.

(i). End-point, B, not fixed.

If the end-point, B. is free to move on the curves, ¢ (z, ¥) = 0 or
to move arbitrarily, the isoperimetric and non-isoperimetric problems
will be equivalent in the two cases above given. For, for each particular
B, thereis a 1 : 1 correspondence of the type described in (e), and there-
fore the same is true of the totality of points, B. It might appear at first
sight that if (xo yo) were free to move on ¥ (x, y) = 0, the con
dition (g :ii) need not be modified to (fo:i). But from (10), since

T, — Lo = f"dﬁ along £, the difference is arbitrary. Hence at least
y
o

one of the end-points, B or M, must be free to move parallel to 0 .

§2. Sector of Shortest Arc.
Under simijarly indefinite

M conditions, Euler solves the

problem : “Eductis ex puncto,

C, radiis CM, CA ; intra eos

describere curvam, AM, quae

pro dato spatio, ACM, habeat

] A arcum, CM, brevissimum.™

(F'Q-a) Here agaiu the point, 4, may

be fixed, free to move on any

curve, or to move arbitrarily. Transforming as in §1, we find it neces-

sary to suppose, in order that the problems may be equivalent, that at

least one end-point, M, is free to move on a circle about C as centre, or

to move arbitrarily. The solution is again a circle through C and 4, the
third condition being determined as in §1, (g).

§ 3. General Non-parameter Case.
(a). Turning to the general non-parameter case, we are required to

minimize: [ = f"‘F {x, Y, %} A oveeiieerrenees vereeennn e e (11)

zo

1 Bolza, Variations, p. 36.
2 Euler, l.c., pp. 144-5.
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for a set of curves, £, y = f (x), joining (Z, ¥») to (x, ¥,), satisfying
certain continuity conditions, and the isoperimetric condition,

K:‘/25 G {I, y,g—i}. dr =1 ......... tetee ceeeenanen e (12)
Zo

We suppose that at least one end-point, (x, y,) is free to move in a
straight line, y = y,, parallel to O x. The other end-point, (x.,¥,), may
be fixed, free to move on a curve, or unrestricted in position. But a
minimum in the last two cases will also be 4 minimum for the subset of
curves passing through the end-points of the minimizing curve. Hence
we find the extreme in all cages if we find it for (&, y,) fixed. We sup-
pose that G (x, y, A) > 0 tor every finite x, y.!

(b). Transformation from the (x,y) to the (u, y) plane.

Asin § 1, we introduce the new variable, u by

u.-./ {x,y, }.dx .............................. (13)

Since G > 0, we may solve this for x as a function of u, subjeect to cer-
tain continuity conditions. Substituting in y = f (x), we obtain y as a
function of v = y (u), satisfying certain continuity conditions and

x' G{‘r, y,'liT}. du =1 ....... esesnesess saseneies (14)
x

l . .
where z' = Zl—x’ etc. The integral, 7, transforms into
u

I=f"2. F(y L) duicnss (15)

along a path, £, in the (u, x, y)—space, satisfying (15) and certain con-
tinuity conditions. If we can eliminate x from (15) by means of (14)

I=1"= ["F@y) dt coeees rreee ceenn(16)
o

along a path, £',in the (u, y)—plane. Conversely, if we can solve (15)
for x’ as a function of x, y, ', and therefore of x and u, and if the con-
tinuity conditions are such as to permit, x' = f (x, u)? to be integrated,
we can obtain x u) satisfying (14) and such that x, = = (0). Since
G > 0, we have =" () > 0. We can therefore solve x = x (u) for u as
a fanction of . Substituting in 1", we obtain

I'=1 =./ ‘F (=, ¥, 3—1) ....... ceaeeenesnnsencanennns(17)

1If G (x, y) <0, we change the sign of Gand I
See Picard, Traité d’analyse, II, chap. 11.
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for a path in the (z, y)—plane from (x, y,) to (&, ¥,) where & = = (a).
The problems of finding & maximum for I among the curves, £, and 1"
among the curves, £, under suitable continuity conditions, are therefore

equivalent.
(¢). It is evident that the method will be effective also if M con-

winsu= [* G (= y, %) 4z; ie., if the integrand of (17) is of the

form, H (4, y,y'), and Fis of the Form Fi /z G . dz, z, y,%}.
Zo

§4. Example.

As an example, illustrating the last remark and at the same time
showing the necessity of definitely formulating the end-point conditions,
let us take a third problem of Euler's:  Inter omnes curvas isoperi-
metras, definire eam in qua sit / s" . dx maximum ver minimum, denotantt §
arcum curvae abscissae x respundentem.” We suppose one end-point fixed
and take it for origin, the other is free to move on z = z,. We assume
that our totality of admissible curves is the totality, £,

L:y=7/(),
where : (a) f (x) is of class C”’;
= [ ay\ =
(ﬂ)K_o/ \/1.{_(;1) T T (19)
We have to minimize, I = fz S . ereeeiieeiaieeietiirerr s aieasasases 19)

Transforming as in § 1, to s as independent variable by the equation

s __/’ \/1+(dy)" ...................... (20)

we obtain, I = 1" = f 80 & o dS eereeeieereesrerissnae s aenreseseraeens (1)

o

to be minimized for a totality, £, in the (s, 2)—plane:
£ x=x(s),for0 s <],
where: (a”) x (8) is of class C"';
(B0’ < Ty enenennn ceeeennne ceernenns creernnas cerene veeene (22)

and L joins the end-points, (0, 0) and (I, =,). Making the transforma-
tion of I" buck into the (x, y) plane by:

y, = \/1 - xl.‘" P R T YT TR TR T R (23)
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it is not difficult to show that the problem of minimizing I for the totality,
£, and 1" for the totality, £/, are equivalent. Applying the usual method
to the latter problem, w e obtain the solution,’

S = const.
This is not an admissible solution, since in £, Z—Z > 1. There is there-

fore no solution under the initial conditions specified. With unspecified
conditions, Euler obtains a solution.?
\

§5. General Parameter Case.

(a). From the preceding, it might seem that the introduction of u
as independent variable was equally essential with the possibility of
eliminating = or y in the.transformed integral; and therefore that the
condition, G@ > 0or G < 0, is indispensable to the success of the method.
But when we permit ourselves to use parameter representation, this re-
striction may be removed. Denoting now by «', y’, derivatives with
respect to the curve parameter, ¢, we suppose given totality of admissible
curves to be:

Liz=9@ @) y=19 (@),

joining 0 (¢ = t,), and 1 (t = t)), satisfying certain continuity eon-

¢
ditions and K = f "G (@ Yy 2, Y) = Lo, (24)

to
We assume again that one end-point, 0 (z,, y ), is fixed and that the
other, 1, is free to move on ¥ = y,. Weintroduce the new variable, 4 by

u (1) =/° G (x,y.2,y). B eeereer e e, (25)
to -
or RO Y 5 0 W e e (26)

The method is effective’if :c, (or y) can be eliminated from (26) and the

. ¢

integ ral, I =f 'F (@ ¥ &', Y') At iieeiiiiniivinreenaenneeee. (2)
to

which is to be minimized. We obtain,

I=0 = [ "H@w 4, y) @t eooer oo (28)
J ,

for a curve, £, joining (0, ¥,) and (I, y,), and satisfying certain con-
tinuity conditions. Conversely, if the equation, (26), can be solved for
«' a8 a function of «, y, y', and therefore of x and ¢,

@ = f(x 1),

! Bolza, Variations, p. 20.
? Euler, l.c., p. 208.
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and the continuity conditions permit of the integration of this equation,
we may obtain an x (t) satisfying (¢ 6), and such that x (¢,) = a0 Sub-
stituting for v’ in 1" from (25), we obtain the integral, 1, along a path, £,

from (x,, ¥,) to { a(t), y } Under suitable continuity conditions the

isoperimetric problems in the (=, y) plane, and the non-isoperimetric
problem in the (v, y) plane are equivalent.

§6. General Remarks.

(a). Inthe tirst example of Euler's which we havegiven, (see §§1,2)
the set of admissible curves in the (u, y) plane contains the whole set of
curves of class C’ in a certain region containing the end-points. Varia-
tions of the type used in the proof of the fundamental lemma on which
Euler's differential equation depends can therefore be constructed.! In
the third problem, however, the transformed curves are subject to the
slope condition 0 < |a'(s)| < 1. The question therefore arises
whether it is possible to construct a variation of the required type with-
out violating this condition. Indeed, if we use parameter representation
and admit a corner in this problem we find in the (u, y)—plane that an
admissible curve in the (s, m):—plane satisfies the conditions,

L v a = x (8), son (0, 1).
where : (a) z (s) is of class D';
() 0 <la' (I <1;
M) = (0) =0,z(l) ==

Al

0 (Fig3) (Fig4) P’

The broken line, 04 P, constructed as in fig. 3 so that | z'| = 1 along
it is therefore an £”'. But in order to obtain such a solution, the method
employed is to vary 04, keeping A P fixed and vice versa.? It is evidently
impossible to construct such a variation without violating the condition

je'l < 1.

1 See Bolza, Variations, §5.
2 See Bolza, 1. c., §9.
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(b). Referring again to Eulers first two examples, (§§ 1, 2), in
order that the area between the arcs and lines shall have an arithmetic
meaniny, we must suppose the curve made up of these has no double
points. In the firet case, for example, thisis ensured by the fact that BM
is of type, y = f (=), aud y > 0, condi'ions assumed for other reasons.
On the other hand, it we use parameter representation, permitting the
curve to turn back on itself, the inequalities equivalent to the non-exist-
ence of double points may be expected to take a somewhat complicated
form in the transformed problem. The first question to be settled, there-
fore, is whether or no there exists in the transformed *ct of curves a
variation of the type required in the fundamental lemma.  Aguin, if this
question can b answered in the affirmative, the tranformed double point
condition may be expected to play an important role in proving that the
extremal so discovered actually furnishes & minimum.

Similar remarks apply to any problem in parameter repre=entation
in which there is a distinction between inside and outeide points. Our
purpose is to discuss these questions in detail for the solid of revolution of
maximum attraction.

CHAPTER 1.

THE SOLID OF MAXIMUM ATTRACTION.
§ 1. Historical.

Ax stated in the last paragraph, our object in the present chapter is
to apply this method of Euler's in detail to detcrmine the form of the
solid of . maximum attraction. More explicitly, given a quantity of
homogeneous matter, bounded by a surface of revolution and attracting, ar-
cording to Newton's law, to find the form of the generating curve (n order
that the attraction upon a particle on the axis of revolution and in contact
with the surface shall be a maimum.

(b). The problem is first mentioned by Gauss,' (1830), in a paper
on capillary attraction, where it is stated without proof that the maximum
attraction is to that of a sphere of equal ma-s as 3 : Vv 5.

(c) The first discussion of the problem seems to have been given

by Airy? He takes the attracted particle as origin for a system of
rectangular co-ordinates, the x—axis coinciding with the axis of revolu-

! Gauss, Ges. Werke, V, s, 81.

? Airy, Math, Tracts: p. 309 ; Airy’s solution is reproduced by Jellett (1850,
Variations, p. 307), Todhunter (1871: Researches, p. 120), and Carll (1881 :
Variations, p. 141).  Todhunter computes also the second variation for I + A K,

which is negative.
Sec. IIL, 1907. 4
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tion. Assuming the admissible curves in the form, y = f (x), he obtains
for the attraction the definite integral, (laying aside constant factors) :

1= jrl(1 —--jf_,_ dx .eeeennnes ceererennteaeienaes )
;{ z Va? -+ yzl
and for the mass
K =‘/'JEl Y2 o B2y eevnrieniiriieein e saesasaes o (2)
zo

The application of the ordinary rules of isoperimetric problems leads
immediately to the equation of the meridian curve of the maximizing
solid in the form,

21 (aa?-|-yz)g F @m0 eeeeereees cerereeeses e e A3)

the constant, A, being determined by the mass.

(d). Moigno-Lindelsf,' (1861), using polar co-ordinates, and assum-
ing the admissible curves in the form, r = f (), obtains for the two
integrals the values,

6 9
lz[or.sinﬂcosﬁdﬂ, K:/ora.sinf).(lﬁ, ............ )
o

and, again by the ordinary method of isoperimetric problems, for the
neridian curves,

(e). Finally, Kneser (1900), in his Lehrbuch der Variationsrechnung®,
reduces the problem to a non-isoperimetric problem by means of Euler’s
artifice, which we have discussed in the preceding chapter. Starting from
polar co-ordinates, and assuming the admissible curves in the form,
r = f(0), he transforms the integrals, (4), by the substitutions,

b
u=cosB,v=/or’.sin0.d6 ............................ (6)
o

Under this transformation, :
!
av
{ (du ™

and the isoperimetric condition reduces to an identity. He finds as the
~olution in the (u, v) plane, ‘

to which corresponds in the (r, #)—plane the curve, (5).

1 Moigno-Lindelof—Caler d. Var., p. 244 ; reproduced by Dienger (1887)
Variationsrechnung, s. 61), who also discusses the Legendre condition.
2 Kneser, 1 c., 8. 28.
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(f). Kneser does not go beyond the consideration of the first
variation, and a discussion of the sufficient conditions has never been
given by means of the Calculus of Variations.! Moreover, the previous
treatments of the problem are open to certain minor objections. The
assumption of the admissible curves in one of the forms:

r=/(0)ory =\ (),

involves a restriction which is not justified by the nature of the problem.
Again, the conditions at the end-points, one of which is variable, have not
been discussed. Kurther, the extremal, (3), furnished by the method of
Airy, ceases to satisfy at the two points at which it meets 0« the con.-
ditions of continuity under which the general theory can be applied to
the solution. The same remark applies to the solution (5), since at the
dr
dé
tion, but here another difficulty arises. A close analysis shows that the
passage from the (r, §) to the (u, v) plane involves a number of restric-
tions upon the slope of the curves in the (u, v) plane. As we have
remarked in Chap. I, §6 (a), the question arises whether it is possible to
securo a variation of the typo required from this restricted set, a question
which must be discussed in some detail ; which we proceed to do.

attracted particle — = oo. Kneser’s solution is not open to this objec-

§ 2. Detailed Formulation of the Problem.

(a). We use parameter representation to obtain the desired degree
of gencrality. The attracted particle being chosen as origin for a system
of rectangular co-ordinates, of which O x is the axis of revolution, we sup-
pose that the meridian curve, £, is given in the form

Lia=¢@ (@)y=9¢G)forr, <7 <7

where @ and i areof class D', meeting Ox at 7 = 74, and 7 = 7,; and
at these points only. We also assume that (ya2'—x y') does not change

sign an infinitude of times; or in polar co-ordinates, that (di_ﬁdoes not
T

change sign an infinitude of times. In other words, £, can be divided

into a finite number of arcs on which,

i ) @is an increasing function of 7, or
ii ) 6 is a decreasing function of 7, or
iii) @ is constant.

1 A sufficiency proof has, however, been given by Schellbach, (1851, Journal fiir
Math., XLI, s. 343), by a method not belonging to the calculus of variations. By
means of the force of attraction resolved along the axis of revolution a one-para-
meter set of surfaces is obtained, each dividing space into a region of greater and
less resolved attraction. For an absolute maximum the bounding surface must be
one of these, the parameter being determined by the mass condition.
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The last occurs when ay’ — 2y’ = 0 on a certain interval. Thisare, if
. X
produced, passes through O. We also suppose that lim. — exists! as we
Y

approuach the attracted particle; this is equivalent to assuming the exist-
ence of the tangent at this particle. We do not, however, assume.the
existence of a tangent at any other point. We assume also that the
meridian curve has no double points. This last hypothesis, as remarked
in Chap. I, §6 (b), enables to distinguish arithmetically the interior and
exterior of the bounding surface. Without it we may indeed show that
the attraction integral may be made infinite without violating the isoperi-
metric condition.?

(b). Inasmuch as the matter is homogeneous, the mass will be con-
stant if the volume is. A convenient method of obtaining the latter,
and also the attraction integral, is to find the effect of small conical shells,
vertex the origin, cut out by right circular cones about the axis of revo-

lution. If A denote thearea and V the volume, gé = ya' —axy’, » and y
12

denoting derivatives with respect to. Hence by Guldin's theorem,

1 By “‘exists’’ is meant that gapproaches a determinate value, whether finite

or infinite. ¥
ty 2 When we are unable to distinguish the in-
terior from the exterior, the attraction of part
of the matter as given by A (see b), may
become negative ; e.g., the contribution of the
i loop, 1, in fig. 5 ; a state of affairs that may be
realized physically in statical electricity, at
least in the imagination. In such a case, it is
evident that we can make the attraction as
0 X great as we please by placing the positive elec-
tricity in sufficiently great quantities near the
(F. g 5) negative particle, and enough negative electri-
city to satisfy the isoperimetric condition at
such a great distance to render its attraction infinitesimal. More explicitly,
suppose that a charge, e, and e are to satisfy the isoperimetric condition,

e, — e = 0> 0. Select any positive r, r, > 3 and any R, R > 2r; an e, = 2r* A,

and ¢; = 272 A — o. Then charges, e;, and — ¢; on two spheres whose centres are
collinear with the attracted particles and at distances, r, R, from it, exert an

attraction

Now, 4 is any'arbitrary quantity. Hence F can be made as great as we please.
The absence of such loops is therefore an essential condition for the existence of
a maximum.
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d V_ 2r L ' h h 1
it (ya" — xy"), whence the volume may be taken us defined by :

V= T " y (yx' — ay’) . dr.

To

Summing in a similar fashion the attraction integral takes the form :

4 = ”\/‘”"_:{f(yz’—xy’) . dr,

T0

where r = /2?4 y'l, and u is a constant factor uepending upon the
constant of gravitation. Dropping constant factors, we have to find a

* T,
maximum value for 7 =>/' l"'“'_% (Y2 — Y'Y dT ceviirenerneernniicrenanes 9)
p

To

subject to the condition,

K = /T. Y (y:z:’ _ my') AT = @ ivvevirieiorireneenenss (10)
TO

® being a certain positive constant,

(c). Stating these hypotheses arithmetically, and collecting them
for - purposes of reference, we propose to find a maximum for the

integral 1, I = frl %y (yx' — xy') dr forthe admissible curves,

T
Liz=@ () y=@(r)in (1,7,

where I: General Characteristics :

(a) @ and ¢ are of class D' on (7, 7)) ;
) @ (1) = @ (13), and ¢ (7,) = ¥ (7,), cannot both be true if
Ty = Ty
I1:  Slope Condition: yx' — xy' = 0,
(a) at afinite number of pointe, 7 = y;
(b) ona finite number of segments, ¥, <7 <1, 1 =1,43..,

IIT: Initial Conditions :

@) @ (1) =0, # (r,) =0, 2L exists;
¢ (7 +o

® @) =04 () =0;
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IV: Regional Conditions:

B30z e

V: Isoperimetric Condition :

,
K= ["y@e—ay).dr=au
To
§3. Reduction to an Non-isoperimetric Problem.
(a). We are now going to teduce our problem to the non-isoperi-
metric type by means of the transformation:

@ (1) ’
U = » V = Sz
() y (1) () fy Gx —xy) dreceeees veinins (1)
TO
The quantities, U and ¥, have a simple geometric meaning, viz.,
U = cos f.

(see fig. 6) and Vis the volume obtained by
M revolving the sector, OM P, about the axis.
P The transformation, (12), co-ordinates with
every curve, £, in the (z, y) plane a curve,
0 L', in the (U, V) plane, whose properties we
(Flgb) have to study.?
(b). The function, r (t)
By (IV : b), and (IIT: b), we have
P () >0for 7, <7< T  coeveniinineniiiinisinnnen, (12)
Since @ and ¢ are of class D, and 7 > 0 for 7, < 7 < 7, we have that
r (1) is of class D' for 7, < 7 < 7,, and we have

!’ w ’ y ’ -
= P rieetecetestnsterssscsesecenarnans sseoss 1
r rw—l—rr 13)

an equation that remains true at the points, 4, if we understand by these
the progressive (regressive) derivatives. Now, from (III:a), as 7 —

To, ;—;:npproaches a deflnite limit, finite or infinite. Since y > 0 for

7, 7, < 7 < 7,, We may Write,
n
Y 1

a2 Yy
R S
Ty TGy

1 The discontinuities of ¢/ and ¥/ we call the points, d.
2 The results of this discussion will be found tabulated on p. 59.
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Hence as 7 _ 7, ; and % approach po-itive limits, < 1. Hence it fol-
lowsthat the progressive derivativeexists at r,, and is equal to r’ (7, + 0)
Similarly at 7. Hence r (7) is of class D’ on (7, 7,.)
(¢). The function, U (1)

The function, U (7), is not detined for 7, as a (r,) = 0 and
r (r,) = 0. But we have just scen that §l°+0 exists and < 1. We

define U (7) as this limit, U,. With this agreement, U (7) is determi-
nate and continuous on (7, 7,). By (IV: a, b)
0SS UL for 7, <7< T) veveer cevnvnvnnnes venneena(14)

and by (III: b), U (7)) = 1. Since r (z) > 0 for 7, < 7 < 7,, the de-
rivative U, exists and has the value,

, ' — ay’
U= y_(y_ﬁ_“_’/) ................................. vee(15)

for r, < 7 < 7,, understanding by U the progressive (regressive) deri-
vatives at the points, 6. As 7 = 7, U (r, + 0) is in general indeter-
minate. From I, U’ = 0 at a finite number of points, 7 = A, and= 0
on a finite number of segments, x, < 7 < A, 1 = 1,2,3.
(d). The function V (7).

According to (I: a), y (y2' — ay’) is integrable,® and has at every
point of (7, 7,) finite and determinate right and left hand derivatives,
Hence the function, ¥ (7), is of class D' on (7, 7,) and

V(1) =y (y&' — 2Y'), cevvenniiniiviniiinneiiniennns (16)

with an agreement as to the points of discontinuity similar to that in (b).
From (15) and (16), it follows that

L
vV1i—-T

S

,x'_‘ri.y',forro<r<r, .............. 17)

Asr -~ 1,4 0,and 7 — 7, — 0, the right-hand side of (17), and theres
fore also the left-hand side, approaches finite determinate limits® We
have from V'that V (1)) = @. Further as for U in (¢), V" = 0 at a
finite number of points, and = 0 on a finite number of segnents.

'See Dini, Grundlagen, etc., 368.
2 ¢.t. Dini, 1. c., ¢181 (2).
3 Dini, l.c., 4 191 (2).
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(e). The slope, P, of the (U, V) curve.
From (¢) and (d), the slope of the curve,

Lru=U((1),v =TV (1) cceviiritriecrnierennn. (18)
. . 4
i.e., the function, P = TP et et 19)

on (7, 7,) except at 7 = 7,, 7 = ¥ and the segments, «; A; and, it may

be, 7 = 7. We define P (7) at these points asr (7). With this agree-

ment, the slope, P, i continuous, even al the points, 6, and, where the

latter is defined, P coincides with V’/ Sincer (t)>0forr, <7 <7,
,

(see 12), P (1) > 0 for 7, < 7 < 7,. Hence P (1), = r%, is of class D’
for 7, < 7 < 7. Now for 7, < 7 < 7, r'=3% P . P. Honce
P P'/ exists and is finite, being equal to ' (7, 4 0).

Toto

(f). The double point condition.

From (1:b), if r and 6 be polar co-ordinates, we have r (1,) = r (7y),
and ¢ (7;) = 6 (74) cannot both be true if 7, + 7, Since P = r*, and
U=cos b, for0< < n/,, we bave P (7,) = P (1), and U (1) =
U (7;) cannot both be true if 7, + 7,

(g). Collecting thesc results, our family of admissible curves, £, in
the (=, y) plane transforms into the totality, £, in the (u, v) plane :

Lru=U),v=V(r)forr, <7<,
with the following properties :

1': General Characteris ics:
(a) V (r)isofclass D'on (7, 7));
(b) U(r)isofclass Con (7, 7,),and D' for7, < 7 < 7,.

II': Slope Conditions :

(a) V’'and U vanish at most at a finite number of points,
T = y, and on a finite number of segments, ; ;. = 1, 2, 3.
(b) P is of class C on (7, 7)), and D’ for 7, < 7 < 7, and
P = V’/ when this quotient is defined.
UI

() P (r) = P (ry) and U (r,) = U (zy), cannot both be
true if 7, = 74,
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III': Initial Conditions :
(@) V(r,)=0,a0d V(1) =;
®) U(r)=U,<1,U(r) =1;

% % % 25
14 ’ VU R .
A ~ and P%. P?S exist, and are finite,
1'0+

©vitT vi-my

o
IV’ : Regional Conditions :
(a) 0S U< Iforr, <1< 15
() P(r)>0forr, <7<+,
The isoperimetric condition becomes :

T

K=fV.a=-V() -V ()= a
rl)

by (III': a), and is thereforesatisfied by all the curves, £'. The integral,
I, takes the form

T', .
u 25 '
I'= [P U U.dt e et e, (2N
r()

Our isoperimetric problem is thus reduced tothe non-isoperimetric prob-
lem of finding a maximum value of I" among the totality, £’, one end-
point, (1, &), being fixed, and the other end-point, (U, 0), being free to
move on the axis, v = 0.
(h). Conversely if any curve,
L iu=U),v=T (1)) cerererr crrrtrennn cereerniaans (22)
is given, satisfying the conditions set down in (i), and we define :

% _—
¢(f)=ﬁ~ U ()=P.vVI1=03
it is not difficult to prove that the curve:
T= @y =10,

belongs to the set of curves, £, given in (c) and furnishes for the integral,
1= (= ~ay). dr

the same value as the curve, £', does for the integral,

™

r=fv"v* v

r
o
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Hence the problems of finding the isoperimetric maximum of I for the
totality of curves, £, and of finding the ordinary maximum of I' for the
totality of curves, L', are equivalent.

§4. Removal of Stationary Points.'

(a). We have remarked in §3 (a) that the segments, ou Wwhich
yx' — xy’ = 0 are straight lines whose direction passes through the
origin. From the definitions of U (r) and V (7) given by the equations
(11), it foliows that these segments in the parameter, r, correspond to
stationary points on the curve, £, given by (22). In order to climinate
these we introduce a new parameter, ¢, by means of the f'ollowmg
substitutions :

* = t, for - on the first interval not a x A—interval,

T = t 4 d,, for 7 on the second interval not a x A—interval,

t + d, + d, tor 7 on the third interval not a x A —interval,
where d;, = A, — g, , 7 being determined as follows :

i) when _is not an end-point of a ¢ A—interval, ¢ = 1,

ii) when r_is not an end-point of a & A—interval, ¢ = 1 .
Geometrically, we delete the segments of the parameter, , corresponding
to the stationary points of £', and in order to remove the resulting gaps
we make a simple translation of the parameter. We suppose that the
new parameter, t, has the range, t, ¢, and denote by £, &, k,, the values

0
of ¢ at the points of junction, viz:

() k=5 kg =nrp =5 ky= 05— dy = g~
(i) ky=wy; kg =Ky — dy; kg= g3 — dy — dy;
With these relations we define :
u@)=U@,v@)=V(Ehp @) =P (Deeeer e (23)
It follows that the curves,
u=U(),»=V()for mon (7 r,}
and u=u (t),v =1 () for t on (t, t
are identical as locus curves, and p (t) is the slope of the latter. In case
(i), and this case only, p () = P (7)) &= Oby (IV":b). Further,
p (ki — 0) = P (x),0r P (k4 1), andp (ki +0) = P (AQ) or P (A; 4 )
in cases (i) and (ii) respectively. Smce V" (r) = 0 on (x, 7)) in the last
cage from (IIl':a), V (A) =v () =
It is to be noted further from the values of U" and V" given by
equations (15) and (16) that the segments, («; A;), contribute nothing
to the integral,

T

Il

y . ey

o N

0

1=

—/TIV' v". U ar

To

1 The results of this discussion are given on p. 14.
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It follows that

, X %
1 =/‘lv’.u’.u.dt.

to

It remains to enunciate the conditions given in (¢) of the preceding para-
gruph in terms of % (¢) and v ({). i

(b). In the first place we have from (I") that v (7) is of class D’ on
(to t), and u (t) is of class C on this interval, and except perhaps for
t = t,, of class D' on the same interval. From (I[':a), %' (t) and v’ (¢)
can vanish at only a finite number of points, t = g. The function, p (2),
will not, in general, bo continuou +; from ([I':b), however, it must be of
class D' on the intervals, (¢, k), (k, kj), (k, 1)), excopt perhaps for
t =t,. In (ii) of the preceding paragraph, as = covers the interval,
ik, A, P (r) takes all values from 0 to P (A)) = p (t,), inclusive. Hence
(II"" : ¢;) is the equivalent of (LI’ :¢) in this case. In the remuining cases
as 7 describes the interval, («;2;), P (r) takes all vulues between
p(ki_1—0)and p (ki1 + 0) or p (k,— 0) and p (k; + 0) accord-
ing to whether it belongs to (i) or (ii); a remark which makes
(IT": ¢, ¢,) the equivalent of (I11": ¢) in these cases. If we write u ()
= u,, it follows from (IV") that in (ii) of the preceding paragraph, i.e.,
when p () &= 0, v, <1. In this case also it follows that from (I": b)
that u (t) is of class D’ up to and including ¢t = t,.  The remaining con-
ditions are translated easily.

(¢). Collecting these results, the family of admissible curves, £’ in
the (u, v)—plane transforms into a set of curves included in the totality,
L, with the following properties :

1'"": General Characteristics :
(a) v (¢t) is of class D" on (¢, ¢,);
(b) u (t) is of class Con (¢, 1)), of class D' fort, <t <¢, and
ifp (¢,) =0, fort =t¢;

11" : Slope Conditions :
(a) v’ and u’ vanish at only a finite number of points, t = ¢;
(b) p (t) isofclass D' on (t, k), (k, k) . . . . . (kat);

P= :5‘— where this quotient is defined ;
(e)) p () =p (t) and u (1)) = u (;) cannot both be true if

ty £ 153
(c;) ifu (t,) = u (k;), then p (t,) cannot lie between p (k — 0)
and p (kK 4 0);

(cg) ifu (1) = u, then p (t;) > p (f) unless ¢, = ¢ ;
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111 . Initial Cond;'tions :
@ v (to) =0,v (1) = w;
(b) w () =u,u(t) =1 u, < 1'unless p (¢,)) = 0;

(¢c) Y ¥ /[and _V ¥ / exist and are finite;
Vi—ully_o VT=uwlli 40

IV": Regional Conditions :

(@) I Su<<Ifort, <t<t;
(b)p (&) >0 fort,< t<t,
The integral to be maximised,

., B, H
I"=_/‘v .u Lu . dt.

o

Conversely, if any curve, £”, of the totality just defined, be given, and
we transform the parameter, £, in a manner entirely the inverse of that
used in (i), it is not difficult to see that we obtain a curve of the totality

, % %
L', such that/"'l V''. U". U . dr along the curve, £, is equal to
T

B .
/t. v'. w". u . dtalong the given curve. It follows that the problems

tO
of finding a maximum for I’ among the curves, £, and a maximum for I'

among the curves, £/, are equivalent.
§ 5. Decomposition of £ into arcs of type, v = f; (¥)-

(). We denote the points, g, at which v’ = 0, or u' = 0, the
points, k;, at which p (¢) is discontinuous, and the points, 6, at which
2', v’ and u’ are discontinuous, collectively by [a]; a, (=t) < a, < a,. .-
< a, +1(=1,). The corresponding values of u are a, (=u,), 4, a, .. .a,1
(see 111" :b). We decompose any curve, £, into ares, £;”, and the in-
terval, (1, t)), intosub-intervals at these points, ¢ = 0,1,2 ... r. Then

on £ u' (t) has a fixed sign, and u' (t) == 0 except perhaps at the end
pomts We may therefore solve for ¢ as a function of u of class C on and
¢’ within £,”.' Substituting in v (¢) and u (¢), we obtain v and p as

functions of u of class C on and C’ within £;”. Now within £ since

«’ £ 0and is continuous,

1 Dini, L. c. s.



[wiLsox] CERTAIN TYPE OF ISOPERIMETRIC PROBLEM 61
Hence if ' > 0 on "Ci as t =— &k 4+ 0, and t — ki+1 — 0, we have
u—u+0,and u - u ;-0 Whlle .\pploaches finite limits, viz,,

p(u, — 0)and p (w; { —0). It follows that the progressive derivatives
of v (u) at u, und regressive at u;  ; eXist, and are equal to these limits.

Ience v’ (u) is of class C’on L£,".' If we write
v = f; (u), then p = f' (u)

(h). The curve, £”, then consists of a finite number of arcs, £,”,
such that

(A). Conditions on Single Arc.
L = i (0);

(1) f; (w) is of class C’ in (u, “t+1)’ i=0,1,2,...r;

@ f, M= 7
@) f'(w) > 0 in (“i u; , 1) except that it may be that f,”(u,) : 0
% ;o p% / .
@) = = / and m/ exist and are finite ,?
J g, U =

(B). Conditions for Composition of the Arcs.

(1) 0 < u<1except on L, where, if p (x,) = 0, it may be that
U, = 1, and on £,” where always, u, 4 1 = 1;
(2) (a) iff, (u) = f;" (u), then { = i, except possibly atu; , | where
=i+1;
) if fi"(uj41) £ fiv1 (v + 1), then fi” (u; 4 1) does not lie
betwecn them ;

(c) if £ (ue) >0, then £ (uo) > fo (us) for i + 0;

(3). The compound curve is continuous.
Conversely, if any curve be made up of the finite number of nrcs,

v’ = f; (u), subject to the conditions just enunciated, it is not difficutt to
show that we may select a suitable parameter, (e.g. the arc-length) so
as to exhibit the curve as a member of the totality, £, It follows that

the problems of finding a maximum of I'' taken along a set of arcs, £¢
and the curve, £, are identical.

1 Dinj, 1. c., 368.
2 These follow from (111’7 ¢).



82 - ROYAL SOCIETY OF CANADA

§ 6. The Extremal.

(a). Let us suppose that some curve (, of the set, L, (fig. 6),
furnishes a maximum for I, and that ¢ is divided into arcs,

S L, .. .., £, of type, v = f;(u) a3 in the preceding para-
graph. Let 7, 7", be any two points in

P-. p the interior ot £/, and u (') = a/,
! T u (") = a’. Choose a variation,

2w =u(t),5-_-f,:{u (:)}
~+en {u ([)}, where

i) 7 (u) is of clags C’' in (a’ a”’);
i) n (@) =0,n"(a’) = 0,n" (a’) =0,
t ) " Ea") =00 n' (Z") ?g n'(a") =0
Y TR iii) n (¢) = 0 outside of (+' r'"). Then
0 ai & a a""";-u‘ the curve, £” (u, v), is an admissible
(F'Q'G) variation ; 7.e., belongs to the totality,
L, described in § 4 (¢). To show this, since £’ is the only arc affected
by the variation, we need only show that (non-zero) limits of |€| can be
fixed o small as to satisfy A (3), and B (2), of the preceding paragraph.
(b). To obtain these limits, we observe that since n’’ (¢) is con-
tinuous, there is an upper limit, m’, for | n'[ ' Since (v’ 7"") lies within
L/, v =0and v == 0on (v 7'). Since these are continuous, there is a
positive, v, v<{u'}, and v < [v'/, on this interval. Further, if there are
any points t', on £;’, j == i, such that u (t') = u (¢) for ' <7 < 7", then
the ditference | /"' (4) — ;" (%) | is a continuous function of v on (a’ a’’)
and == 0. Hence there exists a p such that

LAY (u) = Jj () > p> 02
If now & be any positive quantity,

<Y &<
m

;,T/ )
then for any ¢, 0 < [t] << &, £” belongs to the set of admissible curves.

(¢). Since (a) |e] < r;< :)?
U

b)) Wiy v <v
() m" > 17%'|

! Osgood Funktionentheorie, ¢13.
2 Dini Grundlagen, etc., s 68, 70.
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’

it follows that &' = v’ 4 e ' (¢), and v’ have the same sign, and do not

vanish on (+' 7). Since f (u) = Y ,and 7' () = Y1 (3) is satis-
) - y

fied. Sincee < & < _p_?‘ we have | /i’ - fi'i = f_z‘l < p. Asfi=f"
m u ’

forj =i, and 'y — f/ >?% wo have fi —fi1 > 0, whence B:2 (a) i8
satistied on the interior of £.".

(d)- Let us suppose, if possible, that B : 2 (b) is violated for
some ¢, 0 < ¢| < & and some particular u;, From the equation,
= v——-%e—"— fi" is certainly & continuous function of € for u = u;.
For € = 0, i.e., for f,, f,' does not lie between f”, 1 (ux + 0) and
%" (up + 0, while for € = ¢,; it does. Hence for some

/ Swro S S o
,

J+1
! ! R

n
(Fig. 7).

intermediate value of ¢ /' (¢) = f;' wx + 0), or f, .1 (ux + 0.
Thix, however, contradicts what we have proved in §6 (¢). Similarly for
B:2 (c). We have therefore finally that the variations of §¢ (a) are
admissible variations for every 0 < |€| < ¢.

(e). It follows in the usual way ® that £;” from 7 to " satisfies
the equation, ’

w %

% u = const.
Since u’ = 0 on (7' +"’), we may solve for ¢ as a function of u, and sub-

stitute obtaining the relation

dv
E[ =Cu,
B 3
whence v=1c"sp1u?+ b1

Since +' and '’ may be selected as near as we please to the end-points,

! See §5 (a).
2 See §6 (b).
3 See Bolza, Variations, p. 22.
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acand a; o, of £;”, it follows from the continuity of L. that this rela-
tion holds up to and including these end points.

(f). It remains to show that there are no corners.' For this pur-
pose we select points, £. (v) and P; ., (*") within the arcs, £/, and
£ ¢ andletu () = a”, u (*'") = a”’. Consider the variation,

T=f (W Fen@u=uy

|
!
!
!
)
1
!

]
]
|
|
]
al a’i."’i al/
(Fig.7)

where : (1) m», (w) is of class C' in (a’ a; , 1), and (a; ,. 1 a”),
(2) 7 (@) =0, n'(a)=0,n"()=0,
np1@)=0,n": y1(@)=0,7%";41(a") =0,
M (@i 4 1) = 0,10 (ai 1) = 0, '’ (@, 1) =0,
w1 (@ 1) = 0, s p1 (a,41) = 0, ) 41
(@ +1) =05
B) 7@ =0forj =1t, i+ 1,7 (u) =0, for w in
(ata’), and n (w) =0 for uin (a” a; 4 1)*

Since such a variation is mado only at the corners common to two
successive arcs, condition A (4) is not affected thereby. It follows

therefore exactlyas in §6 (b) .. . .. (e) that for |e | < £, this variation
is amissible, whence from the result in the general case.?
C’i +1 = 01/.

There are therefore no corners.

1 See Bolza, Variations, p. 68.

Tri(u) = (u=-a)®(u=-a,,,)%and7 (@)= (u- a’’) (u - a; , 1)° satisfy
these conditions.

3 See Bolza, Variations, p. 38.
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(f) Since £ is continuous, we have
v=2c u 4 ¢
throughout. Since it must pass through (u,, 0), and {1, w), its equation is

v (- 1) = (ub’.j —_—

Since %: > 0," and is finite, u, = 1- Computing I, we get

3 E‘ 5
= \/_2_ (1 — Uyt ) ]
This is evidently a maximum when u, = 07; in this case
o= /5 @

The maximising curve, if any exist, is therefore given by :
Cotv = wutl.

§ 7. Slope Properties of Curves, £''.

(a) Inorder to prove that the curve, ¢, obtained at the conclusion
of the preceding paragraph, actually furnishes a maximum, we shall
need certain results with reference tothe slope properties of the ares, £,
These are connected with certain “‘outside, inside and outside,” properties
of the original solid, and are most easily deduced by returning to the
original set of curves, £, (see § 2 (¢) ). We represent these in an (r, 0)
plane by means of the transformation,

A
r='\/¢p’+¢",0=cot-1—;£,0§6,<_—2-,...... ............ 1)

0 rand 0 6 being a pair of rectangnlar axes. Since ) > 0, (see IV : b)?
for any 7, 7, <7 <7, # is uniquely determinate for any such . As

r=T1 j/%. approaches a determinate limit, (see ITL:a)*, positive if -2
173 t/r+o

be finite, and 0 if infinite. As ™ =r,since @ (7,) > 0, and ¢ (7)) = 0,

—‘E—appro&ches infinity (IIL:b), and therefore # == 0, For the point,

18ee§5:b(A:3).
2 These references are to the tabulated results, § (c.)

Sec. II1., 1907. 5.
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7, and for r, when it is not already determinate we define 6 (-,) and

6 (7,) as the limits thus approached. Then the arc (r, ¢), joining
P {r =@() 0= 0},andQ {r =0,0=0(7) },is continuous (see

II1:a). If 0 (r,) > 0, the curve made up of thisarc from P to @, the
axis, 7 = J, from @ to 0, and the axis, § = 0, from 0 to A, (fig 9) is closed.
It is also simple. For since ¢p > 0, (IV :b) for -, < 7 < 7, and
6= coﬁ:/’;0<0<_wehave0()>0fo”°< CThr e veeeens @)

Hence P @ cannot meet the axis, O P, (§ = 0),for any , 7, < r < 7.
By hypothesis at @ (7,), ¢ (7o) > 0. Hence P @ meets O P at P (7))

only. Again by equations (1) since s (1) > 0 for o, <= <7 (IV : D),
while ¢ (r,) > 0, we haver () > 0 for r, < 7 <. Hence that are,

T

PR

(Fig 9) (Fig.10)

P @, meets the axis, 0 Q, r = 0, at @ only. Further, the arc, P @, can
have no double points on its interior. For if there were such a point,
%= 7, 7, we have from (1),

2 ( 2(r) = 2 (r 2 d‘P(z) ’/(Ta)

# ) () = 9 6+ ¥ (,and T8 - LLD
whence @ () = @ (), and ¢ (7)) = % (r,), contrary to (L:b).
Similarly if 6 (r,) = 0, we may show that the arc, PQ, and the axis,
0 = 0 from Q to P form a simple closed curve.

(¢). Since i < 0 on the interior of £ (IV: b), we have

§'= po —o@i’
¢2
Hence 6'= 0 on the segments, «; Ai, and vanishes at only a finite num-
ber of other points, (II: a, b). On the former, § = const. Entirely after
the manner of § 5, we may exhibit the remaining arcs as a finite number of
continuous arcs of the type 7 = f (6). It follows thatif any ordinate pe
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drawn not meeting an arc, § = const., of this curve, then the points of
intersections of the ordinate with the curve are finite in number, and if these
intersection be arranged according to increasing values of r, 0 is alternately
a decreasing and tncreasing function of . Further for all values of 6, fis
a decreasing function of  for the intersection for which r is the greatest.

(d). To see the truth of the last statement, we observe that P (7,) can-
not be the end-point of a segmentlon which # = 0. For if it were, since
# (r)) = 0, wo should have ¢ =0 on this segment, contrary to (2).
Hence P is an end-point of an arc of type, r = f, (f). Letr = 7, be the
other end-point. Since # (r;) = 0, we have from (2)

0 <m0 >0G)

Hence 6 () is adecreasing function of 7on 7 = f, (). In thesame
way, if ¢ [7,) = 0, (fig. 10), we may show that @ is an end-point of an
arc on wbich r = f, (#); let 7' be the other end-point. If 6 (7)) % 0,
the distances, # (7), of the arc, P @, for 7, < = <7/ from 0 r have a
minimum.! Since P @ meets 0 7 only at P, (- > 7)), in the first case
and ouly at P and @ in the second, (* > , 7 <{ 7 "), these minima are
positive, = 2 m say. Then if 0 <& <m, the line, 2 = ¢, tor y > f, (&),
(drawn from R in figs. 9, 10), meets our curve at { & f, (o) }, and at

this point only. For since 6 = f1 (&) > 0, (see eqn. 2), it does not meet
0ror0fd. Since ¢ <m, it does not meet any arc of P @ other than
r =f, (#), and possibly r = f, (#) if 6 (7)) = 0. It can meet r = f, (6)
at but one point, viz., B. If it meet r = f, (¢), we should have f, (f) —
f,(0) >0for 8 =¢ Nowf, () —f, () <0 for § = 0. Hence since
S, (6) and f, (#) are continuous, (see (¢)) f, (¢) — f, (f) =0 for some 6,
0 < 6 < ¢, This contradicts what we have proved in (b), viz., that the
arc, P @, is simple. Hence the given half-line, ¢ = & r > f, (&), does not
meet our curve. Hence for 0 << & < m, the greatest value of r for the
intersections of ¢ = eison r = f, (¢). We have shown that on this are,
6 is a decreasing function of r. We shall prove that the sense of 6
for the greatest r iy independent of §°.  Hence @ is always a decreasing
function of for the intersection for which 7 is that the greatest.

() In § 3 (a), we have transformed the curves, £, into the curves,
£, and have the relations,

U (F) =080, P(r) =72% covviiverirnnnennecnnnennnnnn(3)

(see § 3 (a), and § 3 (e), eqn. 20), where P () is the slope of the new
curve. The arcs, 8 = const., (i.e., yx' — x y’' =0), become stationary

! Dini Funktionen, s. 68.
2 Dini, l.c., 8 70.
3 These 1esults of Analysis Situs are proved in the third chapter.
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points on L (see § 4 (1)). Points of regression, i.e., points at which 4"
and therefore U’ change sign, will correspond in the two curves. An
ordinate, § = const., of the (r, #) plane, by (3), maps into an ordinate,
U = const., in the (U, V) — plane, In § 4, we have merely made a
translatiou of the parameter to eliminate the stationary points, and have
the relations
u(@=U(), p@ =P(®.
Again when 6 is a decreasing function of r, U (7), (= cos #) is an in-
oreasing function of =, and hence'also u (¢) of ¢ (see § 4a), and vice
versa. Hence from (e) it any ordinate, u = const., be drawn, not through
a point of regression or through the homologue of a stationary point,
the points of intersection of the ordinate with the curve are finite in
number, and if these be arranged according to increasing values of the
slope, p, u is alternately an increasing and decreasing function of £. It is
not difficult to prove from the continuity of the slope on each are, £,
that the same holds at the homologues of the stationary points which are
not also points of regression. We have finally therefore, if any ordinate,
u = v, be drawn, not through a point o* regression, the points of intersection
of the ordinate with the curve are finite in number; and if these be
arranged according to increasing values of the slope, p, u is alternately an
increasing and decreasing function of t; and for all values of w, u is an
increasing function of t for the intersection with the greatest slope, p.
(f). Suppose now that we have drawn the ordinates, u = u, and

= 1, and also through the points of regression of £”. The nurmber of
such points of regression <r - 1, (see § 5a); and is thorefore finite.
Let v = », and w = v, be any two adjacent ordinates among these,
v, < vy and let u = v, v, <v < v, be any ordinate not meeting a dis-
continuity of p. Then by (II" : ¢, p. 13), the value of p at the
intersection of u = v, and £’ are all unecqual. We name the arcs of £”
between v, and v, 1,2,3 . . . . in such a way that

Py > P2 > Py S Py S P S e e e D e crneen(4)

Then this naming is independent of v for v, << v < vs. For suppose,

if possible, that for any other ordinate, ¥ = v', v, < v’ < v, not meeting

a discontinuity of p, the order of magnitude of p,, p,, ps. . . . . is
different from that given by (4). We have then for some z and j.

po (V) >p; (), and p, (v') < pj (V) weeeee ceeienees %)

We suppose that v <v”. Since by hypothesis, p; and p; are continuous

in the vicinity of v and v"’, we have :

p; (w) — pj (w) > 0 for u > v in some vicinity of v
pi W) —p; () < 0 for v < v’ in some vicinity of ¥ }(6)

Consider the set of pointson (v ©’") such that there is no point, u, between
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them and v for which p; (v) - p; (v) <0. From (5), these have v'' for
an upper bound, and hence have an upper limit, v"”.! By (5),
v <v"” <v"”. Since " is alimit-point for a set, [u], for which ; p (v)
= pj (u) <0,we have, remembering that p (u) is class D,

P (0" = 0) =5 (" = 0) > 0.
From (II”: ¢, p.13), p, (v»=0)=p (v" — V). Hence
P =0 = pi (@ =0) <O ovrrerriens (1
On the other hand, if p; (v" 4 0) — p; (v"+ 0) 0, since p; and p; are
of class C in some vicinity of v” for u > v, p, (¥) — p; (v) < 0 in some

vicinity of v for u > v”. Hence v” is not an upper limit for the set for
which p; () — p; (v) <0. Byllr:c,p, (v" 4 0) ==p] (v” 4+ 0). Hence

p; (0" +40) - pj @ +0>0. vernernees ceene(8)
Now the intervals, {Pi @+0 . ... .p (" 4+ 0) }, and
{pj @W+0 .. ... Q- 0)} cannot have any point in

common. For if they did, either p, (v 4 0), or p; (v" - 0) must lic on
{pj @ +0 ....0p " -0 }, contrary to (11" : ¢).

p. +0) p (-0 p @ +0) pj (v = 0)

Fig. 11.

The inequalities, (7) and (8), are evidently incompatible with this con
dition (see fig. 11). Hence the order of magnitude of p,. p; ps. - . - - is
independent of v when u = v passes through no discontinuity of p.

(g). From this it follows that at any point, &, of discontinuity of
p; or p; theslopes, p, py py - - - . 8re in the same onder of inequality,

where by p; (k) either of the values, p, (k -+ 0) or p; (k - 0), is meant,
and similarly for p; (k). To see this, we select any v’ and v”, v’ < k <v"
such p; (u) and p; (u) are continuous on (', k) and (k, v"). Then, a8 in
(b), we derive p; (k — 0) > p; (k — 0).and p; (k4 0) <p; (k+0). 9
Since the intervals, p; (k= 0) . . . p; (k + 0) and p; (k- 0) ..p
(k + 0), can haveno point in common, it follows from (9) that p; (k-0)
and p; (K - 0) are both greater than p; (k - 0) and p; (k + 0). Hence
the inequalities, (4), hold for every v, v, < v < v, Further, since p (w)
is continuous on each £” (see §5), at the points v,. v, We bave

Pr > Py 2 Ps 2 Py ceeeererressessristonsinenns .. (10)

! Dini, l.c,, 8. 57.
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§ 8. Reduction to an Integral on a Path without Points of Regression.

(a). Construction.

aw)

(F gl 2)

We now proceed to show that the value of 7 taken along ©,, (see §6)
exceeds that along any other path of the set, £”. For this purpose con-
sider any particular curve, £. "If it have a point of regression we proceed
to construct an associated curve, C, without such points, which gives I” a
greater value. We then show that I” along €, exceeds [” I along C or
along any curve, £, without points of regression. Since u (t) is con-
tinuous (I”: b),* there must be a point, ¢, on at which u (t) reaches a
minimum value, u_, say. Ifu, < u,, we adjoin to £ tho line, U_j %, ON
0 u. The resulting curve we name £%, and the parameter of the end-point
we still call ¢,. Since on u_ u, v’ = 0 if u_, < u,, it follows from §6 that

the integral, I”, taken along £* is equal to I” along £, although if u_, < u,,

£* does not belong to the set, £”.

As in §5 (a) we divide £¥ into arcs on which » = f, (). The num-
ber of arcs and points of regression on L* can be made to exc:ed the
number on £” by not more than one. Wedraw ordinates, ¥ = u_, ,u= 1,
and through each point of regression of £* after the manner of the
preceding paragraph, and propose to consider the contributions to I” of
the arcs between two successive ordinates, v, and v,

(b). Intersections of an Ordinate with £¥*.

Consider any ordinate, v = v, where v, < v < v;. Since v’ (t) =0,
within £; and we can certainly choose a parimeter, ¢, on u_, u, s0 that
w (t) > 0 on u_, u, u is either an increasing function of ¢, or a decreasing
function of ¢ in some vicinity of (7 7), ™ < r; and likewise in some

1 See p. 14.



[wiLsoN] CERTAIN TYPE OF ISOPERIMETRIC PROBLEM 71

vicinity (v ), 7" > . If T is not a point of regression or an end-point,
u (t) is an increasing (decreasing) function of ¢ at 7; i.e., it is increasing
(decreasing) in some vicinity (77 ™), ™ < 7 < 7. Since v, < v < v,
u = v does not meet a point of regression on £* or an end-point. Hence
u (t) is an increasing (decreasing) function at each intersection of u = v
and £*. The number of these is finite. If 7 be the least among their
paramrters, thenw (t) is an increasing functionof t at 7. Foru, <v,<v;
it follows that v = u (7) > w_, = u (¢,). If u (t) were a decreasing
function at 7, there would exist a t’, ' < 7, such that the diffevence,
u (7) — u (t), positive at t,, and negative at ¢/, must vanish for some 7,
t, < ™ < t’. This contradicts the hypothesis that = is the least among
the values of ¢ for which u (f) = v. In thc same way we have that at
the intersection with the greatest parameter, since v < v, <1, u (f) is
an increasing function of ¢; a d that, arranged in order of their para-
meters, at the intersections u (¢) is alternately increasing and decreas-
ing. Hencethe total number of intersections of £L* with u = v must be odd.

(c). Slopes on L£L*.

We have seen, (§7 f, ¢), that if we number the arcs between v, and
v, 1,2,3 . . . . . according to magnitudes of the slopes at the inter

sections of £ and u = v, the numbering is independent of ». The same
is true of £¥, For since £ and £* coincide except for the straight
line u_, u,, this will certainly be true for any interval (v,v,) that does
not contain points of (u_; u,) on its interior. If it does contain such, the

order of the slopes on the arcs of £* other than (u, u,) will be fixed.
Since p*= 0 on u_, u, and p > 0 within (ul vy), (IV”: b, p. 15), the slope
will be less on u_, u, than on any other arc¢, and the order is still fixed.
We have then. between v, and v,.

PL>DPa>Ps o o v o D Paggq S eeeecessecens ceerennens(1)

At the points, v, and v,, some of the signs of inequality may be replaced
by signs of equality if we understand by p, (v,) the value of p, (v, + 0)
and by p, (v,), the value, p, (v — 0).

(d). Construction of C.

We now construct a curve, C, whose slope, p, is given by

LR T e e T ORISR ¢.)

on (v1 v,), which shall be continuous, -and pass through (4, 0); te,

“~
C (0, u), where: v = /p . da.
u-1
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Then C also passes through (1, w). For

s =% . du= x5 du

u-1 vV vy

V2
Ef(p,—m—{—-. A I TS 3)

nv2 Yy

Now we have seen that » is an increasing function of ¢ on the arc, 1,
(see §7, (e) and equaticn, 1), and that it is alternately decreasing and in-
creasing on theares, 1,2,3 . . . . (2n 4 1). Hence u is a decreasing
function of t on the arcs,2,4,6 . . . . 2n, between v, and v,, Now
hy (II1” : a, I1” : ¢),

t t
v (1) =~/'l v . dt =fl]7 R V7R | OO (4)
to to

We consider the contributions of the arcs of L* from v, to v, to this
integral. On the ares, 1,3,5 . . . . . 2n- 1), since u (¢) is apn in-
creaging function of ¢, if we denote by r, ™, r  +’, the parameters of the
end-points, then u () = v,, and u (7') = »,, whence

1 vy
/ Pans1 W . Ot =/ Pong1 + BU eeveveenn viies eeee ®)
T n

expressing as a function of wu. On an are, 2,4, 6 . . . . 2n from
r to ™, r < r, since u (t) is a decreasing function of ¢, u (*) = v, and
% (") = v,, Hence

v

T v V2
/p,,.u'.a’t: p,r.du=~fp2,.du ....................... €)
T v

Rearranging and combining the arcs between v, and v, we have:

v (1) = = fw(pl—p,-i-p,— C e e e = Pyayn) - Ou NG

V1V Y

From (3), (4), (5), and 1II" : a), we have:

b)) =0 (1) = @ crererens e ver(8)
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(e). Lemma.

To prove that I” taken along C exceeds I” along £*, we observe that
if we have any four not-negative quantities, a, b, ¢, d, ¢ > a > b, and such
thata — b =c - d, thata® — b® <p® — @% if 0 < a < 1. Forconsider
the integrals

0 b x a d y ¢
| ,

—

1 ® a-1

1 ¢ a1
e/ x . dx,and e / y . dy. They are integraied over equal in-
b d -
tervals. At « in (ab) and yin (cd) such that » — b = y — d, we have
0 — =2 "y Hencesince a < 1, a%1 < ya-1, Integrating,
as — ba < ca — db,
(f). Proof that I” along C exceeds I" along £¥*.

To show that the integral, I7, along C exceeds I” along £* we have

I* .—_‘/.hv'% CwB L w L dt
t

:/’p% cwooouw.dt, (II7:e).
. N to
Rearranging as for equation (7) in (d),
v, b
=f”2/’(plx—p2/5-?-p3%—..... By u . du...(9)
v

- vy
whereas T = 3 [T5h Uy, (10)

" V3 g

From (9) and (10), to show that I~ I*, since the ordinates, ¥ = v, Vg
are finite in number, it is sufficient to show that between v, and v,,

i)% >p]x "Pz% + L R —P2%2"+1) -------------- s (11)

(h). We introduce the intermediate quantities, by
T~ Pong1 = Pon-1 = Don,

”2 - ”1 = p2n~3 - p2n~27
Ty — My = Pan-s = Pan,

whence P = Twa =D~ Py by (3).
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The quantities, py, 1, 23, - - - » . p, are in’ascending order of
magnitude between v, and v,. Hence from (12)

Do p > 7[1 > p2n+1’
It follows that 71 < p,, ., and therefore,
Dang > T, > m

and so on. Putting @ = } in (¢), we have therefore

“Bo_ % % X
i Poy1 > pziq = Pous

\A Y b Y
m2® = ”1/3 > p2n—~3 - pﬁ—& 13
."}é _ % % _ y} ----------------------- ( )
p Ty-1 2> Py P,

Adding and transposing p,, . ;, we have,

PESpA=—pN A p - =B

Hence by (11), I < I*.

(i). Properties of C.
Since p,, p; . . . . . are in descending order of magnitude ex-

cept at the (finite number of) points v,, v, (see (6), where some of them
become equal, we huve from (3) that p >  except at a finite number of
points, v, v, Sincep, p, . . . . areof Class I/, (Il": ¢, p. 14), p is
of class D. Hence the set of reduced curves is inciuded in the totality of

curves, C, with the following properties:
C: v =f (W,

where (1) f (u) is of class D’ for uy < u < 1;
@ v (ur) =0,v () = @
(3) f* (u) > 0, except at a finite number of points.

This also includes those members of the totality, £, for which w’ (t) == 0;
i.e, which have no points of regression, (see 17 ——V’, p. 14). Then
if @ furnishes a maximum for the set, C, it certainly furnishes one for

the totality, £.



[wILsoN] CERTAIN TYPE OF ISOPERIMETRIC PROBLEM 78

§9. Sugficiency Proof by Taylor's Theorem.

v el 5
-E (1w) f.. v=w. u,/2
! ¢c: v=§fwW
i fo/ Y
0 u- (Fig.13) u

In the present case, we can prove that € furnishes a maximum for
the totality, £%, by the remainder formula in Taylor’s Theorem. As in
§17, if u; < 0, we adjoin to C the line, 0 u-1, and denote the resulting

curve by C*. Since —- dv = 01in 0 ., if ua > 0, it follows from the defini-

=
tion, (see p. ) that I” along C'is equal to I” along C*. Now
AT = ;- U ON @)
=L, - 1o

We write © = z 4 #. Then # is of class D’ in u, (see §8,i:1). We
denote by 7’ the derivative of » with respect to u, Expressing [” as an

integral, Al =~/'1 {v'% - @ + n’)%} U o AU cerveenninnnnie @
o

Now if uy > 0, o/ = 0 on 0 uq, and ¢ = f (u) > 0 from ua to 1

(88,:i3). Hence i’ > 0. Againv’ = g @, u,# and therefore, v’ > 0 for

u> 0. We surround the origin by a small 6 — interval, 0 < < 1.
Then for § <u<1,v > 0,and & > 0. Hencelf0<0<l

VA O > 0 i e 3)
If now we write: V=(00 + h)%, we have
d‘V 1 4 2 1
&‘ % =3 - — B o §  seesesceeiacens (4)
@ + h) Sh 9 (@ 4+ k)
2
From (4), 3’17 and z—h—}-f exist, and are continuous functions of A
on0 . ... 17 except perhaps for & = #/. It follows! that
1 "
’ A = ,/S - Q ., o ®evesece
(’U +h) v +§U'% 9 (U'+ 017,,)3’0<3<1 ..... . (5)

1Stolz, Diff. u. Integr. - rechnung, s. 97.
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for any u, 6 < u < 1. If now we write

Al _/‘ { o )? } Ue QU eererrrnesnrereeena(6)

then from (2), lim. A Is = AT (7)
d==0
1 4 1 v2
and from (5), A Iy == 17 .u.duy - [ wi.u
) g 3[ % +9[(w+ﬁw%
-_ .1 .
5&7%/n’du+ R )
from the equatién of G.
1
—- —— @+ €, 9)
37

Since lim. A Iy = A Iby (7), and lim.  (8) = 0, the integral,
d d_.o

/1 77I2 . u d
oW+ 0

exists and we haveo :

- / AU eeeerrees cveeneeen veren (10)

w+ﬂwa
§10. The Weierstrass’ Suﬁczency Proof.!

v

(lw)

Wi (Fg |4)
Since by (3), v’ + 6 %7 > 0 within (0, 1), and u > 0 for , the integral
on the right hand of equation (10) must be positive unless 7 =0 within

(0. ... 1)ie.,since 5 (¢,) = 0, unless 7 = 0, or C coincides with G.
Hence & actually doen furnish a maximum,

1Bolza, Variations, p. 74.
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. av’ . . -
Since —d% > 0 except at a finite number of points, (§8,1:3), v> 0

except at u.1. There is therefore one and but one extremal joining 0 to
& point, 2, on C,2 = w1, viz:

v
V= = e cerrmeernranerienerns cereveee e
& (1)
With the usual notation,' we write,
Ug % 1 _
S(u2)=‘/v' .u.du-{—/v”“.u.du ......... (2)
[4 ug

for uy < u; < 1. Then S (1) = /‘ along &. Again, as u, - u,

o

S (u;) - / " along C. We define S (v,) as this limit. Then S (u,) is
u-1
continuous on (-1 . . . . 1). Again, except for u, = u-,

3 5 1 . . .y
du, ( ) {5 vt “:/’+Tv2% . vy . u;}—v,/’.u,.w)

As u, _— w1, this approaches a definite finite limit, viz, — v . ua,

Hence (—j—]u— exists progressively, and is equal to this limit.> Then
-1

'AI=‘/‘1v’%.u.du-—-/"13'%.u.du,
o

u-1
=8 () S (0),
1 dS
= . du . du,., teeesetsee seeeevecsesencsasnres ...............(4)

R 2N%5H
Now from (3), if v, = 0, a8 _ (—) 2. vX¥ . w¥ when

du,
iii > 0 within €. If ¢/, == 0, consider the values of the right-hand of

(3) as a function of v/,, It has a maximum or minimum when

3
o, = ’i_ s rvrereresneene sereerenes vrereee(B)
2 u,

. as 2 . .. .
the latter since -— = —— —- < o. This minimum value is 0.
du’y 9 1,

! Bolza, Variations, p. 87.
2 Dini, l.c., §68.
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Hence for ¢/ other than that given by putting the right side of
d -
3) =0, (ﬁg > 0. Now the slope, v, given by this is exactly
2 .

the slope of the extremal through 2 by (1). Hence C &t all
interior points has a tangent in common with the extremal through.that

point gg is positive, and therefore from (4) A 1> 0. Since
2
a5 4
du  \/T 4
has only one solution passing through (1, ), viz. f,, we have that
A [>0. Hence again € actually furnishes a minrimum,

§ 11.  Conclusion.
The extremal, G, v = ® u’?, therefore furnishes a maximum. Trans-
lating into the («, y)—plane, we have
v .
du
where r and 6 are the polar o co-ordinates. The extremal therefore has

=73 u = cos 0,

for polar equation, r = BJ 5_9(‘.’ . cos 0,

or in Cartesians, x? 4 oyt =? ?_éc_“.’ L

It is to be noted furthermore that these sufficiency proofs establish the
fact that not only does f, furnish a maximum for curves in some vicinity?
of f,, but for all curves of the set; £”, into which the admissible curves

3 YY)

in the (z, y)—plane transform. Hence 2* + 3 = 5 furnishes

a maximum for the totality of curves in the (z, y)--plane.
CHAPTER III.
AUXILIARY THEOREMS OF ANALYSIS BITUS.

§1. (a). In § 7 of the preceding chapter, we have used certain
results dependent upon the division® of the plane into two continua by

1 Picard, Traité d’analyse, 11, pp. 314-5.

2 See Bolza, l.c., ¢ 19.

3 See Jordan, Cours d’analyse, 2nd edn., vol. 1,:96-103 ; Schonfliess Gott.
Nachr. Math. Phys., Kl 1896, p. 79; Veblen, Trans. Amer. Math. Soc., vol. 6,
No. 1, Jan., 1905, p. 83 ; Bliss, Bull. Amer. Math. Soc., ser. 2, vol. 10, p. 398, and
vol. 12, p. 336 ; Osgood, Funktionentheorie, p. 130 ; Ames, Thesis, 1905,
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a particular class of simple closed curve. Using Cartesian co-ordinates,
our simple closed curve, C, given in the form,

x=@(),y=19(®,

can be divided into a finite number of arcs.

(a) of typey =/ (), f denoting a continuous function, and

(b) straight lines parallel to 0 y.

The method used by Bliss in his tirst article (see below) for proving
the section of the plane into two continua by a simple closed s curve
consisting of a finite number of arcs of type (a) may be readily extended
to the present case. Through the end of each arc of type (a), (the arc,
0, of fig. 15), we draw half-lines parallel to 0 . These with (| divide
the plane into two regions. As in the article referred to, we construct a
continuous function, g, (z, y), which vanishes on these lines and these

lines only, and takes different signs at points (x, y). in these different
regions. If aline, D, of type, (b), have for equation,

=,
the function, hy(zyy) =x —x

Y al
J\|

0 (Fig.15)

has the same properties with reference to this line. At the intersection
of an arc of type (a) with an arc of type (b) (see fig. 15) at (@), we
construct the function,

k(e y) = (x —a) s/ 2forz — >y — ¥,
(y —y) V2fore —a <y —yy

supposing that the auxiliary halflines already drawn from this corner
are in the positive directions with reference to 0x, 0 y as in the figure;
a similar function may be constructed by appropriate change of sign if
in other directions. This function is continuous, vanishes ouly at the
broken lines of the figure, and takes opposite signs at tho points in the
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two regions into which the aucxiliar lines, @ @ and « b, divide the plane.
The product,

G @y =0 0,@ ) by (&) -k @),

for the whole plane then has the essential property of the G-function in
the article referred to, viz., that in the neighbourhood of the zeros, the
factors change signs in pairs except at points on the curve itself.
Proceeding in a fashion entirely similar to that there given, we may
prove that the totality of points in the plane fall into three classes : '

(1) points, (x, y), such that G (x, y) has both signs in every vicinity
of (x y), however small;

(2) points, (x, y), such that G (x, y) takes positive but not negative
values in every vicinity (sufficiently small) of (z, y);

(3) points, (z, y) such that G (x, y) takes negative but not positive
values in every vicinity (sufficiently small) of (x, y).

-~

Aﬂ:f@f—e—--—- :y;f(x)-l-é,,"e K
- C P4

-

- - -

ﬁ\\ -
\\ \
\ \
\
\
)
\

-

i
]
|
/ [}
=== (Fig.ie) &

The points of the first class turn out to be identical with the curve,
C. Using the auxiliary lines,

y=f(x)_ts,andx=xlie,

_and joining them up by arcs of circles of radius, &, we may construct two
auxiliary curves’ consisting of points of classes (2) and (3) respectively
as near as we please to .*> By means of these we may join any two points
of class (2), or any two points of class (3) without meeling C, showing
that there are just two continua.

§ 2 (a). An ordinate can me~t an arc of type, y = f (x), at most once,
Since there are a finite number of such arcs, it follows that any ordinate
not through a straight line parallel to 0 y must meet the curve at a finite
number of points only. Consider any ordinate through a point, 1 (£, ),
(see fig. 17), interior to an arc, C; y =f, (x), end-points (x, y,) and

1 For details, c.f. Bligs, l.c., vol. 10.

2See fig. 16, and for details compare, Bliss, I.c., vol. 10.

3This construction applies equally to any curve consisting of a finite
number of arcs of type, y = f (x), or x =, f (y), including curves of class I/. (See
Ames, 'l hesis, already referred to.)

- -
-
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(2,,4,). Then z = &, meets only a finite number of arcs of type, y =f ().
If there be any such that the ordinate > #,, let ,’ be the least of these;
then 7, > 7, The point-set, (&, y), such that »’' >y > 5 for any &
within (x,, x,). we call the points immediately above C, Similarly we

detine the points immediately below C, by
7' <y < for any £ within (z,, x,),

where (7,”, £,) is the intersection of z = £, of greatest ordinate less than
n,. If there are no mtensectlons, (&, y) such that y > n, (or y < ;;l), we
take 7, = 0 (or 7/ = — o).

(b). The pointsimmediately above C, are all of the same class. For let
P (&, y,) and Q (&, ¥,) be any two points immediately above C,. Then,
from the definition, if (&,, #,) and (&,, 7,) be the points at which x = &,

' .
) (31,)

@)

| !
(Fig17)
and x = §, meet C,, these points are interior to (,, Let m be the least
distance between C, from P to @ (inclusive) and the remainder of the
curve, C, excluded. Then m> 0." Selert any positive &, & <m, y, — 7,
Yz — 7 and construct the curve, y = f, (x) 4 J, between a where x = &,
and b where x = §v Since ¢ < m, this caunot meet the curve C. Then
Pab Q forms a continuous curve not meeting C and joining 2 and Q.
These, therefore, belong to the same class. Similarly points immediately
below C are all of the same class. Since there must be points of both
classes in every vicinity of points on C, (see § 1), the points immediately
above C, and immediately below C are of different classes, 2 and 3.

(c). We say that an arc, C,, of type y = f (x) is of species 2 or 8
according as the points immediately above it are of class 2 or 3. Returning

! Dini, Grundlagen, etc., 8. 68.
Sec. 1II., 1907. 6.
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to the representation of the curve, C, as a function of ¢ we wish to show
that the senses of two arcs are the same or different according as the species
are the same or different. To see this it will only be nccessary to show
that as we go from one arc, C,, of type, y = f, (), to the succeeding one,
Uy y = f, (¥) neither sense nor species changes, or both. If x is an
increasing function of ¢ on C, and C,, ¢, and C, cannot have a common
end-point ; for if they did, C, and C, together would form a single arc of
type, y = f (x). Hence C, and C; must be joined by a straight line
parallel to 0 y; from 4 (x,y)) say to B (x,, ¥,') (fig. 18). Select any
points, R (&, 77), and S (§' n') on C, and C, respectively such that

[f@ = h @ | < Egliors>e>g,

< -E/L;_y‘forxl<x<£*

| @~ 1 @

Let m be any positive quantity less than the least distance of RABS

from the curve C with C,, AB, C, deleted. Let & be some positive
quantity, e < m, 2, — § & — x,. Then the line # = x, — & between

{ml — & f; (x, — 6)} and Yi_t+ ¥ does not meet C except at

2

{ml - & f (2, - e)}. Similarly the line, z = =, + ¢ between

B S S Q

K o p

(F18.19)

(Fig.lg)

x, + & H (= + e)}and ?ﬁ_"zt_@ does not meet C except at

{-”1‘*‘5: f, (e + 8)}. Since
< —e<a,and oy, <, 4 e < &

the straight line joining M, (a1 - ¢, y._j;_z/Q and M, (x, + ¢ ﬂ.i";_yl)

does not meet C, or C, and since & < m, it does not meet any arc of C' other
than AB. The middle point of M, M, being on AB, must have points of
classes 2 and 3 in every vicinity, however small. It follows easily that

* Dini, l.c, s 65.
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M, and M, must bé of different classes. Hence by the results at the end
of (b) the points immediately above C, and the points immediateljy above
C, are of the same class. Hence by the definition neither the class nor
the species changes, as we go from C, to C,. Similarly if x is a decreasing
function of ¢ on C| and C,.

(d) If the senses on () and (; are different, let us suppose in the first
place that x is increasing on C, and decrcasing on C, As in (c¢) select
an R and S, interior to C| and C, and a positive m less than the least of
the distance from RABS, (see fig. 19) : A and B coincideif C, and C,are
contiguous arcs. Then let & be any positive quantity

em e — § e E <

Then the line, x = #, — & meets 1 at P {ml - & fi(x, = &) } , and C,

at @ {a:l —& f, (7, — 9 f and since & < m, it does not meet the curve

otherwise. Points (2, — &, y), within PQ give f, (x, — &) — y, f, (x, — &)
— y, different signs, and hence are above one and below the other of
C,and (. These are of the same class. Hence the points immediately
above C) and the points immediately above C, are of different classes.
Similarly if x is a decreasing function of ¢ on C, and increasing on C,.
Hence when the sense of description with reference to 0 2 changes, the
species changes. We have thus the result of (b).

(e) Draw any line, x = &, meeting C but none of the straight lines
parallel to 0 y. Since the curveis simple, the intersections of x = & with
the arcs of type y = f (x) cannot coincide. Let them be arranged
according to the increasing magnitude of their ordinates. Let R and S
on O, and C, be two successive intersections for this arrangement.
Since R and S are successive intersections, RS can meet no arc of C onits
interior. Hence points within RS are of the same class by the results of
§ 1. Asin (c), we may show that O, and C, are of different species.
It follows from (c) that the senses of description of C, and C, are
different. Further, since % (t)! is continuous, we can obtain a b such

that b > l ¢ (t) | on C.* If then 7 be the greatest of the ordinates among
the intersections of x = & with C, the ordinate, z = &, does not meet ('
for y <. Since b > l b (t), I this half-ordinate meets y = b. Similarly

for any other value of xz, x = &'. Since y = b does not meet C, points
above the arcs C,, (', on which (#, &) and (7', &') lie, which are joined
by y = b not meeting C are of the same class. Hence from the definition

1 See p. 26.
2 Osgood Funktionen theorie, s. 13.
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C, and C, are of the same species, and by the senses of description are
the same. Hence:
Theorem :— ,

If any simple closed curve, x = @ (1), y = 1 (t), can be divided into a
finite number of arcs, of type y = f(x) [ (x) being continuous, and of lines
parallel to 0 y, and if intersections of x = & not meeting an end p'int of
an arcy = f (x) but meeting C be arranged according to the magmitude of
their ordinates, the senses of description of the arcs at these points of inter-
section are alternately positive and negative, and the sense at the inter-
section o7 greatest ordinate is independent of &.

This is the result that we have made use of in the second chapter.
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