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I. Introduction.

If we have a system consisting of two arbitrary finite spherical bodies
revolving in circles about their common center of gravity, Lagrange®* has shown
that there are three points on the straight line passing through the centers of
the finite bodies such that if an infinitesimal body be placed at one of them and
be projected so as to be instantaneously fixed relatively to the revolving
system it will always remain fixed relatively to the system. These three
equilibrium points, as they are called, are separated by the finite bodies, whose
masses are denoted by u and 1—u, (0<u<3). The point beyond the mass u
is called (a), that between the finite bodies is called (b), and that beyond the
mass 1—u is called (c).

In the present paper, it is shown that in the neighborhood of each of the
equilibrium points (a), (b), (c) there exists a class of orbits, in which the
infinitesimal body approaches the equilibrium points as ¢ becomes infinite.
Such orbits are called asymptotié orbits.t

* Lagrange, “ Collected Works,” Vol. VI, pp. 220-324; Tisserand, *“ Mécanique Céleste,” Vol. I, Chapter
VIII Moulton, “Introduction to Celestial Mechanics” (New Edition), Chapter VIIL,
+Poincare, “Les Méthodes Nouvelles de la Mécanique Céleste.”
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222 Waggen: A Class of Asymptotic Orbits in the Problem of Three Bodies.

In § II the equations of motion of the infinitesimal body are given with
reference to the system of rotating axes, passing through the center of gravity
of the finite masses, the z-axis coinciding with the line joining their centers.

In § III there is a detailed explanation of what is meant by asymptotic
solutions of systems of differential equations, and asymptotic orbits of a
moving body; and it is shown that in the three-body problem under considera-
tion the only existing orbits which are asymptotic to any of the equilibrium
points (a), (b), or (c) lie wholly in the plane of revolution of the finite masses.

In § IV the equations of the asymptotic orbits are develdped as power
series in exponential functions of the time, and in the following article it is
shown that these power series expansions are convergent for ¢ sufficiently
large.

In § VI an alternative method is given for building up the equations of
these orbits. '

In § VII there is a discussion of some of the principal properties of these
asymptotic orbits, their position relative to the rotating axes, and the change
in their direction of approach to the equilibrium points as u varies from zero
to 3. . '

In § VIII it is shown how the orbits can be continued by the method of
mechanical quadratures beyond the range of convergence of the solutions of
the differential equations. A special case u=0.02 is discussed in detail, and
one of the corresponding asymptotic orbits for point (a) is continued by this
process.

II. The Differential Equations of Motion of the Infinitesimal Body.

In the following discussion we consider a system consisting of two finite
bodies revolving in circles about their common center of mass, and of an in-
finitesimal body subject to their attraetions. Let the constant distance between
the finite bodies be unity. Denote the masses of the finite bodies by ux and
1—u, where 0 <u <4}, so that the sum of the masses shall be unity. Choose
the unit of time so that the gravitational constant k* shall be unity. With the
units so chosen the time of revolution of the finite bodies will be unity.

Take the origin of coordinates at the center of mass of the finite bodies,
and refer the motion of the bodies to a system of axes rotating in the plane of
motion of the finite body, in such a way that the £-axis always passes through
the centers of the finite bodies. If £, , { denote the coordinates of the in-
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finitesimal body, then the differential equations of motion for the infinitesimal
body are:* '

2 w
%}%__ {%‘“E (1—u) (E— El) (Er;a)

La R 4 —n—(l—u)%—#%s ta
2

% = _(1"‘!‘)‘;;5”'!‘%’ )

where (£,, 0, 0), (£;, 0, 0) are the coordinates of the bodies 1—u and u respec-
tively; #,=V (E—£,)*+n*+{* and r,=V (E—§) +7*+ .

Let (&, 0, 0) denote the coordinates of one of the equilibrium points on
the £-axis. If, then, by the transformation £=§,+2, n=y, {=¢2, we move the
origin to one of these points, the equations of motion take the formt

" —2y' = (1+24)2+ g-B[——2w’+y2+z’J +2C[2w‘—-3zy’——3é:z’] e .,1
y"+2a¢'=(1—A4)y+3Bxy+ gc’y[—fia}’-{—y’—{-z’] +....,
2" =——Az+3sz+ng[—4w’+y’+z’]+;. .
where L(2)
I u el SRS
[(G+p)*1! * [(Fo—14u)*)t — ™ 7 r

1—
B=+ (o){l-i;'ff

1—pu | . ‘
C: —-—_"{0)‘ +;';(%Ti" J

where in the expression for B the upper, middle, or lower signs are to be taken
according as the orbits in the vicinity of the point (a), (b), or (c) are being
treated.

In what follows we shall have to deal chiefly with the first two equations
of (2), and it will be more convenient to have them in a normal form.

The linear terms of the first two equations of (2) are

2" —2y' — (1+24)z=0, } @
¥ +22—(1— A)y=0.

* Monlton, “Introduction to Celestial Mechanics” (New Edition), § 152.
+ Moulton,  Periodic Orbits,” pp. 156, 168.
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The general solution of these equations is
z:Kle"V:“+K2e’““/:" +Kse"+K,e"",
y=nV—1[K,e?V " —K,e=V"] +-m[K.e*— K e "].

Where 6V —1, —aV—1, p, —p are the roots of the bi-quadratic equation

M4 (2—A)A 4+ (1+424) (1—4) =0.
If then we make the transformation
T =uy+us+us+ Uy,
a;’::a\/——_l(ul——u,) +p(us—u,),
Yy =nV—1 (uy—us) +m (us—u,),
Y =—n0 (U +us) +mp (ug+u,), J
the first two equations of (3) assume the normal form,*:

3
simoV Tt e [GB (2 )
p +2C (202 — 32y —3aet) + . . . ]

{3Bmy+-32-0y(—4a:’+y’+z2) +... } , -

1
- 2(mp+na)

N 3\ / m (43 - 1 {(‘}
he=—0 _—lu’—2(ma-—np) \/:i-[ ] 2(mp+mneo) | J’
W= u . [u]+ __1_______ {u}

= P S (mo—np) 3 (mp+na) L)’

' n “ 1 “«
=Pt 3 Cna—np) [ ]*W{ }
Equatlon (7) may be put in the form
W= oV—1u,+HP+HP+HP+....,
Up=—0V—1 u,+H§”+H§"+H§"+ e
= pus+HP+HP+ g+ ..
uy=—pu,+HP+HP+HP+ ..

Y

Y

(4)

(5)

(6)

(7)

(8)

where H{” denotes all the terms on the right-hand mde of the k-th equatlon

which are of degree r in , y, 2, and therefore of degree r in u,, us, s, U,.

III. Asymptotic Orbits Defined and Proof that They all Lie in the zy-Plane.

It has been shown by Péincarét+ and Picard} that certain systems of

da

differential equations of the form —— T

=X, (z,t) (1=1, ...., n) admit of solu-

* Moulton, “ Periodic Orbits,” pp. 161-162.
+ Poincaré, «Les Méthodes Nouvelles de la Mécanique Céleste,” Vol. I, Chap. VIII.
 Picard, * Traité D’Analyse,” Vol. III, Chap. VIII, § V.
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tions as power series in 4, (i=1,....,n), where the A, are arbitrary con-
stants, and where the fixed constants A;, which are the roots of the characteristic
equation, are called the “characteristic exponents.” It has been shown
further * that if there are k of the A, (¢=1, ...., n) which are represented by
V( points on the complex plane all of which lie on the same side of a straight
line passing through the origin, and which are such that none of the relations

zp,x,—-x‘_o (i=1, ...., n) holds for any positive integral values of the p;,

such that 2 p,> 2, then the solutions as power series in A4.eM* (c—l o k)

will be convergent for | 4.™| sufficiently small. In particular, if we put equal
to zero the 4, corresponding to those A, whose real parts are zero or positive,
the solutions as power series in the remaining A4.** will be convergent for all
values of ¢ which are sufficiently great; and if the 4, involved in these latter
expansions are taken sufficiently small the convergence will hold for all values
of ¢t from =0 to t=o0

Again, if we build up solutions as power series in those 4,™' where
the real parts of A, are positive, the exponentials e™* approach zero as ¢ ap-
proaches —co. Such expansions will be convergent for ¢ sufficiently large and
negative; and if the 4, are sufficiently small they will be convergent for all
negative values of ¢. Such solutions are said to be “asymptotic” to the selu-
tions obtained by putting all the 4, (i=1, ...., »n) equal to zero, and they are
called “ Asymptotic Solutions of the System of Differential Equations.”

In the problem under consideration we shall show that the dlﬁerentxal
equations of motion of the infinitesimal body have asymptotic solutions such as
have just been described. We shall see also that the infinitesimal body, mov-
ing in an orbit defined by one of these solutions, will approach ‘asymptotically
one of the equilibrium points (@), (b), or (¢) as ¢ becomes infinitely great.

We proceed to show, first of all, that all orbits which are asymptotic to
one of the equilibrium points (a), (b), or (c) lie entirely in the plane of revo-
lution of the finite bodies, that is, in the zy-plane.

If in the equations of motion (2), we make the transformatlon T=2ze,
y=ye¢, 2==2e, we obtain, on dividing through by ¢,

z" —2y' — (L+24) z=:cX, (2%, 4%, &) + & Xp (2%, 9%, 02°) +EX (... )+ .. .,
y"+20 —(1— A)z=eyY, (o) +yYs (2 o8, &) +lyXu( .. )+ - (9)
2"+ Az=e2Z,(2) + 22, (2%, o, &) +&2Z, (... )+ ... ..

* Poincaré, « Les Méthodes Nouvelles de 1a Mécanique Célests,” Vol. I, Chap. VIII, §105.
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Since the right-hand members of (2) converge, so also will the right members
of (9) converge for all ¢ (0<e<1). It follows, therefore, that the equations
(9) have a solution of the form

T = § w,(t)s’,
§=0
y=1§oy;(t)e’, L (10)
2= S z(t)¢
v §=0 )
In order that 2 may be zero for all ¢ sufficiently large, and for all values of e,
it follows that 2,(¢) (=0, . ... ) must each be zero for all ¢ sufficiently large.

On substituting (10) in (9) and equating coefficients of like powers of ¢ on
both sides of the resulting equations, we obtain sets of differential equations
from which the values of z;, y;, 2, (=0, ....o ) can be obtained sequentially.
From the terms independent of &, we have
o — 25— (1+24) 2,=0,
Yo +22,— (1— 4)y,=0, - (11)
2y + Az, =0. )
The general solution of equations (11) is
To= K{")e“/:“ + K§°) e—oV-it +KPe”+ Kso) e,
y,,=n\/:_f[K{“’e"":“—KQ’e—"’:“] +m [K§°)e"‘—K§°)e"‘] , - (12)
2o =c® cos VA t+c{ sin VA ¢. ‘ )
In order that 2,(¢) shall approach zero for ¢ infinite, we see that ¢{”=c{=0,
and, therefore

2(t) =0. (13)
When we equate the terms in the first power of ¢, we get
w{’—2y;’-—-(l+2A)w1=X,(a;§, ytz)’ “'3(2))’
Y +227 — (1— A)y1=9Y3 (%), (14)
2 +  Az=2,2Z,(m).

If we substitute the value 2,=0 in (14) the third equation becomes 2{’+ 42,=0,
which is of the same form as the third equation in (11). .In order that 2 (%)
shall approach zero for ¢ infinite we see, therefore, that 2, (¢) =0. Similarly, we

can show that z,(¢)==0. Suppose we have proved sequentially by this method
that -z,(¢) 550, for j=0,1,....,n. Since the right-hand member of the third

equation of (9) carries 2 as a factor, and since the factor ¢ has been removed
from this equation, it follows that the right member of the differential equation
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which defines z,,, will consist of terms which carry as a factor one or more of
the 2;(¢) (7=0,1,...., n) but will not contain any z,, j>n. Hence, the right
member of this equation is zero, and, therefore, z,“_(t)a?o. We see, therefore,
that 2;(¢) =0 for j=0, 1, ....c0, from which it follows that 2(¢)==0. In order,
therefore, that the infinitesimal body shall come to rest at one of the equilibrium
points (a), (b), (¢) its whole orbit must be in the zy-plane.

IV. Formal Construction of the Solutions.

We proceed to show that equations (7) admit of solutions deﬁnmg asymp-
totic orbits in the zy-plane. These will be found as power series in e~*, and
e*?”, the former convergent for ¢ sufficiently large and positive, the latter for ¢
sufficiently large and negative. A

(A) Solutions as Power Series in e,

If, in equations (8),we make a transformation on the independent variable
by putting w=e~"* these equations take the form

aul

—poas = oV—1u,+HP+H®+ ... ., W
—Pw—gi:f =—06V—1u,+HP+HP+....,
g L (15)
—pm—a—‘—‘:—’- = pus +HP+HP+. ...,
Ju, ' ® ®
—pmja‘j =—Pu4 +H4 +H4 + .o

It is required to find solutions of (15) as power series in o, convergent for o
sufficiently small.

By Maclaurin’s expansion

= u, o 'a’u‘ i=1,....,4
(@)= “‘(O)J""(ao)w-o*‘“z‘z(%?)u-o*‘"" (i=1,....,4). (16)

Since the body is to be at rest at the origin at =0, it follows from (6) that
u,(0)=0, (i=1,....,4). By repeated differentiation of equations (15) with
regard to o, and putting w=0, we can build up the coefficients of the successive
powers of o in the expansion (16). Since

w—%+m+m+m,

17
y=nv— (m—w%HM%—mL }()
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it follows that the coefficients of successive powers of v in the expansions for
z and y will thus be known also.
The first equation of (15) written at length is

— EELI_ — 3mB onta ____ég—_‘
mC o 3C
+ [(mc——'np)\/——l (25" =329") = Tlmp+may (—4W’y+y‘)]

+ (terms of higher degree in x and y).

On differentiating this with regard to w, we get
ou, *u, S ?_@_4_,

TP TR TV A

+[4(mo—n£\/——1< 4wgw+2 gz) ﬂﬁ%ﬁ( ax+ gf’):l

R G Z(Tﬁ‘")‘
(—-8«; gf—way +39'5 )]+ (18)
On_ putting «=0, and therefore z=y=0, this becomes
(—p—ov=D)(5a) =0 19)

Since 4>1* for each of the equilibrium points for 02;:5«}, it can be
readily seen that two of the roets of equation (5) are real and equal numerically
but opposite in sign, and that the other two are conjugate imaginaries. Further,
none of the roots of (5) is zero. It follows that none of the relations,

pp=0; pp=—p; pp==xoV—I,

can hold for pS1 (p a positive integer). Hence, from (19) we see that

Similarly, by differentiating the second, third, and fourth equations of (15)
with regard to o, we obtain, respectively,

* Moulton, « Periodic Orbits,” p. 159.
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It follows then, that
2.0 (). (). -
(—-a-m— m=o—0’ 3o w=o-—0, 30 Jomo arbitrary =c.
Hence,
9z\  _ . 3y> -
| <a—w)w=o_c, and (aw mo me. (22)

If we differentiate equations (18) and the three corresponding equations in
Uy, U3, and u, obtained from (15), and put »=0, we obtain in succession, by the
aid of (20) and (21)

(Qfg_l> _ 1 [ 3m(m*—2)B 3mB & ]
0w’ fu=0"  2p40V—1L2(mo—np)V—1 mp+nsl’
(?_f_zt,) _ 1 [ 3m(m*—2)B ___3mB
0w*/e=0"  20—gV—1L2(mo—np)V—1 mp+nc i’ | (23)
(%) _ 1 " 3n(m*—2)B 3mB
0w?/w=0 3p L 2(mo—np) mp+ns 1’
. (a_’__m) 1 [ 3n(m*—2)B 3mB 7,
0w?/w=0 p L 2(mo—np) T mptmel
On reduction, then, we obtain
(__x) — [ 3m(m*—2)Bs  n(m'—2)B ]
Ow? w==0_-‘ (mo—np) (4p°+0%)  (mo—np)p
_ 12mBp 4mB ] i
(mp+no) (4p*+0?) * (mp+no)p L |-
> - (24)
(a’y) —_ 6n(m*—2)Bp 2n(m"—-2)B
06?/ wmo (me—np) (4p* +a®) (mo—mnp)p
6nBo 2mB
+ (mp+na) (4p*+6%) + (mp+mnc)p ] )

By repeating the process and applying (20) and (21) at each step, we can

find in succession the values of <a'u‘> (t= 1, ceeey
w=0

thence we can readily find (8 z

JaF

do*

4; k=3,

.®), and

> and( kk> . We notice from (22) and
W= =0

(24) that the first and second partial derivatives carry the arbitrary parameter

c to the first and second powers respectively. We see further that, at each

step in the differentiating, the right-hand members of the equations are homo-

geneous in the orders of the partial derivatives in each term. It follows then
29
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k
that (8 “‘) and, therefore, also ( 9 f) and (a y ) each carry a factor c*,
a(.) =0 a(:) @)= a(.) k=0

after the values of the partial derivatives of orders lower than %k have been
substituted in the right-hand members. Hence, the terms of the expansion in
( 16)° carry c and o as factors to the same power. On substituting the values
of the partial derivatives in Maclaurin’s expansions for z and y, and replacing
o by its value e, we obtain a set of solutions of equations (8) in the form

=  ce +—1—[ 3m(m*—2)Bs _ n(m*—2)B 12mBp ]
- 21L (mo—np) (4p°+0®)  (mo—np)p  (mp+mo) (4p*+a?)

4mB e 1 ~8pt
+ (mP+m7)p]cze +3l[..f.]c‘e +.... 5)
m Gn(m —2)Bp  2n(m*—2)B 6nBo

y=—me™" = 31| (mo—np) AP +0%) (mo=np)p + Tmp o) G F )

I O T

(B) Solutions in Powers of e*”.

If, in equations (8), we were to transform our independent variable by
writing o=e**, we could build up a second set of solutions of form similar to
(25), by a process exactly parallel to that used in section (A). We shall show,
however, that this new set of solutions can be obtained directly from solutions
(25) by changing the sign of ¢ throughout, and changmg the sign of y in the

result.
The first two equations of (1), with z dropped from the right-hand mem-

bers, can be written in the form
" —2y'=F,(z, y*
) Y Wz y%), } (26)
y +2$’=ng($, y’)°
1f we suppose the initial conditions are

z(0)=a, #(0)=a, y(0)=0, ¥ (0)=Py, (27)
then the solutions of (26) have the form
z=f(t), &=¢(t), y=h(), ¥=¢(t). (28)

If in equations (26) we put z=z, y=—», and {=—v, we get equations
of identically the same form in z, %, and = as (26) are in z, y, and . These
equations are '

i 9n—F |
.z. ’7 1 (z, ’7’)” } (29)
n+2x=nF,(z, n"),
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where the dot denotes differentiation with regard to v. If we impose the same
initial conditions in these new variables, viz.:

z(0)=a, #(0)=a, 7(0)=B, #(0)=4,, (30)
then the solutions of (29) are
z=f1(7), e=¢i(7), n=[e(7), 1=:(7); (31)

that is #, 2, », and » are the same functions of = as #, ', y and y’ were of ¢
before. But the initial conditions (30) are the same as

z(0)=a, 2'(0)=—a, y=—F, ¥ (0)=4,. (32)
Again, the solutions (31) are the same as

—fl(_t)’ v ——'¢1(—"t)y y""—fl(‘—t)y —%(""t)-

It is readily seen, therefore, that for initial conditions (32) equations (8)
admit of a solution which can be derived from (25) simply by changing the
sign of ¢ throughout and changing the sign of y in the result. These solutions,
therefore, have the form

p= ottt - 1 [ 3m(m*—2)Be  ‘n(m'—=2)B | 12me’ .
21 (mo—np) (4p*+6®)  (mo—np)p  (mp+no) (4p*+0%)
S
F Ty A B LT

V. Proof of the Convergence of the Solutions.

It is necessary to prove the convergence of the series (25), which we have
deduced from equations (8), or their transformed equivalents (9). This we
shall do by a method analogous to that used by Picard.* Write equations (9)
in the following form

—po 38 —oVTu=HP+EP+ ...,

—po 2 oV TTu=EP+EP+ ...,

2 . - (34)
—pm?-& —puy  =HP+HP+....,
."‘P‘-’gj +pu, =H®+H®+.....

* Picard, “ Traité D’Analyse,” Vol. III, Chap. I, §12.
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The coefficients of any of the partial derivatives of u; (1=1,....,4) for 0=0
are respectively of the form

p(—p)—6V—1, p(—p)—(—oV—1), p(—p)—p, p(—p)—(—p), (35)

all of which are, in absolute value, greater than e(p—1) where ¢ is a real
quantity. In this case ¢ is a fixed quantity smaller than the absolute value of

the smallest of =p and xeV—1.

1t has been shown by Moulton* that the expansions in the right-hand mem-
bers of (14) converge within and on the boundary of a circle of radius a (a>0)
about each of the equilibrium points; the value of a depending upon which of
the points (@), (b), or (c) is being considered.

Let M be the maximum modulus of the expressions in the right members
of (34) for all values of the variables u,, %s, U3, 4, in this circle of radius a.

" Consider the comparison set of differential equations

o, ]_ M ‘___ T e T
e[w_é_(;—v‘ _l_vl+'vz+va+’v4 M—M a ’ (t-l’““’4). (36)

[+

It is evident that equations (36) dominate (34); and it can readily be shown
that the solutions of (36) dominate the solutions of (34). The terms on the
right of (36) are all positive, and it is obvious from the method by which the
solutions are built up that all the terms of the solution of (36) are positive.
In building up the solutions of (34) and (36) as power series in @, whose
coefficients are the values of the successive derivatives of the u; and the v,, re.
spectively, for w=0, we see by (35) that the absolute value of the coefficient of
any partial derivative on the left obtained from (34) is greater than the
coefficient of the corresponding partial derivative on the left obtained from
(36). But each term on the right-hand side of (36) dominates the correspond-
ing term on the right of (34), and therefore any partial derivative of the right
members of (36) is greater than the absolute value of the corresponding par-
tial derivative of the right members of (34). It follows, therefore, that the
values of the successive partial derivatives obtained from (36) are greater
respectively than the absolute values of the corresponding partial derivatives
obtained from (34). Hence, each term in the solutions of (36) is greater than
the absolute value of the corresponding term in the solutions of (34); or the
solutions of (36) dominate those of (34).

* Moulton, “ Periodic Orbits,” p. 154.
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It remains to be shown that the solutions of (36) are convergent for o
sufficiently small. From the symmetry of (36) in the v, (i=1, ...., 4), all
the v, are equal. We can, therefore, replace equations (36) by a single equa-
tion in one variable, viz.:

f

which reduces to the form

1,42
ugl"-—v: —M-—v—v—, where M'= ISM ; (37)

whénce, 3 3 M .8
4 v 'ov

v et (MM—4)v’

On integrating this equation, we have
v

log cw = log T
ot (M —4)v]F=
. ) ’
or CO= 7% where X=35 4"
(a + M ’U) M—4
X
Therefore,

V—C (a“ + xa ! %’v.-i— ... .):0.

From this it follows, by the theory of implicit functions, that » can be expressed
as a power series in o, vanishing with e, and convergent for o sufficiently small.
Thus, we see that the solutions of (36) converge for o sufficiently small; and it
has been shown that the solutions of (36) dominate the solutions of (34),
Hence the solutions of (34) are convergent for o sufficiently small, that is for
¢t sufficiently large.

VL Alternatwe Method of Constructing the Solutions.

The solutions of equations (8) may be built up by a process qmte different
from that used in § IV.

If, in equations (2), we make the transformation x=uze, y=ye, the first
two equations, considered for =0, give, on dividing through by ¢,
2" —2y'= (1424) v+ $B[—20*+y*)e+2C[28°—3zy*]1 8+ . . . ., } (38)
y" +22¢'=(1—A)y+3Baye+ $Cy[ —4*+ 318+ .. ..
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Since, as was pointed out in § V, the right-hand members of the original equa-
tions converge within and on the boundary of a circle of radius a (a>0) about
each of the equilibrium points, it follows that the right-hand members of (38)
converge for ¢ sufficiently small (0<eZ1l). Such a system of differential
equations, with constant coefficients on the left, can be solved for z and y as
power series in ¢, of the form
z= 3 ()¢,
" (39)
Yy =,§o y/(t)e] ’

where the coefficients z; and y; are to be determined. Since (39) are the solu-
tions of (38), the latter must be satisfied identically when # and y are replaced
by the power series in (38). When we make this substitution, from terms
independent of &, we have _ .
w) —2y,— (1+24) z,=0,

40
v+ 2ah— (1— A)yo=0. } (#9)

The general solution of these equations is
Ty= Kle"’:“ + K’e-,v:u + Ky + K‘e—pt, } (41)
y°'= L,e"’:“ + L,e“"/:" + Lge‘" + L‘c—pt’

where the K, and L, are constants of integration, the K, (i=1,....,4) being

arbitrary, that is dependent upon the initial conditions imposed which are
arbitrary, and the L, depending on the K,, the relations between them being *

L= -—_10 +1+2AK1._ '_—nK _—K‘L,,

20 K,

1—24 K (42)
Ly= E_Z‘__T___K.= mK.:—-— = §

2‘) K,

Since the K, are arbitrary, and since we are seeking solutions which vanish
as ¢t approaches infinity, we choose K,= K,= K;=0, and, therefore, also
L,=L,=L,=0. Equations (40) then have a particular solution of the form

Zog= K P e_”, Yo= Lle —pt. (43 )
Let us impose the initial conditions that z=>0 at {=0. Since
z(t) m=zy (8) +ay () e+ 23 () e+ . . .,

then
20(0) =b, 7,(0)=0, (j=1,....o). (44)

* Moulton, “ Periodie Orbits,” p. 169, Eqns. (28).
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On imposing these initial conditions and using (42), we see that (43) takes
the form '

zy=be™, y,=—mbe™*, (45)

In finding sucqessively the values of x; and y; (=1, ....») it is more con-
venient to use the normal form of equations (26). '
As we saw in § 2, the transformations

T =+ Ug+ Ug+ Uy,
=0V —1 (uy—us) +p (us—u),

46
Y =0V —1(u;—uy) +m (ug—u,), “9
Y =—n6 (u,+us) +mp (us+u,),
change equations (26) into the normal form
e ml....Je  {....]e
MmOVl e—ng) V=1 2(mptno) ’
VT g — -m[....~]s___ f....}e ’
tate Y 2(me—mnp) V—1  2(mp+mno) | (47)
" —ou . —n[....]e I f....0e
s PYs - 2(mo—np) 2(mp+ns) ’
, _ nl....]e I Y
WP = Smo—np) T T(mptno)’ J
where
[....]1=4B[—22*+¢*] +2C[22*—3zy*]e+ terms in &, &, . ..., } (48)
T } =3B{xy} + %Cyi“-4a;’+y’}e+ termsin &, &, .....

These equations hav_e solutions of the form
u‘=i§ uPd,  (i=1,....,4).
=0

To determine the u{ we substitute (49) in (47) and equate coefficients of like
powers of ¢ on both sides of the resulting equations. From the terms inde-
pendent of ¢, by applying (46) and (44) we get the value of z, and y, as given
in (45). Since, by (44),
. ,
%,(0) =b, and 2,(0) =0, (j=1,....o), and w,=‘2 u®, (49)
=]
it follows that

4 (0) -+ (0) + P (0) +u® (0) =b, } (50)
u?(0) +uf (0) + u@® (0) +uP(0) =0, j=(1,....®). ,



236 WagreN.:.. 4 Class of Asymptotic Orbits in the Problem of Three Bodies

On equating coefficients of the first power of ¢ we have

oy up SmBL=2dtdl]  3Bag,
’ 4(me—np) V—1  2(mp-+no)
' 3mB[—2x3+ ys] 3Bz,
@ V_—JuW—=_ _
u' +oV—1lug’) = 4(mo—np) V—1  2(mp+na) ),
Y — oy __ 3nB[—2a3+ 5] 3Bz,
S T 4(mo—np) 2 (mp+no)’
' 3nB[—2x3+ yi] 3By,
(¢)) m — 0T Yo
ug + pUs = 4('”’&0’—”9) + 2(mp+n0') .

After substituting for z, and y, their values from (33) we have

L (51)

' —pu ={" 3: f,,f:':,j) - 2(73::1-9”0) }bze_w‘él' fbe™,
T I = T
where the M$ (i=1,....,4) denote the expressions in the brackets. The

superseript and the first subscript on the M are the same as those on the
corresponding u{”, while the second subseript denotes that they are coefficients

of e~*'. On integrating (52), we get

_ MDpe
,ugl) — c{l)eﬁv—lt _ 12

- My
u® = cgl)e—o'\’—lt_ 2

U =cPe 3

U =cPe—rt

P

2p+a\/—le

. M&’b*

—20t o 0{1) ec\/ e dg) bze_-zpt’

~20t o D) e~V __ dPb? o2t

2p—oV—1° '
MPD?

e ¥t=cPe” —dPbe™"",

e ¥t==cMNe " —dPbe—?",

- (53)

7

If then we put cP=cf’ =c{»=0 and choose ¢ so that the initial conditions

(50) are satisfied, we find that
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c(l) =b? [dﬂ) + d(l) +-d@ + d(l)]
Since
z=uf +ud +ul® +u, } (54)
=0 V=L (uP —uf) +m(ud—u),
we see that
2= [ (dP +dP +dP +dP) e~ — (4P +dP +dP + dP) e~ 1
. =[DPe-r__ DPe-2t] b2,
yi=[—m(dR+dP +d +dR) e — {nV—1(dip—dPD)
+m(dP—dP) {e ] bi=[—mDPe " —DPe-2]p2.

(99)

From the coefficients of & above, we see that the differential equatlons

which define the u{® (i=1,....,4) are
' 3mB (—2z4%:+Yoy1) 3B (x4, + %19o) )
u® —eV —1u® = oY1) __
u—oV—lu 2 (mo—np) V—1 2 (mp+na)

mC (203—3aoy3) | 3C (423y,—y3)
(mo—np) V—1 = 4(mp+no)
, — 3mB (—2xw,+yun) 3B (Zoy1+ Z:190)
, ugz) +0’\/—1 u§2)=_ 2(mo'—-np) '\/:_i -_ 2(mp+nc)
__ mC(223—35y;) +30 (4a3y0—13)
(mo—np) V—1 * 4(mp+no) -’ | (56)
3nB(— 2%syo+Yot1) |, 3B(%oyr+ %,y0)

2)! 272 —_

2 (mo—np) 2(mp+-no)
_ nC(223—3%0y5) _ 3C (4%iyo—1)
me—mnp 4 (mp+no) ’
' 3nB(— 2%eyo+yoy1) | 3B (Zoys+ 2,90)
uf” +‘m§2) =4 (2(mo'-?—y:tp)y y ) 2(mp+m)
nC(203—3awd) _ 3C(42iyo—13)
+ - me—np 4 (mp-+no)

On substituting for ,, y,, z,, y, their values from (45) and (95) these equa-
tions take the form

u® —oV_Tu®=MPble ™ + MPbe,

ug”'-}-d\/ziug’) =Mg)b$€-”'+Mg)b38—_s", (57)
u?)’_" ) — Mg)bse—tpt + Mg)bse—sjn’
upu®  =MPbe '+ UPbe ™,

30
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where \
@_ 3mB(m’—2)D{" 6mBD®
BT 2(me—np) V—1 ' 2(mp+no) ’
YD — 3mB (m*—2) DM 6mBD{»
T T 9 (mo—np) V—1 ' 2(mp+na) ’
YO — 3nB(m*—2)D{»  6mBD®
» 2(mo—np) 2(mp+no) ’
yo_ 3nBm—2)DP  6mBDY
e 2(ma—mnp) 2(mp+na) ’
yo— 3mBEDP+mDY)  3B(mDP—DP) _mC(3m*—2)
BT 2(mo—np) V—1 2 (mp+na) (mo—np) V—1
4 3mC(m'—4)
4 (mp+nc) ’
yo—_ SmB@DP+mDP)  3B(mDP—DP)  _mC(3m'—2)
= 2(mo—np) V—1 2 (mp+n0) (mo—np) V—1
~ + 3mC(m*—4)
4 (mp+no) ’
YO — 3nB(2DQ +mDP) , 3B(mDP—DP) uC(3m*—2)
2(mo—np) 2 (mp+no) me—np
__3mC(m*—4)
4 (mp+mno) ’
MO =+ 3nB (2D +mD®) | 3B(mDP—D{")  aC(3m*—2)
“® 2 (ma —np) 2 (mp+na) me—np
_ 3mC(m*—4)
4(mp+no) * ]
The solutions of (57) have the form
‘ u®=c® R ADbe —dPbie ", 1
u® =c®» e—oV=it__ dDble —dDbseo,
Ul =cPe’—d@be " —dPbe ",
u®d =cPe ' —dPble*—dPDb e, )
where ' '
M® MO M® M®
AP=——"2 __. qo—__ "8 . Jo_"8 , go_ 74&
T 2p4oV—1 Ad” 2p—oV—1 3 7 T p ]
MP M M : M
d(’)z—-L—_; (z)=———”——; d(z)z——!'-—-; dm_‘:——“—
* T 3p+aV—1 3p—oV—1 T4 7 g 7]

r(58)

- (59)

- (60)
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If we put c?’-—c"’—c"’—-o and determine ¢ to satisfy the initial conditions
(5Q), we have

4
(P =[SdP+ SdP]b"..
=1 =1
On substituting. these values for ¢® (i=1,....,4) in (59), and writing

é AP =D®; nV—1(dP—dP)+m(dP—dP)=D®,
. (61)
3 dP=DP; aVI(dP—dP)+m(dP—dP)=DP,

T gl

we have, by (54),

z,= [ (D + DP) e~ —DPe~ —DPe="1b?,

Yo=[—m (D +DP) e~ — DPe— _D®e—ot] 32, } (62)

If we proceed in this way, we can build up in succession the values of 2,

and y, for j=3,4,....o. By induction we can get the form of the general
term. From (45), (55), (62) we notice that the x; and y; are sums of powers
of e, the highest power of e~* occurring being j+1. The equations defining
u{ (i=1,....,4) have in their right-hand members only sums of powers of
e, the lowest power being e~?* and the highest e~”*+)**, When we integrate
these equations we will have terms in powers of e~ the lowest power being
the first and the hlghest the (v+1)-th. These solutions will have the form

,u(v)_c(y)ext__ [ 2 d(r)e-—fpt] b’“ ('_ . 4;
7«.—0\/ 1, —oV—1,p, —p).  (63).
If we pnt "’—c"’—c"’—o then to satisfy the initial conditions we must put
cf')=b’“‘21 'Egd“,’". ‘If then-we put '

s
Dm.__zd(') (1=2,....,v+1),

D")—m/ (d"’-—-d{;’) +m(dP—dP), (1=2,....,v+1), |
it follows that

+ (64)

. v+1D _— v+lD(’) —rpt b""l
Ty == [ b ; € — 2 %€ ] ’
. =2

L (65)
L Y= [-—m 2 D"’e"" 2 D(r)e—m]bn.l

| 223
When we substitute the results of (45), (55), (62), (65) in (39), we have the
values of z and y which are solutions of (38). The z and y belonging to the
physical problem as defined by (8) are & times the z and y, respectively, which
we have just obtained from (38). On multiplying the values of each z; and y,
by & and substituting in (39), we see that the resulting expressions carry b and &
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as factors to the same power in each term. Hence be is equivalent to a single

parameter and may be replaced by 8. Our solutions then may be written .
3

=B+ [DPe*—DPe] f14 [ 5 DPer— 3 DPe] 8-+
k=2 k=2
+ [Pngﬁv)e—p‘——'ElDg')e—kpf]ﬂ""l+ ey
k=2 k=2 . )
_ 3 s _ - (66)
y=—me "B—[mDPe "4 DPe*] 32— [m 2 D,‘f’e“"+ 2 D,‘,”e"‘"‘] B3

—_ —_ [m 2 D“’)e""‘-{- 2 D(v)e—kpt]ﬂv-(»l

If, instead of taking #(0) =b as our initial conditions, we had taken
2(0) =b—D"b%e—DPb e —DPbé—. . . .,

we would have had
,(0) =b, 7;(0) =—DHb'*.
Then at the successive steps the constants of integration
PV=cP=c=....c=....=0.

The v¥ (i=1,....,4; =0, ....o), instead of being.expressed as sums of
powers in e, would each be expressed as a single term in e~¢*»?, The solu-
tions (66) would then have the form '

z= e *B—DPe¥@FE—DPe B — .. . —DEe Crongr_ 68
y=—me"B—DPe#F—DPe @ — . . —DP) e TtIrFr_ (68)

If we compute the values of the coefficients in these expansions in (68) and write
¢ for 3, we find that solutions (68) are identical with solutions (25) of § IV.
By a method exactly analogous to that just used we eould build up a set
of solutions arranged in ascending powers of ¢**, and with a proper choice of
initial conditions it could be shown that they were identical with solutions (33)
of § IV. '
VIL Properties of the Orbits.

When we consider the solutions of the differential equations as given by
equations (25) of § IV, which are in the form of power series in e, we see
that the values of z and y continually decrease as ¢ becomes greater and
greater, and finally « and y approach the value zero as ¢ becomes infinitely
great. Since z and y are the coordinates of the infinitesimal body referred to
an equilibrium point as origin, it follows that it will approach nearer and
nearer to one of the equilibrium points as ¢ increases. Such orbits are said to
be asymptotic to these points. '

Similarly, we see that if the infinitesimal body were moving on one of the
orbits which are given by equations (33) of § IV, where z and y are expressed
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in the form of power series in e**, it would approach one of the equilibrium
points when ¢ became infinitely large and negative. In other words, if we
imagine the infinitesimal body to be placed at one of the equilibrium points, it
would gradually leave it on one of these orbits, requiring, however, an infinite
time to describe the first small part of the orbit.

(A) Meaning of the Parameter c.

When the masses of the finite bodies are given, the only arbitrary in solu-
tions (25) is ¢, where c= (%-:) . If ¢ is fixed, the z and y are determined
uniquely by (25) for all values of ¢ so large that the convergence of the solu-
tions as power series holds. Now the slope of the orbit at any time ¢, for ¢
sufficiently large, is given by '
dy _ & / _ mpce™* +2pDPcte~% +3pDP e 4, .
dv — |G —pce "+ 2pDPcfe P 1 3pDPFe T ...

=—m- a power series in e~ beginning with the term in e=*. There-

fore, _
dy) —
(@)= )

Hence the direction of approach to the equilibrium point is independent of the
value of the arbitrary parameter c. :
The position of the body in its orbit at the initial time, £=0, is given as a
power series in ¢ with constant coefficients; so that if ¢ is fixed the position of
the body in its orbit at the initial time is determined. It follows therefore
that the direction of approach to the equilibrium points is independent of the
initial position of the infinitesimal body in its orbit at the initial time. Since
¢ is arbitrary, nothing of generality will be lost in the actual construction of
such orbits if we take ¢ equal to unity, and the numerical computation will be
simplified. This we do in the numerical computation of an orbit in § VIIL

(B) The Number and Position of the Asymptotic Orbits.
In equations (42) of § VI the quantity m is defined

2

pP—1—24

2p ) .
It will be shown later* that for each of the equilibrium points (a), (b), (¢) the
quantity m is negative for all values of u, where 02 u<3. Therefore, in the

(69)

case of the orbits given by (25), it follows that <Z—Z) . = a positive quantity.
t=w

Hence equations (25) represent two orbits, one in the first and one in the third

*See § VII (C).
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quadrant in the neighborhood of each of the equilibrium points. For any pre-
assigned value of u these two orbits are equally inclined to the z-axis in the
neighborhood of the origin.

Similarly, it may be shown that equations (33) represent two orbits
leaving each of the equilibrium points, one in the second and one in the fourth
quadrant. For any given value of u, these orbits are, in the neighborhood of
the origin, the images by reflection on the z-axis of the orbits given by (25).

Near the points of equilibrium, that is for ¢ very large, the first terms in
the expansion of (25) are the most important and determine the sign of the
right-hand members. It follows therefore from (25), since m is negative, that
if ¢ is positive z and y are both positive, but if ¢ is negative z and y are both
negative. Hence for positive values of ¢ the orbit is in the first quadrant, and
for negative values of ¢ the orbit is in the third quadrant in the neighborhood
of the equilibrium points.

Similarly, when ¢ is very large and negative, the first {erms in the expan-
sion in (20) determine the sign of the right-hand members. For ¢ positive
x is positive and y negative, and for ¢ negative 7 is negative and y positive.
Hence for positive values of ¢ the orbit is in the fourth quadrant, and for
negative values of ¢ the orbit is in the first quadrant.

The value of dy for a point near the origin is given by (69). If we take

dw

the second derivative

do* = 2 di /at
we find that
—é;;,q =—2[D®P+mDP]+ a power series in e,
' 2
Hence the value of (-%:’5) is independent of ¢, and therefore does not change
t=0

sign with ¢. Therefore, near the equilibrium points, the orbits in the first and
third quadrants lie on the same side of their common tangent line y+mz=0.
Similarly, it can be shown that the orbits in the second and fourth quadrants
lie upon the same side of their common tangent, y—mz=0.

(C) Variation in the Direction of Approach as u Varies from Zero to 1/2

. Now it has been shown®* that if r, and r, denote the distances of the
infinitesimal body from the finite masses 1—u and u respectively, the values
of r, and r, for the equilibrium points can be expressed, for u sufficiently small,

* Moulton, “ Introduction to Celestial Mechanics” (New Edition), § 168.
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as convergent power series in x'/* in the case of the points (a) and (b), and in

@ in the case of the point (¢).
For the point (a),

1/3
)"

ri=1+4r,.
For the point (b),

1/8
(-

r=1—r,.
For the point (c),
_o_ 1 23X7
r2—2 EF—T{A——....,
rn=r,—1,
— 2194 -
=1t m= P 124

= r{o),

1 ‘lz/s 1 “8/8 .
T

1 ”2/3 1 #8/8 '
§(§> -§<§> o

“ .
T 2

1

- (72)

we have seen further that —m gives the value of the tangent made by the
curve with the positive z-axis in the neighborhood of one of the equilibrium

points,

The following table has been constructed to show how the elements ry, r;, 4,
and —m vary as the ratio of the finite masses changes from zero to one.’

“ ﬂ p=0 p==0.5
Point (@) (b () (@) ®) (0)
13 1/8 7 )
r © (= _r 0.63273 .4308 | 1.700
: (3) —<3) 2= g 0.4308,
no =1 =1 1—112,4 1.63273 | 0.5692 |0.700
4 [=4 4 1+%ys1+a 2.0886 8.9654 | 1.5595
p 1=2.5083 |=2.5083 Ve 1.5564 4.0305 | 1.1469
—m [=0.56224 |=0.56224 | = o 0.88498 | 0.3324 | 1.2232
¢ [=29°20 |=29°20" | =90° 41°30° | 18°23 |50° 44’

From the above table we see that as u increases from zero to 1/2
for (a), ¢ increases from 29° 20’ to 41° 30’ approximately;
for (b), ¢ decreases from 29° 20’ to 18°23’ approximately;
for (¢), ¢ decreases from 90° 00’ to 50°44’ approximately.
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VIIL. Continuation of the Orbits beyond the Range of Convergence of the
Solutions of the Differential Equations.

It has been pointed out that the expansions given in (25) and (33) define
orbits asymptotic to the equilibrium points for ¢ sufficiently large. It remains
to be shown what becomes of the infinitesimal body for smaller values of ¢. '

(A) Method of Mechanical Quadratures.

If the z- and y-coordinates of the moving body be computed for a sufficient
number of equidistant values of the time then the coordinates of the body for
the next equidistant value of the time may be computed by the method of
mechanical quadratures. If, for example, we know the values of zy,, Z:¥s,
Zsls, T Y4y TsYs at five equidistant values of the time ¢,, £,, t3, ¢,, {5 then we shall
show how the value of z; and y, for the time ¢, can be computed, where

ty—ts=ts—ty=. ... =t,—1,.

Form a table of the values of x and their successive differences for the
successive values of- the time. Form also similar tables for y, #', y’, F,, F,
where from (1),

dz — 1

dat

d’z  dz' 1—u) (— T—

o I8 Fyw,y,9) =2 +a— ( [t)'(? z)  u( = 2)’

pd - (73)
a7

dz d ’ , , 1—

_d_g =—£—=F4(w,x,y)=—-2a; 4y r‘:ﬂ)y- ‘:‘;,y .

It is necessary to have computed the values of these quantities at sufficient
dates that some order of differences obtainable from them will be small. Sup-
pose that such tables of values have been set up for each of the quantities
z,y,2,y,F,, F, for the dates small ¢,, ¢,, %, . . . ., ,, and suppose that in these
tables the fourth differences are small and approximately constant. In the F,
and F, tables we assume the next fourth difference about equal to the previous
ones, and from the tables compute F{"+» and F{**". Then the values of the
next first differences of 2’ and gy’ can be readily computed by means of the

formule: _
AP = (s £)| FOO— L AF0D— L AT o AT

1 (n+1) ]
%AF o,

- (74)
A{H.l)y/:__ (tn+1_’ t,.) FF?-«-I)_ %A1F$n+l)__ i£2 A,Ff"'“)— ﬂA’F£”+l)

1
— g AFEH. . ]
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Having found A"*Vz’ and A{**Vy’ we can at once compute 7’ (t,.;) and ¥’ (f441),
and complete the table of differences for this date. We can then compute
APz and AVy from 2'(%,,1), ¥ (tas1) 8nd their successive differences, by
formule exactly similar in form to (74), namely,

A§a+1)m'= (fpsr—ts) [,v:(nu)_ %A,w"'_‘“)—— Tlé A,z ") — 2%A,a:’("+"

1
—_—— (n+1)
36 Az Ce .],
‘A{u+l)y‘_ (t".l‘-t,,) [y'(”+l)_%A1y'(”+l)-— IIQA,y’("“’— 2124_%:(.4.1)

—-3}6 Ad/'("“) .o .];

. (75)

whence we obtain at once z(¢,,,) and y(t,.1).

Having found the values of z, y, «’, ¥’ at the date ¢,,;, we compute F{**+"
and F{™*Y by the second and fourth relations of (73). If the results so ob-
tained agree with the results we already have for F{**" and F{*+V, we assume
that the fourth differences which we guessed are correct. But if the computed
values of F{**D and F{*+V differ from the assumed values we replace the latter
by the computed values, and repeat the process as before from this point on.
We keep on repeating this process, which generally has to be done only once,
until the computed value is the same as the value from which it is computed.
Having thus found the coordinates of the body for the date ¢,,,, we assume
another set of fourth differences for F, and F, for the date ¢,,, and repeat the
process. Thus any number of points on the orbit may be determined, and the
orbit can thus be continued beyond the range of convergence of the solutions
of the differential equations.

(B) Jacobi’'s Constant. ‘

The question arises how we know that the orbit 8o continued is really the
orbit on which the infinitesimal body would move when forming a part of the
system in question.

It has been shown * that in the case of the infinitesimal body

V=a't+y'+ ———— 2(1 ") £ —c, (76)

T
or

- 2 ] ,’”
c =av*+y*+2(1,,l by oy (77)

This gives us a relation that must hold between the coordinates and the z- and
y-components of the velocity of the infinitesimal body at all positions of its
orbit.

* Moulton, “Introduction to Celestial Mechanics” (New Edition), § 1563.
31
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The constant C, which is called Jacobi’s Constant, can be computed from
the initial configuration of the system. In the present case the value of C
would be the value of the right-hand member of (77) when the body is at rest
at the equilibrium point in question. At such points 2’ =y'=x=y=0; r,and r,
are readily determined from (72).

Formula (77) may then be used as a check on the computation at each
step, that is, for each new date. If the integral will not check, when the com-
putation has been accurately made, it is usually necessary to divide the time-
interval, and take shorter steps. It then becomes necessary to interpolate
values of the coordinates for intermediate values of the time. After obtaining
the intermediate values for 7, and F, by Lagrange’s Interpolation Formula,
the corresponding z, 2/, y, ¥’ can be computed out of these by the process
described. Thus the orbit of the infinitesimal body can be continued as far as
may be desired.

(C) Specific Form of the Solutions.for p=0.02,

We proceed now to assign to u the arbitrary value ¢=0.02, and find the
specific form of the solutions and the shape of the orbit. We will consider
the orbits in the neighborhood of the equilibrium point (@), and consider those
given by equations (25), where the expansion is made in powers of e~

By (72) we have r, for the point (@) given by

1/8 1 2/8 1 8/8
n=(5)"+56)"-56)" -

On neglecting all after the third term in the expansmn we find, for u=0.02
that r,—=0.1993. But because of the neglected terms in (72) this value of 7,
does not satisfy with sufficient accuracy the quintic equation of which (72) is
the solution, namely,
ri+ (3—u) 1+ (3—2u) r3—pri—2ur,—u=0. (78)
If we start with the value r,=0.1993 and apply the method of differential cor-
rections we find r,=0.200078, a value which makes the left member of (78)
differ from zero by approximately 0.00000005. Hence, for the point (a) we
take
r,=0.200078, r,=1.200078; (79)
whence, by (2), (5), and (42) we find in succession
A= 3.064095; p=2.098701; o = 1.827794;
m=-—0.648885; n=2.863898; B=12.952988;
mp+no= 3.872514; mo—np= 7.196426;
4p’+0® =20.958701; m® —2 =—1.578948.

On substituting these values in equations (25) and putting ¢c=+1,* we have

*See § VII (4).
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for the equation of the orbit in the first quadrant in the neighborhood of the
origin,
Z=e 20N __D 044651 e+, | (80)
y=0.648885 ¢ 20801 1 (0, 0251562 e~ |

For the infinitesimal body at rest at the equilibrium point (a), Jacobi’s constant
C has the value '
C=atgt+ 208 | 2 _3 905734,
L6} e
Hence, at all points on the orbits asymptotic to (a), Jacobi’s constant must
have the value 3.225734. v
The values of =z, y, 2/, and y’, were computed for the times ¢=3, 2.75,

2.50, 2.25, and 2.00 and the tables of values of z,y, 2, ¥, F,, F, and their
differences built up. On proceeding as outlined in subsection (A) of this article,
the table of values (on p. 248) was obtained. For the first few computations the
interval of time taken was one-fourth of the unit of time, and afterwards one-
eighth; but in the table are given only the values corresponding to intervals
of one-fourth, except in the case of a few dates near which one of the elements
changed sign.

A drawing of the orbit represented by the data in the following table is
appended.




¢ x Y @’ Yy
3.00 1.18191 0.00120 —0.00383 —0.00251
2.75 1.18316 0.00202 —0.00642 —0.00424
2.50 1.18526 0.00342 —0.01071 —0.00717
2.25 1.18874 0.00577 —0.01773 —0.01210
2.00 1.19447 0.00974 —0.02896 —0.02038
1.75 1.20373 0.01643 —0.04633 —0.03434
1.50 1.21830 0.02766 —0.07175 —0.05741
1.25 1.24034 0.04631 —0.10604 —0.09469
1.00 1.27190 0.07674 —0.14716 —0.15243
0.75 1.31392 0.12474 —0.18816 —0.23661
0.50 1.36500 0.19749 —0.21733 —0.35027
0.25 1.42037 0.30217 —0.21993 —0.49123
0.00 1.47154 0.44471 —0.18149 —0.65126
—0.25 1.50674 0.62827 -—0.09068 —0.81669
—0.50 1.51198 0.85206 0.05873 —0.96995
—0.75 1.47247 1.11060 0.26679 —1.09141
—1.00 1.3742 1.3935 0.5269 —1.1614
—1.25 1.2057 1.6856 0.8262 —1.1621
—1.50 0.9594 1.9677 1.1459 —1.0796
—1.75 0.6331 2.2176 1.4628 —0.9050
—2.00 0.2305 2.4122 1.7508 —0.6362
—2.125 0.0037 2.4815 1.8756 —0.4681
—2.25 —0.2377 2.5284 1.9830 —0.2780
—2.375 —0.4912 2.5504 2.0699 —0.0705
—2.50 —0.7542 2.5454 2.1333 0.1542
—2.75 —1.2957 2.4468 2.1794 0.6420
—3.00 —1.8338 2.2220 2.1041 1.1580
—3.25 —2.3369 1.8680 1.8979 1.6706
—3.50 —2.7717 1.3899 1.5593 2.1452
—3.75 —3.1060 0.8015 1.0961 2.5468
—4.00 —3.3107 0.1254 0.5255 2.8422
—4.125 —3.3567 —0.2364 0.2077 2.9409
—4.25 —3.3619 —0.6083 —0.1265 3.0027
—4.50 —3.2435 —1.3629 —0.8263 3.0062
—4.75 —2.9482 —2.0971 —1.5344 2.8394
—5.00 —2.4792 —2.7680 —2.2081 2.4989
—5.25 —1.8507 —3.3327 —2.8035 1.9927
—5.50 —1.0875 —3.7521 —3.2789 1.3399
—b5.75 —0.2243 —3.9929 —3.5975 0.5701
—8.875 0.2316 —4.0383 —3.6886 0.1532
—6.00 0.6958 —4.0307 -3.7303 —0.2778
—6.25 1.6237 —3.8514 —3.6580 —1.1578
—6.50 2.5069 —3.4534 —3.3729 —2.0189
—6.75 3.2927 —2.8479 —-2.8803 —3.9747
—7.00 3.9313 —2.0593 —2.1988 —4.2632
—7.25 4.3790 —1.1239 —1.3597
—7.50 4.6016 —0.0894 —0.4070
—7.625 4.4446 0.4475 0.0947

UNIVERSITY OF MANITOBA, August 20, 1913.
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