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A Contribution to the Foundations of Frechet’s
Calcul Fonctionnel.*

By T. H. HILDEBRANDT.

PREFACE.

During the last few years there has been manifest a tendency in the
direction of generalization of current analysis. Two memoirs bearing on this
subject have recently made their appearance: in the first instance, M. Fréchet’s
Paris thesis, Sur quelques Points du Calcul Fonctionnel ;4 and secondly, E. H.
Moore’s Introduction to a Form of General Analysis.§ We consider briefly the
contents and direction of generalization of each.

Fréchet’s work may be divided into two parts: (1) a theory of continuous
functions on an abstract set, and (2) a generalization of the theory of linear
point sets. The first of these was no doubt suggested by the analogies between
theorems on continuous function of a single variable, of n variables, of lines, of
curves, etc. The element of generality enters in the consideration of a class or
set O of elements g, which are not specifically defined. For the class there is
postulated the existence of a notion of limit of a sequence of elements, satisfying
a number of conditions which are properties of the limit of a sequence of real
numbers. In terms of such a limit, it is possible to define a sequentially con-
tinuous function, ahd hence to construct a theory of sequentially continuous
functions. To attain the second end, there is postulated for the class £ the
existence of a voisinage or distance function § of pairs of elements, there being a
value of § for every pair of elements of the class. This distance function § is sub-
jected to a number of conditions, generalizations of properties of its real variable
analogue, the absolute value of the difference between two numbers. In terms
of such a §, a limit is definable, and a theory of sets, concerning derived, closed,
etc., sets, is obtainable.

* This paper is in the form sent to the editors ln April, 1910, with the addition of §15 (6) und 7 and a
few changes in §17, due to the article by Fréchet: Rend. di Pal.,, XXX, 1-26. Cf. also Hedrick: ‘Trans. Am.
Math. Soc., XI1I, 285-204, which contains some more general and some less general theorems than the present
paper. '

t Reprinted in Rendiconti del Circulo di Palermo, Vol. XXII, pp. 1-64.

1 Published in The New Haven Mathematical Colloguium, New Haven, 1910.
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The General Analysis of Moore may be termed “a theory of classes of func-
tions on an unconditioned range.”” The subject under consideration is a system
(A; B; k), consisting of the class A of real numbers a, the class P of uncondi-
tioned elements p, and the class I of real-valued, single-valued functions y of p,
p ranging over the class §8; 4. e., of functions on P to .. The theory treats of
properties of the classes M, the properties in question being common to the
following special classes of functions: :

(1) The class of all unipartite numbers «, 1. e., a function of the variable p
having only one value. ,

(2) The classof all n-partite numbers (x,, . ..., «,), functions of the variable
index p; p=1,2, ....,n : .

(8) The class of all absolutely convergent series z;, @, ...., 2,, - ..., where
3 |x,| is convergent, functions of the variable index p; p=1,2,8,....,n, .....

(4) The class of all continuous functions on the interval 0 < =<1 of the
real number system.

The first part of the memoir treats of certain closure and dominance prop-
erties of general reference, 1. e., independent of the nature of the parameter p.
The second part treats of properties of special reference, in connection with the
question of composition of classes of functions, one of the classes being on an
unconditioned range. In particular, three properties, K,, K,, and A, are treated,
K, and K, relating to the relations

K,, and K, .,
which in turn depend upon a development* of the class $. The property A
also relates to the development of P. For the real variable p, the first of
these two relations is the inequality p>m, and the second the inequality

' 1
| o1 — Pl =
The present work concerns itself with the Fréchet point of view. It had
its inception in an attempt to replace the distance function § of Fréchet by a
weaker condition on the class Q. The fact that in most instances the § appears
in connection with an inequality of the type

5 1

N9 = m

suggested the adoption of the second K-relation of Moore, K, in the place of

# Real variable analogue, the set of divisions of an interval into » equal parts, n =1,2, 8, .....
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the 4. By stating, in the case of every theorem, the precise conditions on K
sufficient to carry the argument, and extending this idea to the case in which
the class Q is subjected only to the condition of the existence of a limit, a two-
fold result was obtained: (a) that an unconditioned limit suffices for the theorems
on sequentially continuous functions obtained by Fréchet, and (b) that it is possible
to obtain the theory of sets of elements with a distance function §, subjected to weaker
conditions than those imposed by Fréchet. To show that the conditions in question
were weaker, the complete existential theory,® of the properties of the K-rela-
tion, and as a consequence of the corresponding properties of the J, was con-
structed.

The first part treats of the limit L, the K-relation, and their properties.
Instead, however, of considering the existence of an L and a K-relation as a
property or condition of the class £, we use the notion of a system, the class &
together with L being a system (2 ; L), and, with the K-relation, being a system
(2; K). In the second part the most important theorems of Fréchet are taken up.
It might be regarded in the light of a proof of the above results.

L.
Systens (2; L) (2; K) (23 0): DEFINITIONS, PROPERTIES AND INTERRELATIONS.

1. Introductory. We consider in this paper properties of and functions on
a class © of general elements g. The elements g are general in that nothing is
specified as to their nature, that is, as to whether they be numbers, points on a
line, points in n-dimensional space, sequences, real-valued functions, etc. How-
ever, we suppose the elements ¢ of the class © to be well-defined, individually
and in their totality. Further, that there exists at least one element in the class.
These suppositions do not limit the generality of the class Q.

The class £ enters the theory through two properties L and K, which
together with the class © form systems (£1; L) and (Q; K) respectively, the
nature of which is to be specified in the sequel. |

2. Notational.} We shall denote throughout this paper, classes, that is
collections, sets, aggregates, ensembles, etc., by capital German letters, e. g.
Q; R; M, ete., in particular, £ a class of elements g, R a class of elements 7,

# Cf, Moore, loc. cit., p. 82. Also below, §9. .
¢ For an extensive treatment of the ideas underlying subjects touched on in this paragraph see Moore,

loc. cit., §2, pp. 15 fI.
30



240 H1pEBRANDT: A Conirtbution to the

M a class of functions u, ete. The notation for the class always corresponds to

the notation for the elements.
The brackets [ ] will be used to denote a class of, and in particular a class of
the elements included within. Thus [¢] stands for a class of elements ¢, and we

have therefore
2 =/[q].

As special classes of frequent occurrence we have the classes of all real numbers ;
all numbers greater than unity; all positive numbers; all positive integers; all
positive and negative integers ; denoted variously by :

, U [a]; [e]; [4), [e]i [n), (1], [R]; [m],
respectively. :

Real-valued single-valued functions are denoted by Greek letters.
The fact that an element x belongs to the class £, is expressed :
.
Since we have £ = [q], evidently:
The statement «® is equivalent to the statement « is a g.
This abbreviation is extended to the case of classes of elements, and we have:
Re,
denoting the fact that the class R is a subclass of the class Q.

To state that the element x has the property P, we use the notation :

x®.

The concept of belonging to a class may be said to be a special case of such a
general property, and from this point of view, the notations are in agreement.
The notation is also extended to the case of classes, and we have:
0F
denoting that the class O has the property P. If the property P is not holding
we prefix the negative sign. Thus
. o~F
specifies that the class Q does not have the property P.
Finally, in the statement of propositions and proofs it has been found con-
venient for the sake of clearness and brevity to use some of the symbols used
be Peano® and Moore,t in particular the following:

* Peano: Formulario Matematico, Editio V1, 1806. t Loc. eit., p. 150.
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to denote logical equality,

* “ logical diversity,
= “ definitional identity,
- “ it 18 true that ; () implies (); of (), then (),
Cc “ () @8 implied by (), N
wn “ () s equivalent to () ; () implies and is implied by (),
3 “ there exists,
3 “ such that,
. i and,

*y 3, *t as signs of punctuation, the largest number of punctuation dots being
around the principal implication,
[] to denote a class of,
i “  the sequence of.

3. Definition of Limit. The Systems (2. ; L). Properties of Limit in (2 ; L).
We assume the following definition of limit:

Limit 18 a relation between sequences of elements and single elements.

The nature of the relation is not specified permanently ; it may vary with
the type of element considered. If such a relation is holding between a sequence
of elements, and a single element, the single element is said to be the limit of
the sequence of elements.

In case there is defined a limit relation for the class £, we say that the
class Q has the property L, and in this way we obtain a system (Q; L). The
limit L in such a system might be considered as drawn up in the form of a table
which for every sequence of the class specifies the corresponding single element,
if such an one exists. We shall suppose that: *

Lgn=4q
states the fact that the limit relation L is holding between the sequence {g,]

and the element gq.

The limit Z in the class £ may have one or more of the following
properties :

(1) Limit 1s unique.

(2) If a sequence has a limit, any subsequence of the sequence taken in the same
order has the same limit.}

* Throughout this paper we denote L by L.
N=0 n

+ This is a statement of two distinct facts: (1) that the 1imit of the subsequence exists, and (2) that it is
the same as the limit of the original sequence. 8imilarly below, in the case of properties (3), (4), (5).
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(8) If a sequence has a limit, any sequence obtained by removing a finite number
of elements at the beginning of the sequence, has the same limit.

(4) If a sequence has a limit, any sequence obtained by prefixing a finite number
of terms to the sequence, has the same limit.

(8) If a sequence has a limit, any sequence obtained by a rearrangement of the
sequence has the same lim:t.

(6) If all of the terms of a sequence are identical, the sequence has a limit,
which is the repeated element.

We denote by Z'; L?; L™™; etc., a limit L having the property (1); the
properties (2), and (3) ; not the property (3), but the property (4); etc., respect-
ively. The limit of the real number system is an L'™®, The limit used by
Fréchet is an L', We lay down permanently no properties of L, but in the
various theorems in-a system (Q; L) specify explicitly sufficient properties of
the L.

There exists but one relation between these properties of L. We have:

I .o. I,

t. e., if L has the property (2) then it also has the property (3). That this
relation is holding is at once evident. That it is the only relation between these
properties may be shown by the exhibition of limits having the properties
(1), (2), (3), (4), (8), (8), or their negatives, in all the 2% conceivable combina-
tions, not excluded by the above relation. By employing the method of § 10 for
the construction of limits, it is possible with little difficulty to obtain the
various combinations desired.

4. The K-relation. We shall subsequently show that it is possible to
obtain, relative to the system (2Q; L), the L being unconditioned, a theory of
sequentially continuous functions. However, some of the theorems in the theory
of point sets are not holding, even though we suppose the limit L to have the six
properties of § 3. The necessity of a system more restricted, and therefore less
general, than the system (2 ; L) is thus apparent.

We define :

The K-relation is a relation between pairs of elements, and positive and nega-
tive integers.

The nature of the K-relation will evidently depend upon the nature of the
elements considered, and the situation in which it is to be employed. Relative
to a class £, we may consider the K-relation as drawn up in the form of a table



Foundations of Fréchet’s Calcul Fonctionnel. 243

which specifies for every combination of a pair of elements ¢;, ¢, with an integer
m, 1. e., for every ¢,g,m, whether or not the relation holds. We denote the fact
that the K-relation is holding (not holding) between ¢;q,m by

Kﬂl‘l:m (_K 1101"‘)'

If we join the K-relation to a class £, we obtain a system (O; K). We shall,
however, make a restrictive postulate relative to this system, viz.:

In the system (2; K), for every pair of elements q,, q, of the class <. there
exists at least one integer m such that

Kom
The K-relation may have one or more of the following properties:
(1) Kggm *m<m D« Ko,
1. e., if the K-relation holds between g,, g;, and m/, then it also holds between
¢1, g2, and m, where m is any integer less than m'.
(2) Koum + D+ Kogm,

i. e., if the K-relation holds between g, ¢;, and m, then it also holds if the ¢’s
are interchanged, ¢. e., between g,, ¢;, and m. The relation K, is symmetrical
in the arguments ¢,, ¢,.

® Fréchet (loc. cit., p. 18) introduces in his work a ¢ volsinage’ or distance function on pairs of elements,
and supposes that to every pair of elements g¢,, g, of the class { there corresponds a real number a, the
value of the function. We shall denote this function by d, so that J§ is a function on Q) to A. The presence
of a ¢ in the class { gives us a system (Q2; d). The idea of the above relation was suggested by the frequent

occurrence of inequalities of-the form X
<—.
JWI:.. m

However, to permit the use of quantities on the right-hand side of this inequality which are greater than
unity, it has been found convenient to substitute the inequality

1
"Wh -

where ¢ 18 a real number greater than unity, and m takes on both positive and negative integral values. We
take up the relation between the Fréchet d, and the K-relation in §6.
t These properties are analogues of the properties which Fréchet presupposes relative to the 4, viz.:
0g1gs 205 0010 = Ogeqyi Ogygy =0« N+ ¢y =¢,;
{. e, It d4,q, 18 zero, then ¢, = g¢,, and if ¢, =¢,, then dg,q, 18 zero:
3 ¢.a(£o¢. =0 dgg S €« dggs ¢+ D¢ Iggy < ),

that is, there exists a real-valued single-valued function of e which approaches zero as ¢ approaches zero, and
is such that if dgq, <€ 8nd dgq, < e, then dgg, < 9,.
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(3) Kygm(m) « D« g1 =g,

i. e., if the relation K,,,, holds for all values of m*, then ¢, = g,.
(4) Q=19 *D ¢ Kygm (m),

the converse of (3).

() ' E (m{:a?m = ¢« Kogm Koam * D ¢ Kogpn)s

i.e., there exists a function ¢ of m, with integral values ¢,,, approaching infinity
with m, and such that if K, and K., then K g, .+
As properties equivalent to (5) if the symmetry (2) is holding, we notice :

(6) A0ns (LOn=* Koum Kogn +D * Koasn),
which reads like (56). Further:

(7) FPn? (Lon=0* Kogn Koam *D * Koqs),
(8) FPn3 (Lon=+ Kogm Kogm O+ Koqu)-

The functions ¢ of (5) to (8) need not be identical. We denote them by ¢°, ¢°,
¢", 9%, respectively. In addition to ¢%™, we shall need the following :
(a) ¢% = @%,, where m' is the lesser of ¢%, and m,
(b) 99 =%, , where m' is the lesser of ¢}, and m,
(c) o8 =¢s,, where m"is the lesser of ¢;, and m,
Evidently each of these three ¢’s approaches infinity with m.
We speak of K', K®, K™%, etc., as K-relations having the property (1), the
properties (2) and (3), not the property (3) but the property (4), etc.
5. Relations between the Properties of the K-relation. Before taking up the
relations between the above eight properties we prove the following lemmas:

(1) K « Kogm <3« Koggon,
t. e., if the K-relation has the properties (1), (6), and (7), of §4, then the

K -relation also holds between ¢,, ¢, and ¢2,, where ¢}, is defined in § 4, in terms
of ¢%, and ¢},, whose existence is assured by the presence of K*.§

# Denoted by (m). Cf. Moore, loc. cit., p. 27.
+In addition to the Fréchet property mentioned ubove compare also:
|a,—a,[<1/e™ « | ay,—ag| S1/e™ « Do | 6, —ay] <1/chm.
{ This lemma and the succeeding ones aim at replacing the symmetry property (2) by a number of proper-
ties, collectively weaker, but for our purposes equally effective.
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Suppose K,,n,. Then since K® we have: K, 4 . Let m' be the lesser of
¢% and m. Then since K* we have

K gm and Kggm,
and so if we apply K7, we obtain :
K gatrw s U €y Kgg o

In a similar manner we show:

(2) K% Kyom * D + Kpggon-
(3) K™ Kpom *D * Kygon,..
We have further:

(4) K% « Kygm +9 + Kogpon s
) K« Kygm *D * Kppns
(6) Km * Kogm D ¢ Kyggas

the proof of which is easily evident.
We then have the following propositions relating to the interrelations

between the properties of K:
(7) K*:D:K°e»n+:K* nne K" n+ K

i. e., if the K-relation has the property (2), then the properties (5), (6), (7), and
(8) are equivalent. For we evidently can choose:

Pn = P = P = Pl
(8) _ K'*:D:K*-u»nn+ K';
t. e., if the K-relation has the property (4), then properties (6) and (7) are
equivalent. Weshow first that if (6) is present, then (7) is also. Suppose

Kgqm 80d Kogm.

Then by (4) above, we have:

K‘I:Ql¢'- and KQW&“.'
Hence, applying K°:

: Kﬂlﬂa¢u¢e.; i’ 6., ¢;ln = ¢g°n M
Similarly if A’ we show that
¢?ﬂ = ¢17-)

(9) K':D:K".D . K&
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In a manner analogous to the preceding, it appears that:

‘an:q’:‘;?., '
(10) K*:D:K*.D. K"
Evidently <

Pm = P -
(11) K*:D:K%.D. K"

The proof is the result of an application of proposition (5), and the method of
proposition (1).

The last four propositions may be gathered into a single one, and we
thus get:
(12) K*:D:K*-»n+ K'+un+ K®+D+ K5
t. e, under the hypothesis that K has the properties (1) and (4), the properties
(8), (7), and (8) are equivalent, and any one implies (5).

(13) K* .D . K"
This is a result of proposition (1), and the method of (1). It appears that
‘Plrin = ¢Sn” ’

where m" is the lesser of ¢?, and m.
In an entirely similar manner we have :

(14) K™ .D. K% K®.D. K¥; K™ .D . K%,

We can write these as a series of continued implications and equivalences

as follows:
(15) K':D: K" «tn+ K®etn+ K® :D . K

i. e, if K has the property (1), then the combinations (6) (7), (7) (8), (6) (8) are -
equivalent, and any combination implies property (5). '

We shall show later, in § 9, that these constitute all of the relations which
hold between the properties of K, the class & being general. It is too much of
digression to take up this discussion at this point. _

6. The Relation between the Fréchet § and the K-relation. In the foot-note
in §4 we referred to the fact that Fréchet employs a distance function 4,
having certain properties. It is possible to separate some of these properties,
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and we thus obtain the following, of which the last seven are analogous to the
properties of the K-relation above, with corresponding numbers:

(0)* d0a > 0 for every pair ¢, g,.
(2) 3411‘1: = 8'Isr‘ll :

The § is a symmetrical functfon of its arguments.

(3) 80 =0 D+ ¢i =¢.

If for a pair of values ¢, ¢, the § function has the value zero, the two members
of the pair are identical.

(4) Q=q *D = d,,=0.

(6)F 9.2 (Lp=0+3y0Se dgqSe +D - 80 <o)
(6) 3¢.2(Lo=0: detn S » dpnSe + Do 8,0, < B0)
(7) F¢ 2 (Lo=0-8qSe duqSe I 9y <)
(8) P2 (Lp=0 - §gqSe - dgqSe D+ dyq S¢o)-

We denote by &, 6*, etc., a & having the properties (2), the properties (3)
and (4), etc.

In a system (2 ; §) we are able to define a K, and thus obtain a system
(2 ; K) as follows : ' |

1
Qg = _2T ’

Kﬂl'h"” = 8

Denote the

i. e, the K-relation holds between g¢,, ¢, and m, if §,, = 2#,,

K-relation thus defined by A;. Then it follows at once:

# This property, not analogous to any properties of the K, plays a rdle only in that it avoids the persistent
use of the absolute value of the . From any given ¢ we can obtain an equally effective J having the property
(0), by simply taking the absolute of the given J. We shall suppose in the sequel that this has been done, and
that we are operating with a J having the property (0).

t 1. e., there exists a real-valued single-valued function ¢, which approaches zero as e approaches zero,
such that if dg,g, <€ and dg,q, <6 then dg g, < ¢e. Moreover, we are able to say that there exists a function ¢
which is bounded for all finite values of e. For suppose it were not so. Then there would exist

(8) { e}, e, sach that e, <e¢;
() { Ga by { % }s { 2 b, such that g, 0., <e, 804 dgpngs, <€, 80A dgiage, > 7.
But
 Ogingen S € * Ogragen S € ¢ D ¢ Squagm < Pegs
and we thus have a contradiction. We shall therefore suppose that the ¢ chosen is bounded for all finite
values of e. Similarly for ¢% , ¢'¢, ¢% below. '

31
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(1) K3; 4. e, the K-relation defined from the § has the property (1) of §4

We have further
(2) If & has any of the propertles (2), (3), (4), (8), (8), (7), (8) above, the

K, has the corresponding properties. In full:
#-D.K; #.O0.-K3; & -D-Kj; 8 .D.K3§; 8 .0 K§;
y.D.Kj}; #.D. K}.
The first three of these cause no particular difficulty. As for & .D . K&, it is

necessary to construct a ¢°. Let:

S 1 1
Em=8(¢el _2m-—l <6§F ’

t. e., the least upper bound of the values of ¢,, while ¢ lies between —2—,,%37 and

1 . . . . .
5w+ In accordance with the foot-note on p. 247, this will evidently exist.
Then if )

1
g1 <EBnsom,

we set ¢, =m’. In this way we define a function ¢ with integral values ¢,
and evidently
Lopp=wo.

A similar construction holds for (6), (7), and (8).

We-thus have the result that the Fréchet theory is a special case of a
K -theory.

On the other hand, in a system (2 ; K) where the K-relation has the
property (1), of § 4, we can define a §, and hence obtain a system (£ ; é), in the
following manner:

(@)}* If K, gm(m), then &4, = 0.
(b). If not (a), then set §, , = 2,,, , Wheret

m = B(m 2 K om)

If we define a § corresponding to a K-relation having the property (1), in this
way we are able to state a proposition analogous to proposition (2) above.

%It K m holds for all values of m, then dgq, = 0.
¢m' is the least upper bound of the values of m for which the K-relation holds between g,g.m.
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As a consequence, whatever theorems involving the properties of §4 are
holding in a system (2 ; K), are also holding in a system (9 ; §); and conversely,
the theorems holding in a (2;4) will also hold in a (2; K), provided the

K-relation in question has the property (1).

It seems then that the K-relation with the property (1) of § 4 is not more
general than a §. We can, however, regard the K-relation in the light of an
operation which exhibits a § having rational values only, corresponding to any
given 4. If, moreover, the K-relation is sufficient for our theory, then we have
shown, incidentally, that the essential part of the § is a rational part. We shall
therefore use the K-relation in preference to the 4.

7. Limit defined in terms of the K-relation. In terms of the K-relation we
may definé limit as follows:*

Lg,=gqn=rmD:An,3n2n, D Ky 4p.
Evidently such a limit is an L. We shall denote it by Z,. It follows then that
any theory obtainable in a system (£ ; L) is also holding in a system (Q; K)

with L = Lg.
We have the following propositions relative to the properties of Ly :

(1) K .O . L%,
where (2), (3), (4), (5) are the properties of L of §3. This is at once evideut
from the definition of Lg.

(2) K*.D . L%,
which is also an immediate consequence of the definition of L,.
(3) K™ .D. LL;

i. e, if K™ then the Ly produces a unique limit. This may be shown as fol-

lows : suppose
Lo, =g, snd Lg,=¢".

* Lgn = g is by definition the same as the statement: For every m there exists an integer my, such that

n
for every n greater than ny,, we have Ky, qm. Of course, this is not the only possible definition of limit in a

K-situation ; e. g., we might define:
Lgp=¢ :=:m:D:Anpan=npy D+ Kg om-
n

The above definition, however, is the analogue of the Fréchet definition:

n=gq == I,d,l-q=0,
n n
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Then by the definition of Ly we have:
m D+ An,3n2n, «D+ Ky o and K gom,

the n,, being the greater of the values of n,, for ¢’ and ¢”. Then K® gives us:

K g4, (m). ,
Now since L¢,, = », and K has the property (1), we have :
. quqnm (m),
and so K3 gives us .
¢=q"

Usually in a situation in which it is a question of arguing the fact that a
sequence approaches an element as a limit, we do not obtain a statement which
is identical with the above definition, but rather one of which the statement of
the definition is a consequence. One of the cases of frequent occurrence is
covered by the following lemma : *

(4) Kl';Qn(’q:D:E‘Lng(f/‘l’uzw 'Kq-q-h) -3°£fqn=q-
For since Ly, = «, we have:

m:iD:An,3n>n, «D .Y, >m
Since K, this n,, will also serve as the n,, of the definition of limit.
As a epecial case of this we might consider this proposition when for every

n we have

=9
Then we have:

(6) K ‘¢ ¢n=¢ (n):2:3 ¢n3(£’¢n= o Ko qp) - K yqm(m).

This lemma was used in the proof of (3) above.
8. On the Composition of Classes of Elements, and of K -relations. Suppose
two classes 0/ = [¢'], and Q" =[¢"]. We derive from these classes a product

or composite class:
e = (¢, ¢

t. e., a class 0 = [¢g] whose elements ¢ = (¢/, ¢") are bipartite, ¢’ and ¢’ inde-
pendently ranging over the class £’ and £/ respectively. In practice, when
there is no possibility of misinterpretation, we denote the element (¢, ¢")
by ¢' ¢".

%7 e, if the K-relation has the property (1) of §4, and the sequence { ¢ } and the element g are such
that there exists a function ¢ with integral values ¢y, approaching infinity with n, and such that Kgnqynr
then the sequence has ¢ as a limit.
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Similarly, from a finite number of classes £/, © ...., O® we obtain a
composite class :
QSN .. . Q= [(/q//_ . _qn].
" Returning to the case O/Q", suppose there exist in £’ and £" K-relations:
K' and K", respectively; ¢ e., suppose we are dealing with the systems (9'; K')
and (2"; K"). Then the existence of a system (O ; K) is of interest. This
depends upon the possibility of defining a K-relation from the K’ and K. We
construct such a K-relation as follows:
Suppose ¢, = g1¢i' and ¢, =¢z¢;". Then
K 44m if there exist m’ and m” such that K’y ;.. and K", o v, and m is
the smaller of m' and m'.

Evidently such a K-relation will satisfy the condition that for every pair of
elements ¢, and g,, of the class £, there exists an m such that K, in so far
as such a condition is holding in the systems (2/; K’) and (S/; K").*

We consider how the presence of properties (1)—(8) of §4 of the K’ and K"
affects the presence of the corresponding properties of the K. We have:

K? . K" .D. KP’

where P = (1), (2), (4), (6), (6), (7), (8), but
K8 . Kms .5 . K8

The proof of these propositions is very simple.

We can then state the result that if we have a theory in a system (Q/; K'),
which concerns itself with properties (1)—(8) of §4, a corresponding theory is
holding in a composite class built up of two such systems.

A similar construction and result relative to the composite class and the
composite K will evidently hold if we are dealing with any finite number of

systems (Q; K).

* The above definition is not the only one possible. Others which suggest themselves are:

(a) Kqq;m 1f both K'gr, grom and K g grym .

(b) Kgq,q;m 1f either K'qr g'em or K/ g girem.

(c) Kgq,qom if there exist m’ and m'’’ such that K/, g, and K/ gm qtym and m is the larger of

m! and m/’.

(d) Kq,g;m if there exist m’ and m!/ such that K'g, g1/ 8nd K/ g, gitomer 80d m = m! + m'’,

(e) Kgyg,m if there exist m’ and m// such that K’gs, g,y and K"/ gu, girymn 8nd m = m’ x m’’.
All of these except the first have the defect that the theorem K /3 and K//2 « O « K% is not holding, and more-
over it 18 not possible to find a simple condition on K’ and K’/ which will carry with it the presence of the
property (3) in K. In the case of the first,we do not have a system ({) ; KX) as defined in § 4, unless K’ and K/’
have the property (1) of §4. ’
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9. On the Complete Existential Theory of the Properties of the K-relation.
We conclude this part by the construction of a complete existential theory of
the properties (1)—(8) of the K-relation.

Definition The complete existential theory of a set of properties P,

P,, ...., P, of systems 3, consists of (a) the body of interrelations between
the properties, and (b) a body of systems 3, there being a system ¥ for each
of the conceivable combinations of properties P;, ...., P, and their negatives
—P,, ...., —P,, not excluded by the interrelations of (a).

In case a system 3 is obtainable for each of the 2" combinations of
P, ...., P, and their negatives —P,, ...., —P,, the set of properties
Py, ...., P, is said to be completely independent and consistent.

Evidently, if a set of » properties P,, ...., P, are completely independent

and consistent, they are also independent in the ordinary sense, i.e., it is possible
to find systems 3 having the properties: ’
_Phpzr""’Pn; Pn—Pz;Ps; ""an; sy Pl: Pz: ettty Pn——ln—-Pn'
We propose to consider the eight properties of the A -relation given in § 4.
In §5 we have derived a set of relations between these properties. These rela-
tions exclude 176 of the 2°= 2566 combinations of the properties (1)-(8), and
their negatives, leaving 80 to be discussed. To complete the existential theory
it is necessary to obtain a K-relation for each of these eighty combinations of
properties of K. We take up these eighty K-relations relative to classes Q of

the following types:

(a) A class  consisting of one element.

(b) A class £ consisting of two elements.

(c¢) A class 2 consisting of three elements.

(d) A class Q consisting of four elements.

(e) A class Q consisting of a finite number of elements.

(f) A class & consisting of a denumerable infinitude of elements.

(g) A class £ consisting of a non-denumerable infinitude of elements of the
power of the interval 0....1. These are denoted by

_ QL Qi QI QIL QU QI OIV,
respectively.

In the following table, which gives the eighty combinations of the presence
and absence of the properties of K, let 4 stand for the presence and — for the
absence of the property. The Roman numerals in the last column give the type
of class £ of smallest dimension in which it is possible to determine a K-relation
having the combination of properties in question.

*Cf. Moore, loc. cit., p. 82.
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TABLE I
(1[(2)[(3){(4)(6)|(6)|(7)|(8) (1)](2)|(3)[(4) ((6){(6)|(7)|(8)
1|+ |4+ |+ ]+ |+ |+ + |+ L1411 —1— |+ +|— |+ |+ 11
2|+ |+ + |+ |—|—|—|—|Ul |42 —— |+ |—|— |+ |+ |+ I
3| —|+ !+ |+ |+ |+ |+ |+ 43— T+ — |+ |+ —|—I
4| —|+ |+ |+ |—|—=|—|— |l |44 —|—|+|—|+|—|+|— 1L,
5|+ |— + |+ |+ |+ |+ |+, 45— | — |+ |—|—|+]|+]|— 1],
6 |+ |— + |+ |+|—|—|—]|II |46 | —|— |+ |—|+|—|— |+ |IL,
T+ |— |+ |+ |—|—|—|— |l |47 —|— |+ |—|— |+ |— |+ I
8|+ |+ |— |+ |+ |+ |+ |+ |IL 48| —|—|+|—|—|— |+ |+ |1
9 |+ |+ |—|+|—|—|—|— | 49— |—|+|—|+|—|—|—|IL
104+ |+ |+ |—|+|+|+|+LILI0O | —|—I4+|—|—|+|—|— |1
n |+ |+ |+|—|—|—|—|— L |81 —|— 4 — ==+ =1
12 |— |— |+ |+ |+ |+ |+ |+ |52 —|— + — ==+ |1
B —|—|+|+|F+|—|— |+ |88 —|— |+ |—|—|—|—|—|1IL
14 | —|— |+ |+ |+ |—|—|— [ |[64—|+|—|— |+ |+ |+ |+ I
15 | —|— + |+ —|—|—|—d (66— +|— —|—1—|— | — 1L
16 | — |+ |— |+ |+ |+ |+ |+ |86+ —|—|— |+ |+ |+ + |11
17 | — |+ |— |+ |—|—|—|— s |67+ |—|—|—+|+|—|—]|1IL
18 |— |+ |+ |— |+ |+ |+ |+ LIUI68 + | — = — [ — 4| =]
19 |— |4+ |+ |—|—|—|—|— [ |89+ — —|—|+|—|—|+|IL
20 [+ |—|— |+ |+ |+ |+ |+ | |60 + — — + === |11
21 [+ |—|— |+ |+|—|—|— |61+ —|— —|— |4 |— | —|]1L
22 |+ |—|—|+|—|—|—|— | |62+ |—|—|—|—|—|+|— |1
28 [+ |— |+ |— |+ |+ |+ |+ |63+ —|—|—|—|—|—|+ |1
24 |+ |— |+ |—|+ |+ |—|—|ILL |64 + — = === |— |1
2 |+ |— |+ |—|+|—+|— (LI |66 — — — |+ |+ |+ |+ 1L
26 |+ — |+ | —|+(—|— |+ 166 —— —I— 1+ 4+ +|— I
21 |+ |— |+ |— |+ |—|—|— 1L | 67| — — |+ |+ |-+
28 |+ |— |+ |—|—|+|—|— | ||68| — | —|—|— |+ |—|+|+]|]IL
29 |+ |— |+ |—|—|—|+|— [ 69| —|—|—|—|—|+|+|+]|1L
0 |+ |—|+|—|—[—|—(+ U ||70|— | —|=|—|+|+|—|—]|IL
81 [+ |—|+|—|—|—|— |- U || —— = — |+ |— |+ |—|IL
32 |+ |+ |—|—=|+ |+ |+ |+ |72 —|—|—|—=|—= |+ |+ |—]|1]
33 |+ |+ |—|—|—|—|—|— U |B|—|—|—=|—|+|—|—|+|IL
84 |—|—|—|+|+|+|+|+IL [T4|—|—|—|—|— |+ |— |+ 1L
8 |—|—|—|+|+|—|— |+ |76 —|—]|— — =+ |+ |1
36 |—|—|—|+|+|—|—|—|L |76 —— — |+ === 1L
837 |—|—|—|+|—|—|—|— s |17 = |—|=|=|—=|+|—]—|]]
8 | —|— |+ |— |+ |+ |+|+ L |78~ — — =+ |— |1
39 | —|— |+ |—|+|+|+|— U 79 —]— — | ===+ |1
0 [ —|—|+|—|+|+|— |+ |80 —|——|—|—|———|]IL
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(a) The class Q consisting of a single element. Let the element be 4.
Then to define the K-relation it is necessary to state the values of m for which
K ,,m holds. Then we have:

(1) (LK) - D« K55,

There is no difficulty about seeing that A%, As for A we either have
Kgypn(m) or I ms —K,,.

In the first case K® and in the second A® vacuously.* We have further:

(2) (L', K) :D: K*.D .« K.

For if K* we must have K, (m), and so K.
These two propositions exclude all but the following three combinations :

L ++++++++4+; 10. +++—44++4+; 18. —++—+ +++.
For 1, let K, hold for every m; for 10, let K, hold for m <m_; and for 18,
let K, hold for m 2> m,.

The case in which the class & consists of only one element not being of
frequent occurrence, we give K-relations satisfying the combinations 1, 10, 18
under the next head also.

(b) The class £ consisting of two elements, ¢, and ¢,. In this case we must

assign values for which

K pqm s Ktmzm » Kaqum s and A gqm

hold. We arrange the combinations possible in II, in tabular form, giving first
the combination of properties, then the values of m for which the K-relations hold,
and finally the functions ¢° ¢° @', and ¢* in case we have K° K* K’ or K*
We thus obtain 34 systems in &', We are not able to obtain more on
account of certain relations which exist between these properties in case the
class £ consists of two elements only. These relations, suggesting themselves
in the attempt to obtain a A -relation satisfying combinations of properties which

they exclude, are:
(1) A’l3 . o678,

* This term and concept, introduced by Moore (Transactions of the Americarn Mathematical Society, 111, p. 489,
foot-note), is of considerable importance in this type of discussion. We shall make use of it frequently,

especially as far as the property (3) is concerned.
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TABLE 1I.

If(ll'lz'" K‘h‘llm

m < m, m < m;

m > m, m 2> m,

m < m, m<m,<m,

(m) (m)

m < nyy m =< m,

m 2> m, m2m, > m,
m odd m even
m 2> m m < my
m2>m, m 2> m,

m > m, m2>m,
(m) m < m,
m < m, ';m§m2<m,

(m) | (m)

(m) o om2m
|

(m) ’ m,

m 2> m, ;7112m2>m1

m; ' m even, m,
m even, m, m,
mm | m2m
m<m, , m>m,
imZmy >my o my<<m < m,
m2>m; 0 om<L my
m 2> m, m > m,
(m) (m)
(m) (m)
(m) m=sm,
(m) m < m,
(m) m < m
(m) m 2 m,
(m) ;o oms=m
(m) L m<m
(m) m=m,
(m) m < my
m 2 m,

+ 4+ |+ |+ [+ + + (m)
— ++ |+ |+ + + + (m)
+i— [+ F A+ (m)
i+ =+ |+ I+ (m)
+ 4+ +|—|+ + 4+ +| m<m,
— — i+ |+ |+ + + 0+ (m)
— — |+ |+ =+ (m)
— =+ |+ |+ = — = (m)
— + i+ =+ + ] m2m
— = =]
4+ —| =+ +—i’—-f_ (m)
‘+‘———|— — i + +§+.'+ m<m,
+ +|—|— = — — — msm
— — =+t +i+ + (m
— ==+ + === (m
— — |+ |= |+ + + + m>m
— —|+|— 4+ + — + modd,m,
— — |+ |— |+ — + + modd,m
— = |t |—= T == m2m
— |t == = <,
— — |t | =+ = =+ mm
—_ |+t | =t = — — mZ>m
—_ || == — — < m
— +|— =t |+ + + m>m
— + === m < m
+ —_—— 1+ + | — — M§m1
+ == T+ = (m
+ | ——— |+ _‘f_+i m < my
—_— ] — =+ +!+ + m2m
—_—_ ==+ "i‘:_‘i m<m
— ===+ |— ]+ —] mZ2m
— =] ==+ |—1— 4] m<m
— ===+ | — —] m>m
ot e e e e

(m)

(

(

(

(m

m < m,
(m)
(m)

(m)

m 2> m,

. m < m

(m)
m < m,

m <

(m)

m,
m < my
m=>m,
m < m,
m > m,
m < m

m > m,

m=>m
(m)

m < m

m < m,

m 2> m

m 2> m,
m < m,
m < m,
m 2> m
m 2> m,
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P
¢I" =m
P = m
¢7n —m
<Pl“ = m
P = m
¢"] =m
Pt =m; ¢5 =m+ 1
:p?,, =m
¢'" =m

o= m
3<p,,,:m: m > m,

¢m =ny: m < my

%‘Pm =m: m i m,

P, =my:mm
P =m

{q)m =m: m > m,

P = My: m M,

J— . A8 —0 . b —
q)m,_ m]r ¢r:—m7 q);n_m_,_ 1
¢m‘=ml; ¢?’?:m;¢l‘":m+ 1

(i 1; pp—
P =m

W=

s J—
¢m =m

{¢m=m: m > m,
P =m;: m m,

56 —
Py = m
q;gf:m

L —
(Pm'—m

{q;m =m :m 2> m

P =my: m M
9% ; cf. 65
¢%; cf. 65
% ; cf. 65
¢°; cf. 65



256 Hi1LpEBRANDT: A Contribution to the

This proposition holds also when £ is any class of finite dimensions. We
prove it by constructing the ¢. Evidently *
m=B(maK,qm iFk; i,k=1,2,....,2)
exists. Also, if K does not have the property (4), there will exist:
m'=B(m 3 Kqqm, iFj2Kegm (m)).

Let m be the greater of these two, which, in case K*, will evidently be m/. Let
further: _

l’.’_l =§(B(m 3 K(qukmy 'L*k)l@’ k= 1) 2: AR ] 'ﬂ),

m'" =B (B (m 3 Kogm, 13 j 2 Kyqn(m))]7)

and m the smaller of these. This will exist on account of the finiteness of the
class 0. Then we construct:

¢n=m when m<m, and ¢, =m when m >m.
It is easy to see that this ¢ serves the desired purpose.
(2) K#38 .0y . Kses

Since K* we have
Kiom (m), and K, .. (m).

Further, from K*3,
Kq,q,m (m)r and thlllm (m)'

Hence K'%%

(3) K*.D - K"
For if K* we can choose ¢, = m.
(4) K'"*.D. K"

We can construct a ¢ in a manner similar to that used in proposition (1).

(5) K19773 [y, prass

If K™% we have either K, (m) or K 4, (m). Suppose K, ,m(m). Then
KIG .D ¢ quthm (m)l K" 'D ¢ K(h(hm (m)7 a’nd Iflﬁ .D ¢ Kcmnm (m)’

And so we have K%,
(6) K¥8% .. K%,

* 7/ is the least upper bound of the values of m for which Kg,q,m bolds, where i} &, and both i and &

range over the values 1, 2, ...., n.



Foundations of Fréchet’s Calcul Fonctionnel. 257

By K* we have K, (m), and K. (m). Alsoby K® we have either K, (m)
or K, (m). But in either case the presence of K® permits us to take

9% = oL = gl
(7) K®.D. K"
K? affects the following pairs of K-relations:
Koam» Koggms Kogms Koams Kogms Keams Kagms Kagqm;
Koams Kggm' Kogmr Koam' Kogmy Koami Kagms B agmm -
Of these K® relates to the following pairs:
" .

aiqgmy

K,

Kyomi Kpqms Keami Kogm, Keoms Kogmo qagym *
Moreover, by K® we have:

quqsm = I(‘h%\‘b“m’ and Kqﬂlm =i qu(h"m'

So that

Kﬂl'hm’ KGN:'" = I K0101m¢°u
and

qu’llm’ quqzm = KQW«M-'

There thus remain to be treated only:

K with A"m,m and Kﬂthm with K'Ml"'"

We build our ¢* as follows: for m’s common only to K, and K,,,, and com-
mon only to K, . and K,,., let @5 =m. For all other values of m let

®m = Pm- It is not difficult to show that this is an effective ¢°,.

(8) K" .D. K5

q1q2m

The demonstration of this is analogous to that of (7).

(9) K® .D . K

We show that it is possible to choose ¢% = ¢%, , by taking up each individual
pair to which K applies.

(10) K .O. K~

The proof is similar to that of (7).

(11) K®% .. K"

By writing down all pairs to which K7 applies, and using the fact that since
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K? we have either K, ., (m) or K, . (m), we find without much difficulty
that ¢, = 5., -

(12) K®3 .D. K°
The proof of this is similar to that of (11). We find that ¢fn=¢§,8¢7m .
(13) K23 .D. K*or K® or K" or K&

Since K% we have either K, ., (m) or K,,, (m), but not both, since K 2
Suppose K, (m). Then K'* .D . 3 m 3 K,,, for m <m, only. There are
then four possibilities relative to K ,,, and K, ,,, :

(a) Kyqm(m), and K, (m). Then K*.

(8) Kypm (m), and K, m<m,. Then K"

(y) Kyqm for m<m, and K, , (m). Then K*

() K, qm for m<m, and K,,, for m <mz. Then K*.

These relations make impossible the systems not included in the above
enumeration of the systems possible in Q' In particular, (1) excludes 2, 6, 7,
11, 24, 25, 26, 27, 28, 29, 30, 31; (2) excludes further 9, 16, 17; (3) excludes
4, 5, 22, 37; (4) excludes 61, 62, 63, 64; (5) excludes 20, 32, 56; (6) excludes
35; (7) excludes 42, 45, 47, 50, 69, 72, 74, 77; (8) excludes 48, 51, 75, 78 ;
(9) excludes 52, 79; (10) excludes 39, 66; (11) excludes 67; (12) excludes 68 ;
(13) excludes 60. This totals 46, the number of systems which have not been
obtained thus far.

(¢) The class 2 consisting of three elements; 7. e., Q™. We pass now to
the case in which the class & consists of three elements. We do not take up
the combinations of properties of the K-relation found to exist in a (Q:; K).
As a matter of fact, we shall show later how to modify the systems obtained in
L', 80 as to procure systems in Q™ having the same combinations of properties.

As regards the relations which hold between the properties of the K-relation
when 2 consists of three elements, we have already seen that the relation

(1) Kw .D . KBG'TS

holds when £ is of finite dimension, and hence when £ has only three elements.
There is but one other proposition holding in Q1":

(2) K%™3 .2 . K&
This is proved by considering all of the pairs of K-relations to which &® applies.
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If we assume that A, (m), one relation of this type holding on account of K3,
it is easily apparent that we have ¢® = <p$,,¢5, excepting for the following four pairs
of K-relations:

K, c Kogms Kogm * Kogms Kogm + K om; Kogm = Kopgm, for which

9, qsm

we have as a possible ¢%: ¢*=¢i. . We then build a ¢* as follows: Take

cp8:¢g,¢h excepting for values of m for which both X,,, and A,,, or both

Kgm and K, ..., and not K, or K, .., and for which both K,,, and K,
or both K., and K,,,, and not K, ., or K,, . or K,,., hold. For these

values of m we take ¢8=q>f§,.s¢b. It is not difficult to show that this ¢ is
uniquely determined for all values of m and that Lg¢, = .

This proposition excludes but one further pos:ibi]ity: 66. There thus re-
main thirty-three combinations of properties of K which it is possible to obtain
in a class Q™ in addition to those already obtained in £™:. These systems are
given in Table III.

(d) The class Q consisting of four elements. Passing to the case in which
the class Q consists of four elements, we obtain only one additional system, viz.,
one satisfying the combination :

66, — — —— + + + —.

The following A-relation will satisfy this combination of properties:

Kogom s mas mg, m > my; K g (m); Kyqm t My, mg; Ky gm s mg;

” b Y . ¢ . P . . . . .
Ky gom s Mgy Mgy 2 my; Iy qm & May Mgy m 2y ; K, gm ¢ Mg, my; Koo, 0 mg, mg;
Kogm: m,; K, om My Kogm & Mz Koo & My
Kygm ¢ My, Koaum ¢ hig, NMg; Kogm & M5 Kgm & Mg, my.
We suppose the m,, . ..., m- to be distinct, and less than m,. The values of the

Yy 29 y My ) 1
¢-functions are as follows:
‘ )
m, I my m, mg |m2mymm,
—_— | N .
‘PB o om, mg mg ‘ my m m
?* m, my my, | m, m m,
P’ m, mg; | m, | mg m m,
- i |

In this situation K* because the ¢%, is not uniquely defined for the value m,, a

result of considering K, with K, .., and K, .. with K ..

@192y



260 Hr1LpeEBRANDT: A Contribution to the
TABLE III.
i IURPIRPNN 1 _ ,
W2]3) OGO (D6 K K | K Kosm | Kug |

I ; i ‘ ! i [ ! !
s— w4t === ) mEe om<m | omze m
9 +i+§—f+ '—i—;— —_—. (m) - (m) m < m (m) | (m) ’
15— — 4+ == == (m)  m2m mZm m2m, (m)
16 | — |+ — '+ + |+ + |+ (m; | %m§ | miml %m% gm; i
17 | — + ' — + — == (m ; m m m, m m
20 |+ —[— + + + +/+ (m) (m) m<m  (m) (m) ’

| a . : !
22 |4 | ——i+ — — —|—  (m) (m) m < m, (m) (m)
32+ 4+ — — + 4+ ++ (m (m)  m<m (m) 1 (m)
35 | — — — + + — — +  (m) (m) "y (m) (m)
37 | — | —— + _— = — (m) (m) mL m (m) (m) '
39— |—l4+ — 414+ +|— m,m, mg my, m, m; my my

I
i V !
42 | — '—+i-—"“—*+(+ + my m, m, mg my
45— — + — — + + - My, My my, my mg my my
47 | — | — + — — =+ + my m, my mg, m, my
438 —‘ T+ =+ my m, m, mg my
50 —'— 4+ — — 4+ —I— m<m m > m, m<m, m<m;, | m>m
51 [— | — + — _.-g_—\}»}_? m 2 m, m >m, m < m, m > m, m > m,
52 | — — + —l——"— 4| m<m; m2m, m < m, m < m, m<m,
56 4 | — —-:—i+;+\+;+: (m) (m) m < m (m) | (m) |
60 + — — — + — —— m<m  (m) | (m) m < m, m<om |
6l 4+ — — — — + — —| mZm  (m)  m<m, m < m, (m)
62 !4+ — — — — — + = (m o (m) | m<m, (m) (m)
63 + — — —— — — 4+ m<m | (m) l' m < my m < m m<m,
64?+l—';‘_{_£~ —{——' m < m, : (m) ‘ m < m m < m, m<m,
67‘—!——‘—— —+'+‘—*+?m:2m’,m,‘ (m) | m m=2m',m m=2m m
68 | — — — — + — 4+ +m=2w'\,m, (m) m=2m'+1,m m=2m'" m m=2m m
69 — — — — — 4+ 4 +|m=2m,m| (m) m 'm=2n', m;im=2m', m,
72 :-—)— — — — 4+ 4+ — m=2m,m; (m) ! my ym=2m', m m=2m', m
T4 | — | — — —— "+ — i+ |m= 3w, 'm,l (m) | m, m=3m', m; m = 3m’', m,
75 '——l— — — = — 4+ +'m=3m,m| (m) |m=3m'+2 mm=3m, m m=23m, m,
- = — -+ = = m < m, (m) | m < m, - m<m ' m>m
78J_r_ -—;—-—'——f-}-;‘— m2m | (m) { m < m, (m) i (m)
79E__ — —;—<——;——;+ m < m, ' (m) ‘ m < m,y m<m; | m < m,
| | i




Foundations of Fréchet’s Calcul Fonctionnel.

TABLE Il11— Continued.

261

K‘lﬂs’m K‘Ia%m [(qa‘hm I{Qz(hm ¢
m 2> m, ‘ m< my m 2>m, (m)
(m) m < m, (m) (m)
m2>m, m < my m 2 m, (m)
m 2> m , m 2> m, m 2> m, (m) P =m
m 2> m, m < my m 2 m, (m)
m < my m < m, , m < m, (m) my < my; @ =my:m<m,;
‘ P =m :m >m,
(m) m < m, (m) (m)
m < m, m < m, m < m, m < m, ¢,,,—m
m, my < m, my (m) MW=m; ¢%, = my; ¢ =m,
m 2> m, m< m m 2 m, (m)
m, my, my | m, my bo=m; @5 =m,; (]),,,2_. My ¢m =my;
I ‘Pm.:mar q’m, my; ¢m,—m27 ¢,,.,,—-77?3,
(Pm.:mz
m, m, mg my ¢16711 = P, = My; Ph, = 11y
m m, my m, 0 = Pn, = my ]
my, my m, mg mg Doy, = M35 P, = P, = My,
my, my, m, my, mg L, = my; Ph, = @b = my
m > m, m < m, L m >m, m 2 m, pn=m :mIm; ¢ =m: m m,
m > m m <m, ! m < m, m<m, Cf. 50
m2m m 2> m, m< m, m < m Cf. 50
m < m, mImy,my | mE<mymy mE<mg my| pp=mg:mImy; ¢,=m: m_>m,
(m) m<m m<m, m<m, oh=m
(m) m< m, (m) (m) Ph=m
(m) m < m, m< m; m<m Pn=m
(m) (m) m < m, m<m, Ph =m
(m) m < m, m=sm, m < m,
m, m, =2m'+1,m \m= 2m', m, P, =My P =m; ¢}, = 2m
m, m, m, m = 2m', m, Cf. 67
7n:':2m’+1,m,57n=2m’+1,ml m, m = 2m’, m, Cf. 67
m=2m'+1,m; m, m, m=2m/, m, P, =my; 5= 2m
m=3m'+1, m; m=3m/ +1, m; m=3m'+ 2, m;{m = 3m/, m, P, =My ; Ph=3m; ¢, =m
m=3m'+1,m |m._3m +1,m, my m = 3m/, m, D, = my; L=23m; Py =m
(m) | m <oy m 2 m (m) P =m, : m<m1,¢m—m:m>m,
(m) m < m, m<m, m<m, Ct. 77
(m) m 2 my m<m, m < m Cf. 77
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(e) The class O containing any finite number of elements. It is not possible
to obtain any additional systems when we pass to the general finite case.

(f) The class Q consisting of a denumerable infinitude of elements. We are
thus forced to proceed to the case in which the class £ is infinite. The simplest
type of infinity is the denumerable type, and so we consider this first. It is
possible to obtain systems (Q™'; K) which have the twelve combinations of
properties of the K-relation not yet considered. Suppose the elements to be

¢i, ©=1,2,..... Then the K-relations may be defined as follows:
2. 4+ 4+ + +————:inqjm:i=l=j:f:10r2: m< 2
t=7 s (m)

toryj=1or2: m<Zi+ J.
For from K, g1y with Kgg 4, would follow Kog which is contrary to

K, .3 Since K* we have also K 7%,

6. +——+++———————:qu,,,.@_] (m)
X <j m < 2
t1 >y mZu.

(1) K°® We show that ¢ = m. Suppose Ky qm and K4 ,. Then if
t=j or j=1Fk, we evidently have ¢}, =m. There remain to be considered
thus:

(@) ©2>Jj, j>k. Then since K, ,, holds for m <¢, quqkm for m <j, and
qaem for m <1, we evidently have ¢;, = m.
(B) 1< g, g >k Then since qum holds for m < 2, and I\qq m for m <j,
while K, ., at least for m <2, we also have ¢5 = m. Snmlarly it appears
that this ¢35 will work for the other two possibilities: ¢ > and j< %, and
1L g and j < k.

(2) On the other hand we have K™% For suppose ¢ > 2. Then if K¢ we
should have from K, ,; and K., K, .,. But by hypothesis we have at
most K,,,. Hence K °

Since, further, K® K7, K*® are equivalent under K" by §5 (12), we have
K 7and K%

T =ttt ———— Ky i=J 2 (m)

i i—jFL: m<2
i—j=1 :om <2+ L.

K
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For Ky, 241 With K 2is1 Would give us by K°: K, and we have

Ti+1%42" i+e 241’

B . 6
at most in,,ng. Hence K ° Again by K° we should have from K, 24

. L g , . —6
with K g 041" Koy oiomn and we have at most: K,  ,,. Hence K% and also,

by §5 (12), K "and K&
11. + + + ————— : in(ljm i:I: 1 a‘ndj:)‘: 1

1=1 or j)=1:

« W

IA A
+
.

3 3

This is similar to 2 above.

24. +—+ —+ 4+ —— 1 K,y m<y
It is not difficult to show that ¢ =m. We see that K 7 by considering quqim
with qu,,i,,,, and that A% by considering quqim with Kqﬂi""

25, + — 4+ —+ — + _:K'Ii’l,‘"' m<i. Cf. 24.

26, +— 4+ —F+——+4: in,,jm m < 2, except when i—j =1 and ¢ is
even, in which case m < 2¢ 4 1.

[t is easily apparent that ¢ = m. On the other hand, if K" and K°® we should

have fi : an ich i
ave from Kgg o1t Kog o, d K, 4., Which is contrary to K-

41 %417
27. +——+—+“_"—"—:K0illjm:i§j mgl
i>5 m<i.
Cf. 6
28, +—++——+——: inqjm :m < 2 except Kq,-{lim for i =23n + 3,
and K, gms Ko, ams Ko, ym fOT

t=38n+1, in which cases mZn+41.

We show without much difficulty that ¢% — m. The negatives are easily
obtained.

29, +—4+ ——— 4 —: in,,j,,, :m <2 except K"ﬂtm for 1=3n + 3

or3n + 1, and Ky 4. m, Koy am

K"Hz"i’"’ for ¢ = 3n + 1, in which

cases m <cn + 1.
Similar to 28.

33
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30. +—+————+:K,.:m< 2except K, for 1= 3n+1
or 3n+ 2, in which case m<2n+1,
and K., , . for i=3n, for which
m< 20— 2.

We have in this case ¢}, = m — 1.

31, +— 4+ ———— — t Kyt m <34

We have thus obtained a situation for each of the above combinations of
properties.

(g). However, the classes Q, to which we apply the K-relation and its
properties, are generally of the denumerably infinite, or non-denumerably
infinite type. In the above set of systems, however, there are considered only
twelve which include a class Q which is denumerably infinite, and no system in
which the class 2 is non-denumerably infinite. The question naturally arises
whether these situations are possible also in these two types of classes. We
obtain the desired result by attempting to extend the given situations to classes
of greater dimension, preserving the properties of the K-relation. The following
scheme of extension will cover a large number of cases:

(o) Extension of &' to 2™, I >mn.

Let the elements of '™ be ¢, ¢,, ..., q. We put this set into cor-
respondence with a set of n elements, ¢{, g5, .---, qn, by supposing ¢j to
correspond to ¢, if j=(¢— 1) mod n. This assigns to every member of the
set ¢,..--,q, a definite correspondent of the set ¢{, ¢z, ----, ¢, We suppose
then that inq’_m holds for values of m for which Kq',-, arym holds, where ¢, corre-

sponds to ¢, and ¢; to ¢;. We then have
(1) K?in Q" .D .« K”in Q™,

where P is one of the properties: (1), (T 1), (2), (T 2), (T 3), (4), (T 4), (5),
(—5), (6), (—6),(7), (—7), (8), (8). There is no difficulty about seeing
this. Hence it includes all of the properties and their negatives, excepting (3).

If by K ¥, identically, we mean that for no ¢ do we have A, ., then we can say:
(2) K¥4in Q" .D . K%*in Q™.

As a result we have then that if, in the combination K *, we have K * identi-
cally, all cases excepting those for which we have K® may be extended as
above, and the result will be a K in a &™ which will have the same combina-
tion of properties as the K in Q'"». A review of the above examples will reveal
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the fact that in all cases in which we have K*™¢ we have K * identically. Hence
this mode of extension will apply to all of the above systems excepting eleven,

for which we have K.
(8) A similar scheme enables us to pass from & to S Suppose L7

to consist of the elements: ¢;, ..., ¢, ..... We put ¢, in correspondence
with gz if k= (&' —1) mod ». Then if we define our A-relation as in («), we
shall have the same results.

(y) As for passing from £ to Q'Y where C!V is a class of the non-
denumerably infinite type, which is of the same power as the continuum, the in-
terval 0 <x<1. Let us suppose that our elements are ¢,, where 0 < <1; t.e.,

SV=[g,; 0Zx<1].
To set up a correspondence with £.''», divide the interval 0 <z <1 into n equal
parts and set

) . et —1 0
q. into correspondence with ¢, if @——-h—— Lz< .

and

. . . 1
g. into correspondence with ¢; if 0sx< e

If we define our K-relation as in («), the same results will also hold.
(0) Finally, to extend &' to &'V, set

q. into correspondence with ¢, if -

and :
qo into correspondence with g¢.

This produces results similar to the above.

We have thus shown that it is possible to obtain all but eleven of the above
combinations of properties in &' and &'V, It remains to consider these. We
discuss each of these cases separately.

. +4+ 4+ + 4+ 4+ + +. In any class let K,,, hold for every m if
q1 = ¢z, and for m < m, if ¢, F .

2. + + 4+ + — — — —. This occurs for the first time in QM"!, So we
need consider it only for &'V. Supposing the elements of !V to be ¢,, we define
our K as follows:

Ky o m(m), K, hold for m< 2, a;, ¢, F 0 or 1;

l‘]ql'qn'

1
I(qxqﬂm, ](qoqd‘m; ](qlq.nmy I{fll.qlmr fOI‘ m é ml’ where 7"—'< .
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3. —+4+ + + 4+ + + +. Wesuppose that in any class & ,,, holds for
every m if ¢, = q,, and for m2>m, if ¢, F q,.

4. —+ + + ————. In any class select three elements, and for
these define the K-relations as given in Il;. For all other elements let K,
hold for every m if ¢, = ¢,, and for m 2 m, if ¢, F ¢,.

5. +—+ 4+ + + + +. Let K, hold for every m if ¢, = ¢,, and for
m <m, for ¢, F¢,, excepting ¢’ and ¢": K ., for m <m, < m,.

6. +—+ 4+ + — — —. We need consider only &Y. The method of
constructing a K-relation from the one holding in &' is similar to that used
in 2. This holds also of

“ +—++—-————

122 ——+ 4+ + + 4+ +. Proceed as in 5, substituting > for <.

3. ——+ + +——+. Let K,,, hold for every m if ¢/ =¢". Let
Kq‘ 2 m hold for m odd if ¢ >j or x; > x,, and for m even if ¢ < J or x, < .
We have in this case ¢}, =m, and ¢4 = m + 1.

14, ——+ + + —— —. Suppose K, holds forevery m if ¢ =¢", and
K, 2 m holds for m 2m, if ¢ >j7 or a; >ux,, and for m < m; if 1< and
x < x,. We have ¢}, = m.

15, — — 4+ 4+ — — — —. Proceed as in 4 above.

We have thus completed the study of the complete existential theory of our
eight properties, and have shown that with the exception of the propositions of
§ 5, there exist no further relations between the properties in question.

While we do not have the entire set of properties completely independent,
certain combinations of them are. For instance: (1), (2), (3), (4), (5) form a
set of properties, which include all of the rest, and are completely independent.*
A further set of completely independent properties is (1), (3), (6), (7). This set
of properties is not quite as strong as the above. For if we have K3 we have
also K°8 while if we have K" we have only in addition &% and not neces-
sarily K? or K*+ There are a number of other interesting combinations of
properties, but they are equivalent to these two, or to the combination A '™

*In so far as Fréchet assumes the properties (2), (3), (4), (5) as properties of the 4, and a system (L ; J2%45)
is a system (0 ; A'%%!), we have shown incidentally that he has chosen a set of completely independent and

consistent properties.
tIn the next part we shall show that a K% is sufficient for the Fréchet d-theory. We have thus a

weaker set of properties than those assumed by Fréchet.
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II.

PrOPERTIES OF SuBcrLasses Jl oF THE Crass Q oF A SysteM (20; K) AND OF
Continvous Funcrions on it To 2.

We have been considering systems (Q; L), and (2; K), and have in par-
ticular discussed properties of L and the K-relation. We now turn our atten-
tion to the properties of the class &, considering in particular subclasses™ Ji of T,
and real-valued continuous functions on 3.

We show in § 13 that it is not possible to obtain some theorems of the
theory of point sets, relative to )i of systems (Q; L), even though we suppose
that L has all of the properties of §3. Hence the treatment of subclasses Ji of
classes £ is confined mostly to systems (Q0; K). However, a theory of sequen-
tially continuous functions is obtainable in a system (&; L). A theory of differ-
ence continuous functions can be derived in a system (& ; A). These are taken
up in §§ 18 ff.

The theorems derived are in the main the theorems of Fréchet. However,
instead of permanently conditioning the L and the KX in the systems (&; L) and
(2; K), we have preferred to indicate in each case the precise properties of
L or K, sufficient to carry the argument. In this way it appears that it is not
necessary to condition the L for the theorems on continuous functions. Further,
that a K-relation having the properties (1), (3), (6), (7), of §4, is sufficient for
all the theorems, and in some cases even weaker conditions on the K will do.
It will be noticed that the symmetry property (2) and the property (4) do not
occur. The former is really a matter of convenience. It is avoided by the use
of properties I which combination we have seen is weaker than K'° the
combination it replaces. Property (4) serves to avoid the separate consideration
of the limit of a sequence which consists of a finite number of elements only.
Its presence as a condition restricts the generality of the theorems. We have
therefore preferred to gain in generality at the expense of convenience,
replacing the property (2) by a weaker combination, and taking up a more
detailed discussion, if necessary, instead of using the property (4).

We take up first a consideration of the definitions of properties of the
classes ) in a system (Q; L), and the modification of these definitions in case we
are operating in a system (Q; A7), passing thence to the consideration of sub-

* We shall suppose that R denotes a subclass of C throughout this part.
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classes N of Q in systems (T; L) and (2; K), and the question of continuous
functions of i of (2; L) and (< K).

10. Definitions.* Suppose € a subclass of . Then we have:

(1) ¢ is a limiting element of N, if it is the limit of a sequence of distinct
elements of the class .+ We denote limiting elements of )i by 7.

(2) The derived class W' of N is the class which consists of all of the limiting
elements of the class N, 7. e., we have N'= [all +'].

(8) N is closed if it contains its derived class )/, ©. e., if N'%,

(4) 3 is dense in itself if its derived class contains it, ¢ e., if R¥.

(5) N is perfect if it is identical with its derived class, <. e., if 3 =N".

(6) N is compact if every denumerable infinitude of elements of 3 gives rise
to at least one limiting element. I -

(7) N is extremal if it is compact and closed.

(8) g is an element of condensation of W if it is a limiting element of any sub-
class of 3 obtained by removing a denumerable infinitude of elements from 3.
We denote an element of condensation by #*. Evidently a class Ji has an
element of condensation only if it is non-denumerable.

(9) N is condensed if every non-denumerable set of its elements gives rise to
an element of condensation.§

(10) An element g is interior to € relative to N|| if g is an element of €, and
every sequence of 2 which has ¢ as a limit ultimately belongsto €. In

symbols :
qinterlorS(m)E 3 Lrn=q e T | nlgnznl e T
n

* Cf. Fréchet, loc. cit., p. 6.

+ Of course if the limit relation L is such that no sequence with all of its elements distinct bas a limit,
there will be no limiting elements. A similar statement holds relative to compact classes below.

1 Accordingly every finite class is compact, for the definitional condition is satisfied vacuously, its
hypothesis being ificapable of fulfillment in a finite class. Cf. Moore, Trans. Amer. Math. Soc., 111, 489,

§In accordance with the foot-note to (6) above, R is condensed If it is denumerable; namely, in the
vacuous sensc.

| Denoted by g interior SR, Cf, relativity notation of Moore, loc. cit., pp. 27 fl.

4 Fréchet speaks of interiority in the strict sense. His definition reads:

qinterior S(R) = (& | { ”n .(distinct s Lrp=q D« »9.
n

This is evidently not what he means. Judging by the use made of the notion on p. 23, he assumes that he has
defined interiority :

qinterior S(H) — 2% . 17, }distinct slry=q.D«Anan>n . r8.
n

Our definition is, as is easily evident, equivalent to this one if we assume the L to have the properties used

by Fréchet, viz., L%,
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11.  Two Propositions. For an Ly defined relative to a K, we secure, as
follows, a desirable transformation of the definition of interiority : ¥

(1) K1 ;D serlore® 03 F g 2 (r 3 Ky, +D - 7o)
As a converse of (1) we have:
(2) K. o 3Ama(rs Ky, +D » %) 1D ; sinterior&m,
Joining these two propositions into a single equivalence we have :
(3) K' o 68 @" «1Die MMM s n s F mg s (r 3 Ky, <D+ 7).
We prove (1) first. If possible, suppose the proposition were not holding.
Then we have:

m «De+ dr,3 K. ., -rC.
m
Then evidently by § 7 (4): Lr, =s, and since s™teriore®  we have:
m

Ampam>m D 3,

We have thus reached a contradiction, and our proposition therefore holds.
As for (2) suppose Lr,=s; 1. e.,

m D An,3n>n, «D. K, m-
If, in particular, we take m = m,, we shall have by the hypothesis of (2):
n2n, - 7rd,
Hence s satisfies the conditions of interiority.
If we have K', we can define a concept analogous to that of the bounded
point set, viz. limited. We define: ]
glimited =R 3 (F mar, r, «D+ K, ,.)
The property limited is related to the property compact as follows: §
(4) K. N :D: Jicompact , =y , gjlimited

* The A-relation having the property (1), if an element s of a subclass S of the subclass R of L is interior
to & with respect to R, then there exists an m, such that every element r in the relation Kygm, belongs to €.
The analogous proposition holds for the weaker interiority defined by Fréchet, if the K-relation has the
property (3).

+ A similar result holds in a system (O ; M), J§ unconditioned:

i) .@m. S 213 \,interior@(,‘ﬂ) tmsIas d,<a+2D- 7‘5.
In*this form we have a conception of interiority which is analogous to the one of the linear point set theory.

1 R is limited, if there exists an m such that for every pair of elements r, and r, of the class i, we have

Ky rym -
§ Cf. Fréchet, loc. cit., p. 22.



270 Hi1LpEBRANDT: A Contribution to the

If possible, suppose it were not so. Then

—m . 3 Tim *Tom 3 —K:»lmrzm(—m)'

There are then four possibilities: (a) The sequences 7, and 7, each contain
only a finite number of distinct elements. (b) The sequence r,,, contains only a
finite number of distinct elements, while the sequence r,,, contains an infinitude
of distinct elements. (c) The sequence 7y, contains an infinitude of distinct
elements, while the sequence 7,, contains only a finite number of distinct ele-
ments. (d) Each sequence contains an infinitude of distinct elements. In case
(a), there will be a certain pair of elements 7, , which will have like subscripts
infinitely often. We argue a contradiction by considering that there exists an
mg such that K, ., . In case (b), so far asit is not covered by (a), we can show
the existence of a set of integers m, such that 7ym are all distinet and ermn:q’
while r1m, = 1 for every m.  Then, since (2; K) is a system, i
a my 3 K, g,
Further we have:
my «D e An, 3NN, I - l(,m amo®

Then, since K7, "
i e,

. R
rermn G mg? rlmn szn b o

By taking » 2 n,,, and — m, < ¢},,, we obtain a contradiction. Similarly for (c).
As for case (d), so far as it is not covered by the preceding cases, we can obtain
two sequences |7, { and }rzmn {, each consisting of distinct elements, and

further, since Jicompact in such a way that:
3 ((]u 92) 8 Lrlmn =0 and LTZmn =g,

Since we have a system (2 ; K), we have:
A my 3 Ky,

Also since L7y, =gq,:
n

X 1/
my « D+ A n, 3n2n, «2 - K,Zm
n qamy

Applying K7 to these two K-relations there results:

Tam n UL
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From Lr, =g, it follows:

/ /
¢;1"0 e I anmoaninmo -0 K,

TIm n 7w,

And hence

T r b7, e
m 7
by, m, Te mq

Hence, taking an integer m exceeding n/ and =/, and also such that
, g g g o

M

—m, <L <p3,,",0, we obtain the desired contradiction,

12.  Propositions on Compact Classes in (Q; L). We have as an immediate
consequence of the definition of compact classes the propositions:*

(1) The sum of a finite number of compact classes is compact.

(2) Any subclass of a compact class is compact.

(3) If every subclass of a class is compact, then the class is compact. The last
two propositions might be joined into one:

(4) mcompact TN gm .D . '\ncompact.

(5)-?- La . mcompact . mn 3 ‘\)f".‘lﬂln . mnclosod. non vacuous (1) .:) . 3 r3 rfR"(n).

The proof is identically the one given by Fréchet, loc. cit., p. 7.

13.  On Derived Classes tn a System (Q; L). It is not possible to obtain,
even though we suppose that the limit relation has all of the properties of §3,
t.e., L% the theorem that the derived set of a given set is closed, or, in class
terminology, that the derived class of every subclass of < is closed. This may
be shown by the following example: ]

We suppose the class £ to consist of the following elements, all of which
are supposed distinct: {qut, {@if, @ (L, =1, 2, ...., ©»). The completetable
for the limit L in this class is specified as follows :

(a) A sequence {q;,}, where [, is fixed, taken in any order, or any subse-
quence of such a sequence, or any sequence obtained by prefixing a finite
number of elements of the class, shall have as limit ¢,. (b) A sequence
{q.t, taken in any order, or any subsequence of such a sequence, or any
sequence obtained by prefixing a finite number of elements, shall have as
limit ¢y. (c) Any identity sequence, or any sequence, which after a certain

*Cf. Fréchet, loc. cit., p. 7. Notice, however, that there is no condition on L.
t If L has the property (3), and R is compact, if, further, we have a sequence of subclasses of §, each of
which is closed, contained in the preceding and containing at least one element, then there is an element com-

mon to all of these classes.
t The example given is a modification of the example given by Hahn, Monatshefte Vol. XIX, p. 248, 80 as

to include the properties 4, 5, of L.
34
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term consists of one element repeated, shall have the repeated element as
limit. No other sequences shall have limits. Such a limit is evidently
an L™, Consider now N = [¢,,]- Then N'=[q,], and N"=¢,, so that N
is not closed. This is due to the fact that the above properties are not
sufficient to secure ¢, as the limit of some sequence built up of elements taken
from [¢;,] only. The connection between the class )" and the class 3t as given
by these properties of limit 18 not sufficiently close. We therefore need a weaker
system if we desire to have this as a theorem. We obtain this in systems
(2; K), the K being suitably conditioned.

14. Relative to Derived Classes in Systems (2; /(). We have the theorem:*

K% :D: 3t D . Jifclosed
Suppose

Lr,=7" and Lr, =7),
n l

where the 7] are all distinct, and the »,, are distinct for every n. Then we have
by the definition of limit:

m +2 e+ 3 n, 3 Kr’" r''m
"

1

and ¥
3 lm 3 %rﬂmlm }(list,inct . [(r ” me

Moty ™ Man

Then by the fact that K has the property (5) we have
Kr T

n m m m

and so by § 7 (4): L», , =7", i.e., ©"* and therefore i"%.

15. On Compact Classes and Their Derivatives in Systems (Q0; K). We
have :
(1) Klﬂ :D: mcompact 'D . mlcompact.

We need consider only the case in which )i’ contains an infinitude of elements.

* Cf. Fréchet, loc. cit., p. 18.
t There exists a sequence of I, /;;, such that the elements of the sequence Tagply BT€ all distinct, and

r. m. Thedistinctness of the elements r,, | can be argued by a step-by-step process from the
LIV [V Pt m bin
fact that the elements of the sequences r,; are distinct for every n.

1 Cf. Fréchet, Rend. di Pal.,, XXX, p. 4. Also for (6) and (7) below.
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Suppose then that [, ] is a denumerable infinitude of distinct elements of the
class . Then on account of the definition of %/ we have:

Y B | %rm}distinct 3 lLrnl — 7.’I‘ .

Then by the definition of limit,

listinct
3,3 {rm, (""" and K, . ..
n

Since M is compact, there will be a subsequence of {r,; {, {r, {, and an element

7' such that
Lr, =+,
k k

Then
m D 3k,3k2k, DK, .
nk
But X, . , andsoif K':
g Ny k
m e . 3 krlnrgkik;n = Kr rome

"k "k

Applying the fact that A% there results:
k z km a’nd k _Z_ k:,n * D ° -B,r' Lol LA
nk m

Hence by §7 (4) we bave:
L'rﬁ,k =7
k

This shows that there exists a limiting element for [r;], 4. e., W is compact.
We have as immediate corollaries:

(2) K16 ¢ D Jicompact , =y, Jjextremal
(3) K% :2: .‘ﬁc"mp‘“’t eD - (R 4 Ji/)extromal,
A theorem relating to the class 3 itself is the following: *

(4) K91 ;; Reompact 2y [ 3 g "] denumerable

Suppose s™ "%, Then+
My = I_Z(m 3 Koo | 7))

exists and is finite. For if it were not finite, we should have either: (a) By K!

*If K has the properties (1), (3), (6), and (7), and R is compact, then the class of elements consisting of
elements of i Which are not limiting elements of i is denumerable. Cf. Fréchet, loc. cit., p. 20.
tmg is the least upper bound of the values of m for which Kr’am holds, »” ranging over the class R’.
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there would exist an #/ such that K, (m), in which case s =7/, if K3 which
evidently is contradictory to the hypothesis relative to s; or (b)

! distinct
3 ':Tm} stinc 2 Kr’mam‘

But then by § 7 (4) we should have Lr, =s. If then K we have by §15 &%,
which again is contradictory to the hypothesis.
We have further:

m «2 « 3 finite number of s such that m, = m.

If not, let there be an infinitude for m,. Since N is compact, there exists a
limiting element for a sequence of these values. Let Js,} be the sequence, and
ro the limiting element. Then

m +2 - 3 "m3"Z"m - I(anr’om'

Now by §5 (1), if K', we have: K, 4 .
so that ¢3 > m,. Since, then, there exist only a finite number of s such that
m,=m, the class [s] is evidently denumerable.

As an immediate corollary we have :

To obtain a contradiction, choose m

(5) KIBGT t D Jyeompact , 33/ denumerable D . Jidenumerable_
(6) K :D: Neemnet L R = [r 2 (ry, 7)) D+ TK,,,] D i,
Suppose if possible i, not finite. Then

3 r,}%m 3 Lr, =q.
n

Then
D A1 B2 n, D Koy - o on

Then
K7 .D"[(Trfb .

ny ny?m
If we choose m so that ¢,, > m,, we have a contradiction. Hence
finit
m o« 2D« Jifinite,
(7) y/ey :D: mcompact e I 3 gdenumerable 3 g'f6+6'.

The proof of this is as in Fréchet: Rendiconti di Palermo, XXX, §5, pp. 3 and 4.
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16.  Classes of Elements of Condensation. Denote the class of elements of
condensation of 9%, by N, ¢. e., W = [»*]. Then we have:
(1) K5 . RN <D m\closed.
This is an immediate consequence of §15.*
(2) KB «+ D Jicondensed « D . J\densein itself
Let »* be any element of 5i*. Then let

mm fod [all r3 rm ® - rr‘m+l]'

Every element of the class Ji excepting »* will be in a uniquely determined
class 2,,. For otherwise we should have K, ., (m), and then by K? r=1"
There will be an infinitude of non-denumerable classes in the set #. If not,

then:
Jom zm2m 2D « Jdenumeradle

But, by removing the denumerable class of elements consisting of the elements
in the classes N, for m 2> m,;, we obtain a class of which * is not a limiting
element, which would be contrary to the hypothesis, that »* is an element of
condensation of the class. Denote by N, the classes of [3,] which are non-
denumerable. Then:

Jicondensed , = , J r‘,,,n elements of condensation of Sl?mn.

There are two possibilities: (a) the sequence {r*m, } contains only a finite num-
ber of distinct elements, and (b) the sequence {7, | contains an infinitude of
distinct elements. Suppose if possible (a), and let 7, be an element infinitely
repeated, . e.,

N — N
ro=r (k)
We shall have:
§ R —_— N\ —_ N\
3 )Tm”kl)( "'n,., 3 %Tm T r m"k = T

Then
M oD e Blm 3 Zzlm . 1(1'

N
m, 17 oy
k

which holds in particular for m =m, (&). Also by hypothesis:

i, oy .
rlll”klv, '"nk
# COf. Fréchet, loc. cit., p. 19. It may be remarked that Fréchet really proves: If (Q; K) is such that the
derived class of every subclass of £ is closed, then the class of elements of condensation of any subclass of C
is also closed,
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Hence by K*® we have:
K,

NN .
or ‘bmn
k

This will be holding for every %, and hence by § 7 (5) and K® we have
™= v
But by the above we then have:

> .
Z= l(mnk+l) g Krmnklr\(mnk+l) )

which is contradictory to the definition of N, . Hence case (a) can not occur.
'k

We are thus led to the result that we have (b), ¢. e., that there is an infinitude
of distinct elements in the sequence {r, }. Let s, be this infinitude. Then
n "k

for every %

where T 118 composed of distinct elements of .‘Ii,,," . Then
k k

m*

m e« 31,3022, D K,

N
m, "o n
k k

This holds in particular for m = m,, (k). Moreover, for every k:

Tm"kl r\mnk )
Hence by K':
I(r\m LS
ny nk
and by §7 (4):
L, =
k "

Since »* was any element of X", this proves that " is dense in itself.
We have the following corollary :
(3) 1887 :D: Jicondensed | =y , g\perfect

By a method similar to § 15 (4) it can be shown that:
(4) 867 : D 9y condensed D [8 2 g —W]denumerablo.

17. Heine Borel Theorems.
17a. Heine Borel Property. Suppose a class of classes €, in notation [E€].

We consider a unipartite property P of such classes [E], the notation [€]F,
denoting that the class [&] has the property.
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Every property P determines a derived property, likewise of classes [€],
the Heine Borel Property with respect to the property P,in notation H-B(P).
A class [S] has the property H-B(P) in case there exists a finite subclass
(€, S, - -, €,] of [&], which has the property P, in symbols:
[e)rr=[e]s (€] -3 [, &, - G0,
17b. This Heine Borel Property occurs in the theory of linear point sets in
the case where the class of classes consists of a set of closed intervals, and where
the property P is that every point of a given interval lies within one of the
intervals of the set. We shall be concerned with the Heine Borel Property
relative to classes G of elements s, where the property P is that every element
of a given class N is interior to some class € of the class of classes [€] relative
to . We shall denote this property by I(}), in symbols:

N . [@]I(ﬂ‘i)Er.‘R e 3 clel 3 rinterior@(iﬂ)'

We then have the following theorem:*
(1) KIS o mextromal :D: [e][(.‘ﬁ) . denumerable= [@n] .D . [gn]H—B(I).

Suppose that the theorem does not hold. Then there will be an 7, which
will not be interior to &, relative to 3. Let &, be the first class of [€,] to
which 7 is interior. Then there will exist an 7, not interior to Sy oreey Gy
but interior to &, . Proceeding in this manner, we obtain in the general case an
element r, not interior to &, Sy oo vy Speny but interior to &, . By way of
contradiction we shall show that there exists a subsequence {r; } of {7}, which
ultimately consists of elements which are interior to a single class of the set [€.].
Since N is extremal, we have:

3 {n,t of {nt 3%7‘%:7'0-

Now r, will be interior to some class S of the class [€,], let us say €. We

then have by §11 (1):
K'. D+« 3Amys K,,,, +D- 1%

Now since I’:r,k =7,

T I 3 km 3 kz,"'m g I I(r' rom *
'k

# Cf. Fréchet, loc. cit., p. 22. E. R. Hedrick (Trans. Amer. Math. Soc., X11, 285) has recently shown that
it is sufficient-to replace the hypothesis K'> by the hypothesis that the derived class of any subclass of
is closed. IHe supposesa (Q; L), the L being the one of Fréchet, an ,'%%, It is easily shown that an L3 is
sufficient. To be sure, the hypothesis that the derived class of any subclass of £ be closgd probably acts in a
restrictive way on the L. What this restriction is does not seem to have been as yet determined.
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If in particular we take m = m,, we have:
k2k,, +2 - ns
To obtain 7, interior to €,(t), suppose
{ra} 2 %rnk =T,

Then
m e . 3nmk‘:’nznmk = I(rnkrlm)
k

and so if K°:

k2k, and nZn,, 2D K, ., .
If then we take m; so that ¢, > m,, we shall actually have:

k2k, and n2mn,, «2D -« 7.3,
that is, if & exceeds %,, and %, , T, will be interior to &, relative to N, which is

the desired contradiction.
17c. Separability.® N is separable relative to L if there exists a denumer-

able subclass of & which together with its derivative contains the class N,

symbolically :

mseparable(ﬁ)z 3 :Ddenumerable F} 'ﬂ)‘liD+ZD'.

We have a special case of this when the class i is the class & itself. In so far as
the derived class of a subclass of £ can not contain any elements not belonging

to &, we must have, in this case,

Sseparable (L) = 3 @Qdenumerable 4 =% + .

The property separable is thus a bipartite property relating to the classes N
and £. From this bipartite property we derive the property of separability of
<, t. e, we have:

¢ separable — M separable (D)
~A — A .

We have the following propositions:

(1) gseparable ::): fRD 'D . mseparablc(m)-

(2) :RD . mseparable L) :D: Qseparable.

(3) Klﬁ :D: mseparahle ) D. fnlseparable (D)'

(4) Kl& ::): mseparable Q) -D . (% + m/)separable(i}).

(5) :Hseparable R e . 9y separable (D)

(6) KV ;D Jicompact 2y, Gseparavles | =y . jiseparable®  Cf. § 15 (7).

* Cf. Fréchet, loc. cit., p. 23. The definition of separability given by Fréchet is:
Dseparnble =3 mdenumerable s 0=

It is easily seen that our definition is somewhat weaker.
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-17d. Generalization of the Theorem of Cauchy.® The class R has a generali-
zation of the Theorem of Cauchy relative to the class Q if, for every sequence
r, of i, which is such that for every n there exists an n,, such that, if n; and n,
exceed n,,, we have K,."‘,."Z,,,, then there exists an element ¢, which is the limit

of the sequence r,. In notation:
ROV =ty tam D An,302m, :D: [\",”,,n m D A qg3Llr,=gq,
where NY“® denotes the fact that i has a generalization of the theorem of

Cauchy relative to Q. It is possible to replace the class % by the class £, and
thus obtain Q69 or simply ©.9C. We have at once :

(]) SGC e I f)fGC'D).
(2) Jreompact . 3 . HIO@),
17e. We define finally a property D,} of a class of classes [1], relative to i.

The classes [X] have the property D,, relative to N, if every element r of the
class N belongs to at least one class of the set [Y], and if ~, and r, belong to the

same ¥, then K, ,,. Symbolically:
[3])PnP=(a) r « D+ AT 3s%. (b) (r, 7)* D+ K, -
We have the following lemmas relative to the property D,, :
(1) K% :D: 0% «m D+ 3J[T,]Pn".
Suppose m, such that my=>m, ¢, =>m, and ¢} = m. Let
Yon=1[rs K., « 1)

Evidently every element r will belong to at least one ¥,,,. Further, if of a pair
of elements 7, and r, belonging to the same ¥, , one of them is r), we shall

evidently have K,,, and K, since m,=>m, and ¢, = m. In the general
case we obtain from K’and from K , . and K, ,,: K,,.,. Hence we have

D, (R
[T, ] Pm .
We are, however, interested more especially in the case in which for ever
’ y y
m it is possible to find a class [T]?»™ which is denumerable or even finite.

We have:
(2) K17 o gpseparatle® 32 gn oD o J [T, ] IR,

* Cf. Fréchet, loc. cit., p. 23,
t I. e., Development, or division. Cf. Fréchet, p. 25, f.

35
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On account of the separability of Nt relative to Q, let © = [q,] 2 #®*®. Sup-

pose further
my 3 my 2> m, and L, > m.

Then set
Y= 1[rz Ky rm, + @ if @]

mn
Evidently
r.0D. 3 n,.37‘1"r.

e . . .
Further, suppose (7, r,)¥mn. Then using K we obtain, from K, +m, a0d Ky,
Knrsz’,,,,, and so K, ,,. Hence [ZT,,]?»™.

As for the result [T,,,]", there evidently exists
my 2 Ly, > iy and mf > m,.
If now Lr,=r, we have:
i

my 2D .3 by 302000, D« K,l,m,“.
Also, on account of the separability of i, we have either:
re-dgq, 3 K""r”"'°;
and hence, if we apply K7, there result K”n,’t"'o and K""r”"“’ t.e., by the definition

of ¥,, and the definition of interiority,

rintcrior Imnr(f}t) ;

or r =g¢,, in which case the interiority is immediate. We therefore have :
5y I
[T ] 7.
As for [T]Pn® and finite, we have:
(3) K o reompect 130 J [Ty, Togy -+ - oy Ty ) Pm® - 1O,

Since the class ) is compact, we have by §15 (3) the class (% 4+ N’) extremal.
Since further, by § 17c (6), from () 4 J')°™P2c* we obtain (N 4 N/)erarable @ we
can determine by (2) above:

[T, ] Om@H+) < IB4) pl =1 9 3 ...,
But by § 17b, (SR + ml)extremal em 3D 3 [zmn,]1<m+mo . [zm"’]II-B(I(m-i-f}lv));
i. e., there exists a finite set of classes [T, ]"®*"". Kvidently this set is such
that [,,,]Pn™ * 1,
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The following converse of this lemma holds - *
(4) Kl. f]golm} tD:om D 3 [3"’” ceee, :Imn]Dm(sn) es ) s+ Jicompact

17f.  Heine Borel Theorem in the Non-denumerable Case. We are now in
position to prove the Heine Borel Theorem in the case in which the given
[E]*™ is non-denumerable. We have the theorem :+

(1) N o KW+ Jjextremal | [@]I(m) e 1 [@]EB(I).

By §17e (3) we have:
mextrema] o« M eI . 3 [T"]ﬁnite . me'

If the theorem is not true, then for every m it is not true for one of the finite

set of classes [¥,], i. e.:
m e 3 T 2 [@]—H B(I(Zg,,),

We argue a contradiction by showing that there exists an €, of the class [E],
such that every element of each class of a subclass of [I,, |m] : [(Tom, In], 18
interior to Sy(M). If », be any element of ¥,,, we obtain a sequence Jr,!.
There are two possibilities: (a) there is one element repeated infinitely often
in the sequence, and (b) no element is repeated infinitely often.

(a) If possible, suppose one element is repeated infinitely often; . e., let

Ty =7, (n).
Then

3 @0 F} rﬂinterior 61.(:)1).

Then by §11 (1)
K'-D:- 3 mys(r2K,,) -2 r®

Let 77"») be any element of ¥, . Then:
K,

)
rw'r, m
my,"'n

; te, K .
’ ’ T(m"r '1’0 mn

Suppose, further, that L, = ™. Then
1
m.D. 31,3021, -D-. K,’,(m,,)m.

This will hold in particular for m = m,,, and so we have by K® for every n:

(214, noo = Krlr““’ﬁmn '

* For proof see Fréchet, loc. cit., p. 25. Note the weaker hypothesis here.
$Ct. Fréchet, loc. cit., p. 26.
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If now we choose n, so that
nino e I 'mnimo * ¢?nnzm0v

we shall have
7.(mn) interior to Gn(f)i).

Hence we have the desired contradiction in this case.
(b) No element of the sequence {r,} is repeated infinitely often. Then, on
account of the extremality of the class N,

Air, t, 73 Lr, =n,.
n

The argument then proceeds very much as in case (a).
We have the following converse of this important theorem :

(2) K136 -:D:. .\n. [g][(ﬂ%) .D . [@]H-B(l) :D: Snextremal.
(a) R vs closed. Suppose it were not. Then

I ir,} 2 %rnzq - q ™

Let
\:m = [r 3 _qum]'
Then
r D Jm23 pinterior S (R)
For if not:

ints(Ln=r-m D+ A1,3121, -D - K,,,).
1

But then by definition of limit:
Lr,=gq.
il

If now K, then by §7 (3), limit is unique, and since ¢ * we have a contra-
diction. KEvidently a finite number of the classes & will contain only a finite
number of elements of the sequence 7,, and so

[@m]ﬂnite D [@m]‘l(.‘ﬁ).

(b) N 48 compact. If not, then there exists a sequence of distinct elements
ir,t without a limiting element. Then

7‘#7‘" =i Bﬂr >E(7n3Krnrm In)
’I‘¢‘)‘n0 T B 3 #rn >§(m3 Krnrnmln¢n0)°
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If K™, this u will be finite for every . Let
€, =[rs ](""“r . 7o)
Then evidently

Tointerior Srn(f)i).

But no €, contains two elements of the sequence r,, and so
. | T H-B(I
[@1'0] ( )‘

The proofs of these theorems are sufficient to indicate the method of attack
in case we are operating with a K having the properties (1), (3), (6), (7). In
the theorems of Fréchet not taken up here, there is little difficulty in showing
that such a K is sufficient. Instead of following up the matter of the properties
of subclasses M of O of systems (O ; K') further, we turn our attention briefly to
continuous functions on subclasses i of systems (< ; L) and (2 ; K).

Continuous Functions on Subclasses N of Systems (T3 L). §§18-20.

18.  Functions of Subclusses N of O to the Class of real Numbers .
Sequential Continuity. By a function on a subclass it of Q to the class of real
numbers 2, we mean a correspondence between elements of the class R and real
numbers 2l such that to every element of the class %t there corresponds at least
one real number. If this function or correspondence be denoted by u, our

definition might be stated symbolically :
™ <D Haws’y,:a,

We shall suppose, in particular, that we are dealing only with single-valued

functions.
If u is a function on the class 9 to A, we say that u is continuous at the

element r in case
Lr,=r 2. L(l,. = U,
n n "

where the first limit is an L,* the second a real-number limit.
w is said to be continuous on R to A, if it is continuous for every element

r of .

*If L is not unique, i.e., Lr, =r and Lry =1/, and y is continuous, then we must of course have py=ji,.
n n
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19. Bounded Properties of Continuous Functions.* We have the following

theorem : ¢
(l) #continuous on mextremal ¢, o D9 (b, B) 2 b < Uy < B (7’%).

We show that there exists an upper bound B, the lower bound being shown
to exist in a similar manner. Suppose, if possible, that no upper bound exists.

Then
n e Hrnsyrn>n.

Since u is defined for every r, the sequence {r,} cannot contain an element
infinitely repeated. Then since 3 is extremal we have:

3 )‘rnl}distinct . 73 Lrnl = 7.
l

Now since u is continuous on H, it will be continuous at », and so we have:
I;”r"t: e

But by the hypothesis on r, we would have:
Lu, =ow.
1M

We have thus reached a contradiction.
If we denote by b and B the greatest lower and least upper bounds,

respectively, of x on N, we have :
(2) peontimouson N tox L5 L 3 (5, and 1) 3w, = b, ,, = B.

We show that
A r,3u, =B
Suppose it were not so. Then

n-2D+3r,3B>u >B—1/n

The sequence {r,} will again involve an infinitude of distinct elements, and thus
using the condition that the class N is extremal we obtain:

3 {r, treret crs Ly, =r.
' l

* We consider here a number of the more important theorems of Fréchet (loc. cit., pp. 8-15), to show the
method of reasoning when we suppose L unconditioned. The theorems not taken up are also holding in the
general (C; L) situation; as a matter of fact, the proofs of Fréchet, when used with some care, will give the

desired results.
t If 4 is continuous on an extremal subclass R}, then it is bounded on . Cf. Fréchet, loc. cit., p. 8.

$ Cf. Fréchet, loc. cit., p. 8.
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Then on account of the continuity of u:
‘ILHT"lz Ur.

But by the construction of {7,}:
Ly, = B.
1M

Hence u, = B. Similarly we show that:
dr3 u,, = b.

20. Sequences of Continuous Functions. We define uniformity and quasi-
uniformity of convergence of sequences first. Suppose a sequence of functions
{unt each on N to ¥, converging to a function x on R to 2, <. e.,

Ly, = u,,

n
or reeDeAn,3nZn, I - l(‘nr_yriée-
We say that the convergence is uniform on R if

e o) . 37’163”2”5 T B I#nr-—(‘r|§e)

for every 7% It evidently differs from the simple convergence in that the =,
does not depend upon the elements ». The convergence is said to be quast-
untform, if

e-1:D:3 lu2r «D+ Any2(ISnally - ,/‘"erlr—f‘rlée)'

Quasi-uniformity of convergence does not insure the convergence of a sequence.
The convergence must be assumed separately if desired.

The subject of uniformity and quasi-uniformity is of importance in the con-
vergence of a sequence of continuous functions to a continuous function. We
have the following well-known theorem :

(1) 4 uniformly convergent sequence of continuous functions converges to a con-
tinuous function.

The hypothesis of the following theorem is, however, less exacting, and
hence it covers the former also : *

(2) 4 quasi-uniformly convergent sequence of continuous functions converges to
a continuous function.

* Cf. Fréchet, loc. cit., p. 10.
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Suppose a sequence {u,,} of continuous functions on 3t to A, which con-
verges to u,, t. €.,
Lun, = u,,
n
the convergence being supposed quasi-uniform. We wish to show that u, is
continuous, ¢. e.,
L.rz':ro e Lturizﬂ'ro'

Since the sequence converges at r,, we have :
e-D- 3 neg, 2 nz”cr‘, g I “‘nro—‘un,lie'
On account of the quasi-uniformity of convergence of our sequence we have:
€ Ny o.3 l"'er., EI e 3 Nerm,,. =Ny 3 Ny, SNy S len"o and
Iﬂneia'i"— ‘urilée (1)

The continuity of the functions u,  gives:

e I | ieaizi,, [ B0 l(‘n ""{lneir.,lée) (2)

where i, is the maximum of the ¢, corresponding to the values of n between =,
and len,, - Finally, since n, exceeds n,,, we have :
0

Iyncﬂ'n_{lr«)lge' (3)

et

Adding the inequalities of (1), (2) and (3), we have:
Iyrt — r,| < 3¢,
subject to the condition 7> %,, the = being only a subsidiary.
The following converse of this theorem holds also in this general situation :
(3) If the class N is extremal, and a sequence of continuous functions converges

to a continuous function, then the convergence s quusi-uniformn.
If the sequence of functions in question be {u,,} and the limit function g,,

it is necessary to show :
€ o Z 'D hd alelar ‘D' Enerli(lgnerlghl .

Wn,, - — Ur |<e).
Choose e and 7 arbitrarily. Let n,,; be the minimum of the numbers exceeding

[, such that:
'(“nmr —u-|Ze.

We wish to show that n,,; has a finite upper bound. If this is not the case we

have :
P A IO | nanemzi.
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Since the sequence {u,.| i8 convergent for every r, no r; can occur infinitely
often, and we obtain from the extremality of % :

EREA AR {,r,-k =r.

Since now u, is continuous,

. . C >

e DAk 23k>k, .D. |""ik—l“"|§e‘
On account of the continuity of w,,,
e 2 3 k('" ? kik"’" ‘- |1un7'i _xunrl-f—e-
k
Since further Lu,, =u,,
n

e + ) 3 Ny 3 nz—ncr = l#nr—_(url e
Hence,
36 «+ D . 3 Ny, ° 3 kr713 n?—_nu' ° kzkvn = !fuﬂri —[L,-i |§3€.
k k

Let n, be the greater of n, and I. Then this last inequality will hold for
>k, . On account of the convergency of the sequence we have:

e «+ ) - 3 nckanz—nck D 'gunri —‘url |§36'
k k

There being only a finite number of z less than %, , we shall have a finite num-
ber of corresponding n,. Of these and of n, we choose the largest. This will
serve as an upper.bound for the "“ik" We have thus reached a contradiction in

so far as we have demonstrated the existence of a finite bound for n,, ;. Hence
Yk

the theorem.

Continuous Functions on Subclasses R of Systems (S K).

21.  Difference Continuity. In case we are operating in a system (2; K), it
is possible to define a type of continuity which is analogous to the difference
continuity of a functjon on a real interval. The K-relation serves to replace the
absolute value of the difference. In order to distinguish this type from the
continuity employed above, we call the former difference continuity, and the
latter sequential continuity. We define:

difference cont, J—
[l on inuousatrnze .:) . 3 m,m) 3 K .: . 'Fr””—:uro’ <e.

rr =
Moy

We say that w is difference continuous on the cluss M if it is continuous at every
element of Ji.
36
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In order to make the theorems on sequentially continuous functions available
here, we must establish some connection. This is contained in the theorem *
K . R. [lon RtoA ey [usequentially continuouson &, (py , ”dm.'erenoe continuous on %

(a) [‘sequentlally continuous on i D. Fdlﬂ'erenoe continuous on & We wish then to

show that:

1‘3‘ @ o) e 3 m".oa K".omm (e I Fr_yrolée'

Suppose this were not so. Then:
dr -3 ¢2m-D.3 rmaKrmrom ¢ I,urm—'[‘ro‘>eo-
From § 7 (5) and K, it follows that :
' Lr,=nr,
m
Since now u is sequentially continuous, we have :
g”rm=l‘ro’ i €, € -D-3 M3 MM, 02D o Il‘rm_#rolée'

Since this will be holding for ¢, also, we have reached a contradiction.
(b) ”diﬂerenoe continuous on R . : . ysequentully continuous on 8&. Since ” is diﬁ'erence

continuous on R, we have :
Tore D Amd Ky D« |p—pr|<Ze.

Suppose {r,} is any sequence having 7, as a limit, <. e.:
' m D+ dAn,3n2n, I K
This will hold in particular when m = m,, and so we have :

e :D:IAn=mn, 3n2n D |y, —u,l<e
which is the continuity as desired. |

22. Uniform Continuity. We note that relative to sequential continuity it

does not seem possible to define a uniform continuity. However, in the case of
difference continuity such a possibility exists. We define:

uniformly conti R =
i n y nuouson R—, , ) , EmeaK,.l’.’mc g I |ﬂf,—l‘r.|§ei

the uniformity feature entering in that the m, is independent of the ». If p is
uniformly continuous it is also continuous. On the other hand we have: *
1887 , Rextremal o =y, ‘uoonunuous om% =, ,‘unifonnly continuous on $#_

#Cf. Fréchet, loc. cit., p. 28.
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If possible suppose that x is not uniformly continuous. Then:
dezm -O- 3 (rlm * Tom) 2 K"lm'me * lﬂrlm—ﬂr2m|>eo-

We thus obtain two sequences. There are four possibilities: (a) The sequences
{7im} and {7y} each contain only a finite number of distinct elements; (b) The
sequence {7y,{ contains only a finite number of distinct elements, while the
sequence {r,,{ contains an infinitude of distinct elements; (c) The sequence
{71m} contains an infinitude of distinct elements, while the sequence {7;,} con-
tains only a finite number of distinct elements ; and (d) Each sequence {r,,} and

{7sm| contain an infinitude of distinct elements.
In case (a) there will be one pair of elements which will have like sub-

scripts infinitely often. These are shown to be equal by K and § 7 (56). We

thus obtain a contradiction at once. :
In case (b), so far as it is not covered by (a), it will be possible to select

from the sequence {r;,| the sequence {r,, | of distinct elements, and from the
sequence |7y, | the set {7, | consisting of one element repeated, i. e.:
rlm” =n (n)

Then by our hypothesis :
, t.e, K,

10 Ton M iy, m,_°
m,"2m,"n ‘zm"n

From K by §5 (1) it f(;llows that :
Tom ¥, *
Since this holds for every n and L ¢y, = =, we have by § 7 (4):
" L7y, =r,.
But u is continuous. Hence: "
¢ D+ An,3n2n, 0D - U, —p,, |Se or |, — try, | S 605

which is contrary to the definition of »,, and r,,. Hence we do not have (b).

We show similarly that case (c) can not occur.
In case (d), in so far as it is not covered by the preceding, it will be possible
to select the sequences {n, | and 372,,," | each of distinct elements, and on

account of the extremality of R in such & way that

Lry, =m.
n

Then m D Any3nn), 0. K, . cm
° n
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Also by K! and the hypothesis on r,, and 7,,:

" 1
m o . aIn > n Y . .
D+ dAn, 2y +D K"lm”rSmnm

Then using K® we have:

! "
nZ”m * nznm = I(rzm e,
n

Hence, by K! and §7 (4):
Tem, = T1-

But on account of the continuity of u we shall have :
e/2 D+ 3n3n2n, - - ll‘rlm”—l‘nlixe/2 . Il‘rzmn—l’ﬂlie/z»
i e., n>n, « 2. Iy,lm"-—— Hrgm |<e.

But this is contradictory to our hypothesis on im, and 7, if e=e¢,.

We have thus shown that none of the cases (a), (b), (c), (d) can occur; that
is, we have established the uniform continuity of u.

We could proceed to consider finally the theorem of Fréchet, loc. cit., p. 31,
as extended by Hahn,* and show that this is also holding in case K i. e, in
case 0. With some care in the use of the proof given by Hahn, there is little
difficulty in proving the existence of the non-constant continuous function in a
8% and deriving the theorem in question, ¢. ¢ :

KB . 1 D B [‘oont.inuoua on # and bounded on % D. gﬂextremal'

* Monatshefte fir Mathemattk und Physik, XIX, 251 . We might remark in this connection that, on
account of what seems to be an oversight, the limit Z, defined by Hahn on p. 350 of this note in the construc-
tion of a system ({); L) on which every continuous function is constant, is not unique. The uniqueness is
secured if the series of inequalities in 1. 8: §, <4, < .... <ip 18 replaced by £, <%, < .... < kp.
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