THE
UNIVERSITY

OF CHICAGO
LIBRARY




THE UNIVERSITY OF CHICAGO,
Founded by John D, Rockefeller,

On the Galols Groupe of Some Special

Algebraic- Bquationg,

A Dissertation
Submitted to the Faculty
of the
Ogden Graduate School of Science
In Candidacy for the Degree of
waster of Science,

Department of Mathematics,

By

A

'te ”»L"U’ "
R. L, Borger,
1]

1908,






ON THE RECIPROCAL QUARTIC EQUATION.

By R. L. BORGER.
In'this paper it is proposed to determine the Galois group of the recip-
rocal quartic equation, .

xt—ax®+ b’ —ax+1=0, 1)

for the domain of rationality R(1). We shall establish the conditions for
which the group of the equation is transitive, and hence the condition that
the equation is irreducible; and consider the possible intransitive groups
when these conditions are not fulfilled.

Calling the roots of (1) «,, «,, #,, 3,; «, the reciprocal of 3,, and «,
the reciprocal of 7,,

’10’30:"“?1:1' (2)

If we assume that the roots of (1) are distinct, the Galois group of (1) is a
subgroup of the group,

Gs=[1; (403,); (2,7,); (#00) (,34); (401y) (303,);

(4031) (#18); ("0":1?0'"’1); ("1"01?1130)]-

For, any substitution not in G leaves the relation (2) unaltered only if the
equation (1) has a pair of equal roots. The group G, has only two transi-

tive subgroups, viz:

C4E[1; (40'1“90/31); ("1"0131'30); ((10‘?0)((‘(1191)]:
Gi=[1; (20%,) (3051); ('lﬂl?l)(’ll‘?o); (4030) (2,3,)].

Hence, if we impose such conditions upon the coefficients of (1) that its
group is either Gy, G,, or C, we have the necessary and sufficient conditions
that the equation be irreducible. For this purpose it is necessary to com-
pute the values in terms of the coefficients of functions belonging to each of

the following subgroups of Gy:

Gy; Cy; Hy =115 (408); (418,); ("oﬂo)("ll?n)]-
G’;’E[l; ("0"1)(1?0/?1)]; G':=[1; ("0‘?1)((11'?0)]'

From the equation (1): «,+#,+2,+5,=q, (3)
(40 +70) (4y +5,)=b—2. (4)

By means of (3) and (4) we easily find:



b= (1g+3%) — (21+5,) =1 [2—b+2%a*], belonging to H,, (5)
¢=(ug—By) (2, —3,)=1/[(1+%b)* —a?], belonging to G,, (6)
“$.¢ belonging to C,. (7

With the aid of (5) and (6);

¢ =a,+u,=)/{}a*— (1+3b)— 1/ [(1+3b)*—a*]}, belonging to G, (8)
" =a,+8,=1/{}a®— (1+3b)+)/[(1+4b)* —a?]}, belonging to G",, 9)
"= (2o—71)*=1/(b2—4) (when a=0), belonging to G",. (10)

The values:for ¢ and ¢ are given up to a rational factor; those for ¢’,

¢”, ¢"" up to a rational term.
In the study of the cases where the group is intransitive we shall

make use of the two additional functions:

to=to—to—=+1" {307 = (b+2) +ar/ [ta* +2—0] },

belonging to H,=[1; («,4,)], (11)
H=n—5=+v {}a’— (b+2) —ay/ [}a®+2-b]},
belonging to H', =[1; («,53,)]. (12)

From the definition of the Galois group of an equation for a domain
of rationality R it follows that if a rational function of the roots of the
equation belonging to a group H has a value not in R the group of the equa-
tion is not contained in H. Hence we need to consider subgroups of a group
H only when a function belonging to H has its value in R.

The group of (1) will depend on the character of the functions (5)-
(12) and we have in the following three cases the conditions for which the
group G is transitive:

1) ¢ irrational, ¢ irrational, and ¢. ¢ irrational. - G=Gs.

2) ¢ irrational, ¢ irrational, and ¢.¢ rational.

~.G=C, or a subgroup of C,. But its subgroups are excluded as they
are subgroups of H, to which ¢ belongs. ..G=C,.

3) ¢ irrational, ¢ rational. Then G=G,, G, or G's.

We distinguish two cases:

, I) a=0. If ¢ and ¢” are irrational, 7. e., if the two values
+1/{a2—(1+3b) £/ [(1+3b)* —a?]} are 1rratlonal G, and G’; are
excluded, and G=G,.

II) a=0. In this case ¢”"=0 and we use ¢"'=)"(b*—4) =0 to exclude
G'.. ¢ =0, since b=2 makes ¢ rational and b=-—2 makes the equation
1) have a pair of equal roots. If then ¢'is irrational, 7. e., in this case,
V' (—2—0) is irrational and if 1/ (b*—4) =¢"" is irrational, G =G,.
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These are the only cases in which the group G is transitive. There-
fore we conclude that the necessary and sufficient conditions for the irreduc-
ibility of (1) are, if a0,

I) 1/ (2—-b+%1a?) irrational, and  [(1-+3b)2—a?] irrational, or,

II) v/ (2—b+4%a?) irrational, + [(143b)* —a® rational, and
v/ {}a®— (1+3b) £1/[(1+3b)>—a®]} irrational.

IHI) When a=0, 1/ (—2-b), +/(2—b), 1/ (b*—4) all irrational.

When these conditions are not fulfilled the equation is reducible and
its group may be any of the intransitive subgroups of G;. By examining
the values of the set of functions (5)-(12) for any particular case the group
G can be determined. The following cases arise:

1) ¢ rational, ¢ irrational. Hence, G=H,, H,, or H',, dependent upon
rational or irrational nature of x,, 7,. Since ¢'is irrational, 7, and 7, are
not both rational. Therefore G=G,.

2) ¢ rational, ¢ rational. Hence, G=G,=[1; (4,3,)(«,5,)], the
greatest common subgroup of G,, H, and C,, or if all remaining functions
are rational, then G=G,.

8) ¢ irrational, ¢ rational. Hence, G=G', or G”., according as ¢’
or ¢" is rational. The case ¢', ¢" both irrational has been included in the
previous discussion.



ON DeMOIVRE’S QUINTIC.

By DR. R. L. BORGER, Univeraity of Hlinois.

§1. For the domain of rational numbers, DeMoivre’s quintie
@) 2" +pa’ +ip*etr=0,

for values of p and r making the discriminant

A= (%)Z-i— (—é’—)lo,

will be shown to have as its Galois group either the metacyclic group G., or
a cyclic group C,. We may then readily deduce the following properties:

DeMoivre’s quintic 1s solvable by radicals.

Either all the roots are real or only one root is real. ,

Not more than one root is rational; if the equation is reducible in R(1),
its left member is the product of a linear and an irreducible quartic factor.

If the equatwn 18 trreducible in R(1), any root is a rational function
of an arbitrary pair of roots.

To determine the Galois group of (1), we make use on the one hand
of Cayley’s resolvent sextic for any quintic, and on the other hand of the
following lemma:*

If we know a rational function of the roots of an algebraic equation
Jf(2)=0 having the properties:

() That it is formally invariant under the substitutions of a group G’
and under no others.

(1) That it has a value in the domain of rationality.

(#12) That it is distinet from its conjugates under the substitutions of
the symmetric group G,!, then the Galois group G of f(x) =0 is a subgroup
of G

§2. We exclude those values of » and r for which the diseriminant
a=0. They give rise to equal roots and these may be removed by the
process of highest common divisor. The function

b= (2,2, +224+ 2,2, T 25+2500) — (2,20, F2.2,F2 0, F2a2, Fas,)

belongs to the group G, consisting of the substitutions

*Dickson, Algebraic Equations, p. 59, §65.



1, (12345); (13524); (14253); (15432);
(12)(35); (25)(34); (15)(24); (14)(32); (13)(45).

Under the substitutions of Gg,, ¢ takes six values, which are the roots of a
resolvent sextic. For the general quintic Cayley has computed* this resolv-
ent sextic, which becomes for equation (1):

5402 26
@) $0—Tp?t+11pte? —31(5—5"—212?—1’—% +4000pr2 +5p* =0,

One root of (2) is $=py/5. By differentiating (2) with respect to ¢ we see
that this root is simple unless

(3) 121p® +557*=0.

We now divide the discussion into the two cases
I) p and r not satisfying (3).
II) p and r satisfying (3).

I) In this case, ¢ is distinct from its conjugates under G¢,. Hence
$?=>5p? belongs to G:,T and is distinct from its conjugates. Hence (§1),
G:, contains the Galois group of (1). The Galois group G for the domain
R(1) may then be

G20$ GIO’ CSv Ch Gi, or G1'_—:1.

The groups G0, Gs, G2, G, may be at once excluded. By the definition of
the Galois group of an equation, every rational function of the roots which
remains invariant under the substitutions of G is rationally known. If Gis
G,, or a subgroup of it, then ¢, belonging to G,,, would be rationally
known. Since $=py/5 this is impossible unless p=0. Hence when p=0,
G is not contained in G, ,.

If p=0 we know that (1) reduces to a binomial equation p and its
group is metacyclic when 7 is not the fifth power of a rational number. If
r=k" (k rational) the group G is then C,. Hence when p and r do not sat-
isfy 3), G=C, or G;,.

§3. Next, we consider the case in which p and r satisfy (3). By
solving (8) we find

*Cayley, Collected Mathematical Papers, Vol. IV, p. 819.

$The substitutions of Gy, are given by (:x+ 3)» (22_‘1, % g ﬁ 4)-
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Since r must be a rational number, J»g—:a (a rational),

(5) p=>5ba®, r=l1la’.
Substituting these values'in (1), we get
(6)‘ x®+ba?x®+ba*r +11a®=0.
This equation has the root x=--a, and the depressed equation is
(7) hx““—-ax” +6a’x® —6a’r+1la*=0.
Calling the roots of (7) «,, 2., x5, 5, and setting
Yy =2, L, +2325,

Yo =212, +2,%5,
Y3 =%, C5 T 2225,

we obtain the cubic resolvent of (7),
(8) y? —6a’y® —38aty+217at =
The roots of (8) are:
a’ a?
(9) y1="Ta?%; y2=?(-—1+521/5); yn=7(—1—521/5);
¥, =%,%,+2;25 belongs to the group
Gs=[1, (12); (85); (1825); (1523); (12)(35); (13) (25); (15)(23)].

And since y; is distinet from its conjugates under G,, the Galois group of
(7) is Gy or a subgroup of Gs. As y, and y, are irrational the group for the
domain R(1) cannot be contained in

G,=[1; (12)(35); (13) (25); (15) (23)].

The function ¢=(x,+2;)— (x3+xs)=ay’b bel<')ngs to the group
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H,=[1; (12); (35); (12)(35)]. Since the value of ¢ is irrational* G is not
contained in H,.

The function = (2, —2.) (#; —2;) [z, +», — (x;+x;)] =a®55 belongs
to the group C,=[1; (1325), (1523); (12) (35)], since y is rational and takes
two values under the substitutions of G,.

Therefore, G=C, or one of its subgroups. G cannot be a subgroup
of C, as the subgroups of C, are contained in H,. Therefore, G=C,.

Hence when p and r satisfy (3), the group of (1) is C,.

§4. We have now proved that the Galois group of DeMoivre’s quintic
for the domain R(1) s either the cyclic group C, or the metacyclic group Gs,.
We therefore get the following results: .

1. DeMoivre’s quintic is solvable by radicals. The solution can be ef-
fected by the well known substitution x=y—p/5y.

Since the group may be C, the equation may be reducible. Hence

IL. If the equation is reducible it must reduce to the product of a linear
factor and an trreducible quartic factor.

As an equivalent form of II, we have,

III. DeMoivre’s quintic can mever have more than one rational 1oot.

By means of a property of metacyclic equationst we may also conclude
that

IV. All the roots of DeMoivre’s quintic are real or only one of them is
real.

If the group of the equation is G, the equation is metacyeclic} and,

V. Each root is a rational function of an arbitrary pair of them.

This problem was suggested to me by Prof. L. E. Dickson and I wish
to thank him for criticisms and suggestions in connection with its solution.

*a is not equal to 0 because of (3) and not both p and »—0.
tWeber, Algebra, 1, p. 620, VIIL
{Weber, Algebra, I, p. 618, VI.



