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INTRODUCTION.

1. The object of this paper is the proof of the following six theorems
concerning sets of generational relations for the abstract group G, simply
isomorphic with the group LF [2, p*] of all linear fractional transforma-
tions, on one variable, having determinaunt unity and coefficients belonging

to the GF (p").

TreOREM I.*—The abstract group Gyps—1), Svmply isomorphic with the
group LF[2, p], p > 2, may be generated by two operators T and S,
subject to the generational relations

(A) =1, T*=1 (STP=1 (STS*T*=1 ++0.

Treorem I1.—The abstract group Gypm_yy, Simply isomorphic with
the group LF 2, p*], p > 2, n> 1, may be generated by (p"+1) opera-
tors T and S\, X running through the marks of the GF (p™), subject to the
generational relations
1) S =1, 8:8.=8+x (A, nany marks),

(2) 172:1.9 (Slﬂs=I,

8) (S, T8y, =1 (rany mark = 0),

4) [1/a, o), [1/a, ia®], [4, a], [1/¢, a] (a5 0),

where 1 1s a primitive root of the GF(p"™), and a is any mark subject to
a restriction tmplied in the notation [\, u].

®)

* ‘For the special cases in which p™ < 47, this theorem has been proved by Prof. Dickson,
Proc, London Math. Soc., Vol. Xxxv., pp. 292-305; Bull. Amer, Math, Soc., Vol. 1x., p. 297.
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" Note—The symbol [A, u] is used to denote the relation*
SATS. TS-1yu-1)TS1-0u TStu—1yoru— T =1,

where A, u are marks such that A\u 5= 1.

Taeorem IIL.+—For the special cases in which p" = 49, 81, 121 rela-
tions (1), (2), (8) form a set of generational relations for Gyrgn-1y P> 2.

Turorem IV.1—The abstract group Gy gen_yy, simply isomorphic with
the group LF[2, 2], may be generated by three operators a, b, c, subject
to the generational relations

5) a¥'=1, V¥ =1, batb= a"bd’,

(®)
6 =1, (a)?=1 (cb)®=1,

where £ =1, 2,8, ..., (2"—2), and 5, { are determined by the relations
©* =144, = E—, mod (2"—1), ¢ being a primitive root of the GF(2".

Treorex V.—The abstract group Gaug._yy, simply tsomorphic with
the group LF[2, 2%], may be generated by two operators @ and d subject
to the generational relations

(D) at'=1 d&=1 (datd'a®®=1, (datdad)’ =1,

where £€=1,12,8, ..., 2"—2), and { is determined by the relation
¥ = 144, ¢ being a primitive root of the GF (2").

TreorEM VI.§—In the special cases in which n = 2, 8, 4, 5, 6, the
abstract group Ggugem_yy, Simply isomorphic with the group LF [2, 2"],

* Relations (1), 7% = I, [A, ], A, » any marks such that Au 1, constitute a set of
generational relations for @. This is a special case of a more general theorem valid for any field
due to Moore. See Proc. London Math. Soc., Vol. xxxv., p. 293, and Dickson’s Linear Groups,
p. 300.

Note that, when A = 0 or 1, [A, u] reduces to (S, T)® = I, and, when A =—1, [A, u]
reduces to (3).

+ For the special cases in which p" =9, 25, 27, 125, 243, Prof. Dickson has proved that
(1), (2), (3) constitute a set of generational relations for @, ,, @-1’ P> 2, loc. cit. The proofs
for the cases in which p" = 125, 243 have not been published.

1 This theorem is due to de Seguier, Journal de Mathématiques, Tome viIL., p. 253.

§ The set of generational relations (E) is due to Prof. Dickson. He has proved Theorem VI.
forn = 2, 8, 4. See Proc. London Math. Soc., Vol. Xxxv., p. 306 and p. 443; Bull. Amer. Math.

Soc., Vol. 1x., pp. 194-204.
For n = 2, the set (E) reduces to 4°* = I, B2 = I, (ABp = L
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may be generated by two operators A and B subject to the gemerational
relations

E) A¥* =1, B*=1 ABP=1 (BA'BA®=1,
where r =1, 2, 8, ..., 2%, and the value of s is determined by the relation

FCHP+1) = E@+1)+1, ¢ being defined by the relation §* =3 ¢+1,
© being a primitive root of the GF (2.

Tre Group G siMpLy Isomoreric wite LF [2, p*], p > 2.

2. LemMa.—The abstract group Gy -y, simply tsomorphic with the

group LFE[2, p*], p > 2, may be generated by (p"+2) operators R, T, and
Sxs N running through the marks of GF (p"), subject to relations (1) and

7N RiP"-1) — I,
8) S\R° = R"S, 2 \ any mark, o = 0 or any integer),
9) (TR =1 (0 = 0 or any integer),

(10) TS,T = R*S_,TS_1y (y any mark = 0, * = — 1),

© being a primitive root of the GF (p").

Proof. —The group LF[2, p"}, p > 2, may be generated by the
p"*+1 transformations

T:72 = fz_l, Syt4d = z4A (A any mark),

while the sub-group K of the transformations

, _ az+

Sup: 2 =
o B a-!

may be generated by the transformations
S, A= 822 =24, R:2 =zi7},

¢ being a primitive root of the GF (p".

These generators of K satisfy relations (1), (7), and (8). Since the
group LF[2, p*], p > 2, when represented as a permutation group on
(p"+41) letters, is doubly transitive while the sub-group K, being then a
permutation group on p" letters, is simply transitive, it follows from the
work of Jordan* that it is possible to determine v, 6, 5, {, and x such that

* Traité des Substitutions, p. 32.
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the following relations are true :—

(11) TS.eT =S8,,;TS, (a B any marks £ 0),
12) (TR°)® = R~ (0 = O or any integer).
The concrete expressions for T'S, 4T and S, ; T'S,, ; are respectively
S o= 0% g = 22+ 8—ny~!
—Bz4+a’ " 'y.z4n716
A comparison of these expressions shows that a determination of v, 6, #, {
is y=—fB, 6d=a, n=1, {=—a"'B7L. The concrete expression for

TR°T is 2’ = %2, Therefore TR°T = R~° and a determination of u is
# = 0. With these values of v, J, #, {, u, relations (12) and (11) become,
respectively, (9) and

(18) TS. 6T = 8-4.T8, _,-15-1 (a, B any marks 0).

A comparison of the concrete expressions for S,z and RS, . shows
that S, s = R*S), . if X be determined by the relation ?* = a. Therefore
(18) may be written in the form

(14) TRASL aﬂT = R'AS], —aB TS], —a-1g-1,

where A, 1 are determined by the relations * = q, i* = —p.
In view of (9), relation (14) may be written

RTS8y, 0T = R*S1, —ap T'S1, —a-15-1,

or, if we write a3 = v, and use the notation 81,y = 8,, in the form (10).
This completes the first part of the proof, namely, that the generators
T, R, S, of the group LF[2, p"], p > 2, satisfy relations (1), (7), (8), (9), (10).
From this fact it follows that the abstract group G’ defined by relations
(1), (1), (8), (9), (10) is either the group G-y OF & larger group. That
it cannot be a larger group is seen as follows:—Every element g' of the
group G’ is a product whose constituents are T, R, S,. Every such
product that does not involve T may be reduced by means of (1), (7), (8) to
the form R’S,, where A is a mark of the GF (p"), and ¢ =1, 2, 8, ..., or
3 (p"—1). The mazimum number of distinet products of this type is
3p"(p"—1). Every product that does involve T' may be written in the

form g9’ = R"8), TR"8,, TR*S,, TR*3,,T ...,

a product containing n T"s. If A\; = 0, then 8,,= I and TR*T = R~%,
by (9). In this case g’ reduces to

g9' = R"8),R-"R"8,, TR*S,,T...,
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which, by (1), (7), (8), may be reduced to
g' = R“SyTR"S,,T...,
a product containing (n—2) T"s. If A\, 5+ 0, we have
TR*S,,T = R~"T8S,,T
by (9). A.ISO, by (10), TS)‘zT = .RpS_,\,‘, TS..]/A.‘,.
Therefore g’ becomes
g' = .Ra"S)‘l R—QRPS_)‘, TS...LI)‘? .R%S)‘s TR"‘S,\‘ T. vey
which, by means of (1), (7), (8), may be reduced to
g9' = RSy TR”"Sy»TR*S\,T...,

a product containing (n—1) T"s.

The process indicated reduces the number of 7”s in the expression for
g' by one or two at each step. A finite number of steps will reduce the
expression for ¢’ to a product containing one T or no 7”s. In the latter
case ¢' may be reduced to the form R’S,, as above. In the former case
g' = R°S,TR”Sy. In view of (9) this becomes g’ = RS, R~*TS,, which
may be reduced by means of (1), (7), (8) to the type form g’ = R™S, TS,.

The maximum number of distinct products of this type is §p™ (p"—1).
The maximum order of the group G’ is

ip" (p"—D+3p™"(p"—1) = $p"(p*"—1),

which is precisely the order of the group G, m_,, Therefore the two

groups are identical, and relations (1), (7), (8), (9), (10) constitute a set of
generational relations for the group G, »(m_,y

8. Proof of Theorem II.

Relations (1) and (2) are those of relations (1), (7), (8), (9), (10) which
do not involve B. T%® =1 comes from (9) when o =0, and (S,7® =1
comes from (10) when y = +1. When y = —¢, relation (10) becomes
(15) R = TS..; TS..]/{ TS__,;.

The rest of relations (10), viz., R = T'S, TS, TS,, y = —*, p5#0or 1,
follow from (1), (2), (4), and (15). To prove this it will be sufficient to
show that the relation

(16) TS, T8y, TS, TS_iTS_1iTS_i = T8iy TSy T'Sy

(where y = —%*, p#0 or 1) follows from (1), (2), and (4). By means of
(1) and (2) relation (16) may be written

(TSi.,_., TSm., T) S1',.,+i TSm (TS,, TS..y T) S-]/., =1.
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But, by 4), TSiTS_yT = Si—y-nyiv+n TS -iy-1 TS-1yiiy+1y
and TSiy—y TSvjiy T = Sa-inyy TS-1/ TSiry—iy—s
Therefore (16) becomes
Sa-inny TS-15 TSmy—iy—i Siy+s T81s S(—y-1itey+1 TS —ty—1 TS-1y3y+1)S-1y = I,
or, by (1) and (2),
TS-1/ TSixy TSa s+ TS—iy-1 TS(—1-tayya 4y = 1,

which is the inverse of L, ﬂy , one of relations (4).
1 14y

To complete the proof of the theorem it will be sufficient to show that
relations (7), (8), and (9), expressed in terms of T' and S, by means of (10),
follow from (1), (2), (8), and (4).

The substitution in (7) of the value of R¥?"~V given by (10) results in
(S; T)® = I, one of relations (2).

The substitution in (9) of the value of R° given by (10) results in
(S_.TS_,-.TS_,)* = I, which follows from (1) and (8).

Relations (8) are seen to be equivalent to the relations

(A7) Sm= R*S, R, (18)  Sp. = B *S,RF,

the range for % being 1, 2, 8, ..., $(p"—8).
The substitution in (17) of the value of R* given by (10) results in the
relations [—1/:%*, ¢*] which follow from (4). The same substitution in

(18) results in
(19) S_,;an TS_l/,,, TS_aTSi TS.,,TSl/.,T = I, a = "‘ik.

When ¢a 5 1, relation (19) follows from (1), (2), and [¢, a], [1/a, ta?],
as may be seen by substituting in (19) the value of T'S;T'S,T given by
(4, a]. When ia =1, relation (19) follows from (1), (2), and [¢, —1/3],
[1/2, $@+1)], as may be seen by substituting in (19) the value of
TS;TS_1xT given by [¢, —1/¢]. This substitution is made after replacing
a by 1/3 in (19).

This completes the elimination of B from the set of generational
relations (1), (7), (8), (9), (10), the result being the set of relations (B).

4. Lemma.—The abstract group Gipp-1), stmply isomorphic with the
group LF[2, p*], may be generated by two operators T and S subject to
the generational relations (A) and (20) [1/1, %), © being a primitive root
of p.

Proof.—For the group LF[2,p], p> 2, only two generators, T' and
S, are necessary, and in relations (1), (7), (8), (9), (10) we may write S* in
place of S,. Some simplifications result from the fact that the marks
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of the GI(p) are all integers. " Relations (17) and (18), which were seen
to be equivalent to (8), now become

©@1) S™ = R-*SR¥, S™' = R-*S‘R*.
Relations (21) all follow from Ss = R~'SR, as may be proved easily by

induction. Relations (9) all follow from 7% = I and (TR)? = I, and the
get of relations (1), (7), (8), (9), (10) becomes the following :—

(22) : =1 T"=1 @D =1I;

(28) R¥(»-D — I;

(24) S* = R-'SR;

(25) (TR? = I;

(26) Rer = TS'TS''TS", where y= —1, p#0.
When p = 1, (26) gives R in terms of S and T, viz.,

(27) R = TS~'T8 Y8,

When p = 2k, an even number, (26) becomes
R* = T8-"'T§-"T8-*,
This follows from (22), (24), (25), and (27), for
TS-"*18-+*18-* = T(R-*S-'RY T(R*S'R-MT(R-*S-'RY, by (24)
= TR *S~YR'TR"S-'(R~*TR-* S—'R*

= TR~*(S-'TS-'TS")R*, by (25),
= TR-*TR, by (22),
= R*I'R*, by (26),
= R%, by (22).

When p = 2k+1, an odd number, (26) becomes
R¥+ = pg-"'pg-M*rg-#,
This follows from (22), (24), (25), and (27), for
Ts_izhITS_,-—(uu)TS_iu»l — T(R"kS_iRk)T(R"HS—iR_k_l)T(R_kS“Rk),

by (24),
= (TR S~*(R*TR"YRS~R~'(R-*TR~%S—*R*,
= R*T'S—*T(RS—*R-)TS~‘RF, by (25),
= R¥TS~*T'S-TS~) R, by (24),
= R*RR, by (27),

= R%+1,
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To complete the proof of the theorem it will be sufficient to show that
relations (28), (24), and (25), expressed in terms of S and T by means
of (26), follow from relations (A) and (20).

The substitution in (28) of the value of R}?~V given by (26) results
in the relation (ST)>= I. The substitution in (24) of the value of R given
by (26) results in a relation which reduces to (20) by means of relations (A).
The same substitution in (25) results in the relation (S—*TS-YT8-%? = I,

which follows from relations (A).
This completes the elimination of B from the set of generational

relations (22), (28), (24), (25), (26), the result being the set of generational
relations (A) and (20).

5. Proof of Theorem I.
The proof of Theorem I. consists in showing that (20) is a consequence
of relations (A). (20) may be written in the form
(TSYT8* S*-UTS- Vi —iTSi+t = ],
Replace the expression in parentheses by its inverse, as may be done
by (A), and invert. The relation becomes

(28) TS-1TSViTS%-*TSYirSi-! = J.
Conversely, (20) follows from (A) and (28). Consider the relation
(29) TSi-*TQUG-k+ DG~ G=k-DG-k+DPQUG-k+ DIGI-k — T,

where % is an odd integer. It may be written
T Gi-*GUG—k+1) (P G—G=k+ D=k=D/ g ~2hi—k+ DG—k~1)) GUS~k-DPGi~k — J.

Replace the expression in parentheses by its inverse, as may be done by
(A), and it becomes

Ts—i+k+2(S‘zi—zk—‘szl/(l—k-l)T) S(i—k—l)(i—k+l)(Tsl/(i—k—l)Tszi—2k—2)8—i+k+2 =1.

Replace the expression in each pair of paren ses by its inverse, as may
be done by (A), and then invert. The relation becomes

(80) TSi—¥PQUG—K + D g~(=kK =D~k +1) PQUi-K+ DT Gi~F = T,

where k' = k+2.
Relation (80) is a consequence of (A) and (29), and, conversely, (29) is

a consequence of (A) and (80). But, for £ =1, (29) becomes (28).
Therefore, for any value of %, & being an odd integer, relation (29) is
a consequence of (A) and (28), and, conversely, (28) is a consequence of
(A) and (29). But, for ¥ = ¢ or k¥ = 2+1, according as ¢ is an odd or
even integer, relation (29) reduces to (ST)® = I. Therefore (28) is
a consequence of the relations (A).
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6. Theorem III.—Outline of Proof.

By making use of the method used by Prof. Dickson* for other special
cases, the writer has made the computations which prove that, for the
special cases in which p™ = 49, 81, 121, relations (4) are a consequence of
relations (1), (2), (8). The method was proved to fail for p* = 169. For
this computation it was found convenient to have the marks of the
GF (p") arranged in two tables. In each table every mark is expressed as
a power of a primitive root ¢, and as a polynomial in ¢ of degree k¥ < n—1.
The coefficients in this polynomial are integers reduced modulo p. The
mark at*+ B¢+ yi*~24 ... 4 i+ is denoted by the symbol (aBy ... de).
This symbol is the usual symbol for a positive integer in the notation of
the number system whose base is p. In the first table the marks are
arranged according to ascending powers of ¢. In the second table the
marks are arranged so that the symbols (aBvy ... de) represent the positive
integers in their natural order. These two tables make it possible to
perform with ease the operations of addition, subtraction, multiplication,
and division within the field GF(p™. For p" < 169, these tables have
been computed by the writer and have been deposited in the mathe-
matical library of the University of Chicago.

Tre Group G siMpLY IsomoreHIC witH LF([2, 2"].

7. Proof of Theorem IV.

Relations (5) and (6) are found to be satisfied when a, b, ¢ are
identified with the transformations 2' =14z, 2’ = 241, 2/ = 1/2 of the
group LF (2, 2"]. Therefore the abstract group G' defined by (5) and (6)
must be either the group G,s_,, or a larger group. That it cannot be a
larger group is seen as follows.

Let H' be the sub-group of G' that is defined by (5). Every element
g' of the group G' can be reduced by means of (5) and (6) to one of the
two type forms h;, hich,, where %) and %, are elements of the group H'.
Every element %' of H' can be reduced by means of (5) to one of the two
type forms a*, a*ba*. Therefore every element g’ of G’ can be reduced by
means of (5) and (6) to one of the six type forms

a*, atba*, arca*, a’catba’, a‘barca’, a*ba*ca’ba’.

The last four of these can be further reduced by means of (5) and (6), so

* Proc. London Math. Soe., Vol. XxXV., pp. 292-305.
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that the six type forms are )
a, a‘ba*, ac, a’cba*, a’bca*, a‘bcarba’.

The maximum numbers of distinet elements of the six types are
respectively (2"—1), (2*—1)% (2"—1), (2"—1)% (2"—1)?, (2"—1)%. There-
fore the maximum number of distinct elements ¢’ is

2(@2"—1)48(2"—1)24(2"—1)® = 2"(2**—1),

which is precisely the order of the group Gy g_,y

8. The relations da‘b = a"ba‘ are highly redundant. If they be de-
noted symbolically by (£, #, ), it appears that the relations (—§&, —¢, —n),
(’l’ fy —f)y (—n, {! '—f)a (f, -n, f), (_§; —'59 ’7)» and (2’059 ok ’ 2kf) follow
from (£, #, {), and the two relations a®"~* = I, ¥* = I. 1In the special case
in which z = 8, de Seguier has reduced the system (C) to the system (D)
of Theorem V. The attempt to do this in general has resulted in
Theorem V.

9. Proof of Theorem V.

The proof consists in expressing relations (5) and (6) in terms of
d = ¢b, and in simplifying the set of relations thus obtained. Since
(ca)® = I, and consequently ca‘c = a~%, the relation (—¢&, —¢, —7) may
be written da~fb = ca‘cba~", whence

81) . b = atd'atda",
(82) ¢ = datd—'aSda".

The relation b® = I, expressed in terms of @ and d, is, since £—n =
(mod 2"—1),
(88) (d'a%daf)® = I.

The relation (ca)? = I may be replaced by the relation (ca”)? = I, since
the latter includes the former and follows from it. Expressed in terms of
a and d, this relation is

(84) (d'afdaf) = 1.
The relation ¢® = I, expressed in terms of a and d, is
(atdat—*d-ta~%d? =1
or [@a~tdat-%)d'a~*da~tdat~$(a~tdat )P = I,

which is equivalent to (@d-'a~*da—tdat~$)? = I.
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If da—*da—¢ be replaced by its inverse, as may be done by (84), this
becomes
(85) (datd~'af)? =1,

which is equivalent to (83).
The relation ba‘b = a"ba’, expressed in terms of a and d, is

(86) (@ 'adad) atd~'af (da—*d~'a~)da—" = I.

Replace each of the expressions in parentheses by its inverse, as may be
done by (88), transform by af, and (86) becomes

d (da—*da=%) (@a¥d"'a®d~") d~'a~"
= d(atd-'a’d"Y) (da~%¥da~%) d~'a"
= datd'a~%da~*¢ (@ fd'a~"d"Y) d
= datd~'(a~%da—td) a"datd
= d (afdatd™") a*a’datd
= d-la~td la—t+tStdatd
= d'a~¢td"'da‘d (since {4n—¢ = 0)
=d®=1.

The relation (cb)® = I, expressed in terms of d, is d® = I. Relations
(5) and (6) have now been expressed in terms of a and d, and the resulting
set of relations has been proved to follow from (5) and (6).

10. In proving Theorem VI. for » = 2, 8, 4, Prof. Dickson’s point
of departure was Prof. Moore’s set of relations for Gu,m_,, (see mote to
Theorem II. in the Introduction). He defined T and S, in terms of 4 and
B by means of certain relations which express T and S, in terms of 4
and B when T, S,, 4, B are identified with certain concrete transforma-
tions of the group LF[2, 2*]. He then proved that T and S,, thus
defined, satisfy Moore’s relations in view of relations (E).

The same method of proof was applied successfully by the writer to
the case in which » = 5, but the computation was so excessive as to
render it unadvisable to try it for higher cases. The proof for the case
n = 5 was much simplified by using the same method with relations (C)
as the point of departure. Finally, a simpler proof was made for the
cases in which » = 2, 8, 4, 5, 6, by applying the same method to the set
of relations (D). '
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11. To obtain relations with which to define @ and d of the set (D) in
terms of 4 and B, the generators 4, B, d, a were identified with the
transformations S;T, Si+i T'S;, 2’ = iz, where T and S, denote the trans-
formations 2" = 1/z and 2/ = z+\. Among these concrete transformations
exist the relations

d=A47B, a=8p1,T8p1T8p1,T.

For any particular value of n, T and S, can be expressed in terms of
A and B, as is indicated by Prof. Dickson,* and therefore a can be
expréssed in terms of 4 and B. This expression can be reduced by
means of relations (E), which are satisfied by the concrete transformations

4 and B.
The result obtained in the special cases in which » = 2, 8, 4, 5, 6 is

(41) a = A-'BA?'B = (BA) BA* '+*(BA)~\.

12. Proof of Theorem VI. for n = 8.

The GF[2®] is defined by the primitive irreducible congruence
@ — i+1 (mod 2). The pairs of values (r, s) of (E) are (1, 2), (2, 1),
(8, 5), 4, 6), (5, 8), (6, 4), (7, 8), (8, 7). The set (D) reduces to

88) a'=1I B =1 (d ada)? =1, (d'a’da® = I, (d 'ad 'a®?® = I.
Define d = A~'B and a = (BA)BA®%(BA)~! and substitute in (88). The
relation a” = I becomes
BASBA®(BA®BA*) A?BA® (BA®BA*) A?

= BA®BA®(4°BA®B) A>BA®(A°BA®B) A?

= BASBA?BA® (BA®BA) ABA®BA*

= BA®BA®BA®A*BA~*(BAB) A®BA?

= BA®(BA®BA) ABA~*(A'BA~") A®BA?

= BAS(4-'BA~2B) ABA~%(BA*BA) A

= BASBA"(A'BA~Y) A~%(4"'BA’B)A

= BAS(BA®BA*) BA"BA

= BAS(A*BA~°B)BA'BA

= (B4 =1,

which is one of relations (E).

* Proc. London Math. Soc., Vol. xxxv., pp. 306 and 443.
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The relation d® = I becomes (4~'B)® = I, which is the inverse of one
of relations (E).

The relation (@ 'ada)® = I becomes (4°B)? = I, which follows from
A°=1T and B*=1I.

The relation (d-'a®da®?® = I becomes

[4(4*BA%B) A*(BA%BA* AB]?
= [4(BA®BA®% A*(A°BA®B) AB]?
= [4BA®BA®BA®(BAB)]?
= (ABA®BA®BA*BA']?
= ABA®(BA®BA% BA®BA*BA!
= ABA®A*BA°B) BA®BA?BA!
= ABA"BA’BA®BA-! = I,

which follows from relations (E).
The relation (d~'ad'a®? = I becomes

[A°(BAB) A*BA®BA®B]?
= [4*BA®(BA®BA*) AB]?
= [4*BA®(A°BA®B)A BT
= [4*(BAB)A*BAB)}
= [4*(4"'BA-) 4%(4 B4}
= [4*(BAB) A~}
= [4°B4A-P =1,

which follows from B? = 1.
This completes the proof of Theorem VI. for n = 8.

18. Proof of Theorem VI. for n = 4.

The GF (2 is defined by' the primitive irreducible congruence
it =441 (mod 2). The pairs of values (r, s) of (E) are (1, 2), (2,1), 8, 7),
(4, 12), (5, 18), (6, 9), (7, 8), 8, 11), (9, 6), (10, 14), (11, 8), (12, 4), (18, 5),
(14, 10), (15, 16), (16, 15).
The set of relations (D) reduces to
{a}“ =1 &#=1 @Wdd)?=1 ¢=1,4,5,10,

(89)
@lad e =1 (d'a®d % =1I.

Define d = A~'B, a = (BA) BA(BA)~?, and substitute in (89). Ex-
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pressions for various powers of BAY reduced by means of (E) are as
follows :—
(BAIO)S —_— AISBAHBAISBAIQ’ (BAIO)IO —_ AMBAlsBAMB’ (BA10)15 —_ As‘i.
The relation a*® = I becomes 4% = I, which follows from (E).
The relation (d-'ada)? = I becomes (A'"B)? = I, which follows from
A" =171 and B*=I.
The relation (d~'a*da*)® = I becomes
[A7'B(BAY*A-'B(BAY*A~'BP = I,
which reduces, by means of (E), to (BA°BA%? = I.
The relation (d~'a®da®? = I becomes
[A-'B(BAYS A-'B(BAFA-'B} = I,
which reduces, by means of (E), to (BA"BA%»? = 1.
The relation (d'a'’da')® = I becomes
[A-'B(BAY)°A-'B(BAY 4B} = I,
which reduces, by means of (E), to (BA®BA%? = 1I.
The relation (d~'ad-'a%? = I becomes

[A®BA°BA®BAYBA°BT = I,
which reduces, by means of (E), to 42 = 1.
The relation (d~'a*d~'a')? = I becomes
[4-1BABBA“BA®BAYBA®BA®BA“BA-'B} = I,

which reduces, by means of (E), to (BA°BA™? = I.
This completes the proof of Theorem VI. for n» = 4.

14. Proof of Theorem VI. for n = 5.

The GF[2°] is defined by the primitive irreducible congruence
#® = #+4®+i+1 (mod 2). The pairs of values (r, s) of (E) are (1, 2),
@, 1), (8, 25), (4, 10), (5, 17), (6, 15), (7, 11), (8, 80), (9, 14), (10, 4), (11,7),
@12, 20), @18, 21), (14, 9), (15, 6), (16, 28), (17, 5), (18, 27), (19, 24),
(20, 12), (21, 18), (22, 26), (28, 29), (24, 19), (25, 8), (26, 22), (27, 18),
(28, 16), (29, 28), (30, 8), (81, 82), (82, 81).

The set of relations (D) reduces to

{asl = I, dé = I, . (d‘la‘da‘)“ =1, £= 1, 8,8, 12’

40
“0 dlada®? =1, (d'aPd %=1
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Define d = A"'B, a = (BA)BA®(BA4)™!, and substitute in (40).
The relation a® = I becomes (BA¥®® = I. Before proceeding further it
will be necessary to simplify the expressions for various powers of (BA)
by means of (E).

(BA®)" = BA®BA®BA®(BA¥BA™)A*BA®BA™
= BA®BAY(AYBA*B) A" (BA*BA"Y) A'BA™
= BAIS (ABA)A°BA™AYA™BA® (ABA)A™
= BAYBAYBAYBAYBA".

(BAY®)S = (BA®)* (BA™ (BAY)*
= (BA™ (BA®BAT)(A*BA®B)A*BABA (BABAY)

X (ATBA®B) A*BA"

= BA“¥BA (A®BA®B) AYBABAY(BA®BA®) ABA"
= BA®(BAB)A*BA®BABA®BA* (BAB) A"
= BAY(BA®BA™®) A*(BABA*)(A*BA®B) A"
= BA¥BAYBA®.

(BA™™ = (BA'"(BA™)" (B4A®)
= BAYBAYBA®(BA*BA%) A¥BA*BA™
= BAYBABA®BA-'(A°BAMB) A¥BA"
= BA¥BAYBA®BA®(BA®BA® A%
= BA®BA"BA®(BA*BA® A"BA®
= BA®BAYBA®BA~(A°BA"B) A®
= BA®*BAYBA*(BA®BA® A*?
= BA®BAY (BA°BA“)A~'BA*
= (BA®BA®®.

The relation (BA®)® = I becomes (BA*BA®%? = I, which is one of

relations (E).

The relation (d-'ada)? = I becomes (4%¥B%? = I, which follows from
A® =17 and B*=1.

The relation (d-'a®da®? = I becomes

[AYBA®BA'BA¥BAYB} = I
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or A""BA¥BA*BA®(BAYBA® ABA®BA*(BA®BA™ A®B
= AYBA®BA*(BA®BA™) A®*BA®(BA®BA*)A¥BAYBA*B
= A"BA®BA“BA®BA(A"BA*®B) A¥BA“BAYBA®B
= AYBA¥BA“BAYBA" (BAYBA®) ABA®BA®B
= A"BA®BA™BAY(BAB) A (BAB)A"BA®B
= AY"BA®BA“BA"®BA (A°BAB) A®B
— AI'IBAIBBAM(BAI'TBAS)AISBAMB
= AV"BA*(A¥BA°B) A*BA®BA“B
= B(BA"BA% A-'BA*BA’BA“®BA“RB
= BA°BAY(BA®BA% A-'BA¥BA“B
= BA5(BA“BA%?A°B =1,
which follows from relations (E).
The relation (d-'a®da®? = I becomes
[A7(BA®) A (BA®' A 'BP =1
or [AY(BA®BA*)A®BAY(BABA*Y A'BAY(BAYBA* A*BA®BA®B}
= [A®BA*BA®BA®(BA*BAY®) A®(BA®BA™) ABAYBA®B}
= [A®BA"“(BA®BA*) A®BA°?(BAB) ABA®BAYBA®BY}
= [A®BA®BA“BA'(A*BA®B) A°BABABA®BT
= [A®BA®(BAYBA%(A®BA“B)A*BABA"®B}
= [A%(BAY"BA% ABA®BAYBA®BT}
= [A"BAYBA®BAYBA®B}
= AMBAYBA®(BA®BAY) A (A®*BA®B) A¥BA®(BA®BA* A¥B
= A""BAYBABBA®(BA"BA" A (A" BA®B) A®BA"B
= A®BAYBA®BAY(BA*BA®)ABA®*BA"B
= A"BA®BA®BA*(BA"BA") A" BA"B
= A"BAY(BA®BA*)ABA®(BA™BA™)AB
= A™BA"BA"(BAB)A’BABAB
= A (BA®BAYABA®BAZBAB
= A®BA“(BAB)A*BA™(BAB)
= A(A"BAYB)?4! = I,

which follows from relations (E).
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The relation (d-'a'®da'®)? = I becomes
[A7'B(BA®?4-'B(BA®B4'B]* =1
or [4~'B {BA®BA"BA(A*BA™B) A*BA}%)*
= [A'B(BA¥BA™BA"BAYBA)*}P
= [A*(BA®BA®) A¥BA’BA¥BA®BABABAT
= [A YBA(BAPBA®) A¥BA*BA®BABAYBA ]’
= [A®BA*BA™ (BA*BA®) 4 (A®BAB) A"BA®BAP
= [A®BA*B(A®BAYBA®) A*BA®BAYBA}
= [A®BAMBA"BAY (BAYBA® A°BABAT
= [A®BA*BA"BA*BA¥(BA°BA™)A~*BAT}
= [A®BA*BA"BA'BA™BA (A®BA®B)AT
= [A®BA™ (A®BA®™B) A*BA®BABA"P
= [A®(BA URBANASBA*BA®BA3BA u]a
= [A®BA®(BA*BA) A~ (4A°BA®B) A®BA"}
= [A®BA°BA®BA*‘BA®BAYP =1,
which follows from relations (E).
The relation (d-'ad"a®? =1 becomes
[A"BA(BA®®A-'BF = I
or [AT(BAB)A*BAYBA(A*BAYB) ABA}
= [A"®BA*BA(BAV'B°A)A’BAT
= [A¥BA¥BA"BA-'(AVBA’B)A}
= [A*®BA*BA®BAYBA}
= (A¥BA¥)(BABBA®?(A¥BAM*-! = ],
which follows from relations (E).

The relation (d-'a®d~'a®® = I becomes

(4B (BA™*BA(BA®PA-'BF =1
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or [A"BA®BA™ (BA®BA™ A®BA®BA (BA®BAY) 4*B]*
= [A"BA®BA®BA® (BA®BA®) A®BA® (BA“BA®) A"BT
= [A"BA®BA®(BA®BA™ A~ (4°BAYB) A®"BA®BA"BT
= [AYBA®BA™ (BA“BA%(4°BA*B) A¥BA"B}
= [A"BA®BA*BA (4*BA°B) A"'B]?
= [AY"BA®(BAB) A®BA®B]?

| = AMBAVBABBA®(BA"BA®) A®BABBAB
= AYBA"(BA®BA®™) ASBA®BA®BA®BA®B
= AYBA%BAY(BA®BA™ A-'BABA®BA®B
= AYBA*BATBA®(BA®BA™ ABA®B
= AVBA%BATBA® (BAYBA™) A"B
= AYBA*(BAYBA®) A-'BA“BA"B
= AY"BA®BA (A°BAYB)A"'B
= [A"BA°BP = I,

which follows from relations (E). This completes the proof of
Theorem VI. for n = 5.

15. Proof of Theorem V1. for n = 6.

The GF(2% is defined by the primitive irreducible congruence
©® =1¢+41 (mod 2). The pairs of values (r, s) of (E) are (1, 2), (2, 1),
8, 50), (4, 17), (5, 80), (6, 10), (7, 48), (8, 46), (9, 16), (10, 6), (11, 25),
(12, 21), (18, 28), (14, 20), (15, 62), (16, 9), (17, 4), (18, 42), (19, 57),
(20, 14), (21, 12), (22, 58), (28, 47), (24, 82), (25, 11), (26, 88), (27, 89),
(28, 18), (29, 84), (80, 5), (81, 86), (82, 24), (88, 41), (84, 29), (85, 60),
(86, 31), (87, 52), (88, 26), (39, 27), (40, 54), (41, 88), (42, 18), (48, 7),
(44, 58), (45, 51), (46, 8), (47, 28), (48, 61), (49, 56), (50, 8), (51, 45),
(52, 87), (58, 44), (54, 40), (55, 59), (56, 49), (57, 19), (568, 22), (59, 55),
(60, 85), (61, 48), (62, 15), (68, 64), (64, 68).

The set of relations (D) reduces to
(a,‘*’ =1 d&=1I @'afda®®=1 £¢(=1,6,17,9, 21, 26, 42, 45,

41)
| (dafd1a9 = I, the pairs (£, {) being (1,6), (7, 26), (9, 45), (21, 42).
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Define d = A7'B, a = (BA)BA™* (BA)~!, and substitute in (41). The
expressions for various powers of (B4%) reduced by means of (E) are

(BA™?® = A®BA®BA, (BA%® = A®BA*BABA®BA®BA®,
(BA™® = A®BA®BA®BA’, . (BA®)™ = A"BA"BABA™BAY,
(BAM® = ABBA®BA“BA®BAY, (BA% = A®BAYBABA®BA®BAY,
(BA™* = A®BA®BA®BAYBAY, (BA™® = AX(BA®BA 4.
The relation a® = I becomes
(BA)A*](BA®BA*? 4A-2(BA)' =1,
which follows from relations (E).
The relation (d~'ada)? = I becomes
(4%B)® = 1,
which follows from A% =171 and B? = I.
The relation (d~'a®da®? = I becomes
[A-'B(4¥BA®BA®BA®BA®B)"} = I,
which reduces, by means of (E), to (B4®BA%)? = 1.
The relation (d'a’da’)? = I becomes
[43(BA®BA®BA®BA) A"B} = I,
which reduces, by means of (E), to (BA%BA®? = I.
The relation (d-'a’da®? = I becomes
[A-'B(A®BA’BAYBA®BA®BA“BYP = I,
which reduces, by means of (E), to (BA®BA%)? = I.
The relation (d-'a*da®)? = I becomes
[A-'B (4"BA"BAPBAMBAYBY] = I,
which reduces, by means of (E), to (B4A®¥BA*)? = 1I.
" The relation (d-'a®¥da®)? = I becomes
[A'B(A®BA®BA“BA®BAYB)"? = I,
which reduces, by means of (E), to (BA*BAM? = I.
The relation (d~'a**da*®)? = I becomes
[4'B(4%®BA®BA*BAYBA®BA®B)* =1,
which reduces, by means of (E), to (BA®BA®)? = I.
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The relation (d-'a®®*da'®)? = I becomes
[A4-1B(4%BA®BA®BAYBA®BY)® = I,
which reduces, by means of (E), to (B4A®BA™)? = I.
The relation (d-'ad'a®? = I becomes
[A®BA®BA®BA®BA®BA®B]® = I,
which reduces, by means of (E), to (BA*BA%)? = I.
The relation (d~'a’d"'a®? = I becomes
[A”BA"”BA’}QBA59BA4BA“BA“BBA“BA””BA“‘B]a =1,
which reduces, by means of (E), to (BA*BA®? =1.
The relation (d'a®d~'a*®}® = I becomes
(4-'BA®BA’BAYBA®BA®BAYBA-'BA®BA“YBA*BA®B} = I,
which reduces, by means of (E), to (BA"B4AY? = 1.
The relation (d-'a®d'a*®)? = I becomes
[A7'BA®BA*BA“BA*BA*BA'BA®BA®BAYBA®BA®B} = I,
which reduces, by means of (E), to (BA®BA™)?2 = I. This completes the
proof of Theorem VI. for » = 6.
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