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INVARIANTS OF THE FUNCTION F(w, y, #', y') IN THE
CALCULUS OF VARIATIONS®

BY

ANTHONY LISPENARD UNDERHILL

Introduction.

In K~EsER’s Lehrbuch der Variationsrechnung, § 16, and in Borza’s
Lectures on the Calculus of Variations, § 85, the transformation of the
definite integral

I= I‘IF(x, Yy, &, y)dt
by a “point transformation,” '
x=X(u,v), y =Y (u,v),
is incidentally considered, and the invariance of the expressions
rF, F,.,

— x’y’ - x'z 9

F(z,y,#,y)= yf;"'=

T(w’ Y @ 3/" x’, y”) = Fzy’ - F’ﬂz’ + Fl(w’y" _ 27"?/’)’
rd E(w, y’ x” y” m" y‘) = F(x’ y’ w\?y\) - [w\‘F;'(w, y’ x’, y’)+?/\1;',r(27, y, w” y’)]’

is proved. The object of the present paper is to study this transformation more
in detail, and to derive further invariants which are of importance for the
Calculus of Variations.t

In Chapter I the general definitions concerning invariants of the function
F(x,y,«, y') with respect to point transformations are given, and a process
(which does not essentially differ from the « 8-process’’ of the Calculus of Varia
tions) is developed, which transforms an absolute invariant again into an abso-
lute invariant. This permits us to derive from known invariants new invariants.

In Chapter II, after a short discussion of the invariants arising out of the
first variation, a new absolute invariant

K(w, y’ w’, y’, wﬂ’ yll, w”l’ y’/’)
* Presented to the Society April 27, 1907. Received for publication November 27, 1907.
t See also a paper by G. LANDSBERG, Kriimmungstheorie und Variationsrechnung, Ja hresbe-

icht der Deutschen Mathematiker-Vereinigung, vol. 16, 1807.
316



317 A. L. UNDERHILL: INVARIANTS [July

connected with the second variation is obtained by means of the process described
in Chapter I. When the curve for which the invariant K is computed i is in
particular an extremal, the invariant & takes the simple form

In Chapter III a transformation of the parameter ¢ of the curve is com-
bined with the point transformation, and by a proper modification of the invari-
ant K a function

K(;(x’ Y w'7 y" w”’ y(” m”', y’”)

is obtained which remains invariant not only under every point transformation
but at the same time under every parameter transformation. For the case of
an extremal the expression X, reduces to

1= 1/F” 8F*\
K‘F’[K—E(T"E 'F—)]

This leads to an invariantive normal form of the second variation, viz

#I= gj:’[(%g)’-z V’]da.

In Chapter IV these results are applied to the case of the geodesics, and it is
shown that the invariant X is in this case identical with the Gaussian curva-
ture K ; while the general invariant K& is expressible in terms of 1/p, the
Gaussian curvature of the surface, and of 1/p , the geodesic curvature of the
curve for which the value of K& is taken, by means of the formula

Kul 1
P 2y

Finally, the result concerning the second variation is applied to J AcoBr’s the-
orem on the conjugate points of geodesics on surfaces of negative curvature.

CHAPTER L* @eneral theory of the invariants of the calculus of variations
Jor the simplest type of problems.

§ 1. E'xtended point transformations.

‘We consider a point transformation connecting two systems of rectangular
ooordinates,
@) e=X(u,v), y=Y(u,v).

* This chapter is based upon a series of lectures given by Professor BoLzA in his Seminar in
the Caloulus of Variations during the Spring Quarter, 1905, at the University of Chicago.
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For simplicity we suppose that the functions. X(w,v), ¥ (u,v) are analytic
functions of u, v, regular in the domain under consideration. Further we
assume that the Jacobian

D(u,v) = (X, ¥y

9(u, )

is different from zero in this domain, thus insuring a one-to-one correspondence
between every sufficiently small part of this domain and its image in~the
wy-plane.* The inverse of the transformation (1) we denote by

(19) - u=U(z,y), o=V(z,y).
We consider now a curve in the uv-plane

L:  u=¢(t), o=v(¢),

which we suppose to be regular 1 in a certain interval (¢,,¢,). Let its image in
the xy-plane be

@) ' {’“’X[‘i’(t) 4f(t)]=<1>(z),
VS (CTORTONES {09

Dliferentlatmg (2) with respect to ¢, and denotmg derivatives with respect to
t by accents, we obtain

®) o =Xu + X, y=Xu+PFyv,
2" == X;muﬁ +_2qui”r+xw‘vﬂ +:qun+ X,,v",

(4) ” 2 L X 2 _”» ”
y = Kmu +2'Kwuv + I’cvv +17uu + Yo”’

and so on.

The totality of all point transformations (1) form a group, 7', which in Lm’
terminology is an infinite, { continuous group.§ If we combine (1) and (8) and
consider ', v/, o, 3/, not as derivatives of certain functions with respect to-¢,
but as new variables, the combination (1) and (8) represents an “extended
point-transformation” || between the variables, %, v, /, »’,on the one hand, and
the variables 2, y, ', 3, on the other hand. It is easily proved that the totality
of transformations (1), (8) forms a group, which we denote by 7”'. Similarly

. %*08GooD, Lehrbuch der Functionentheorie, vol. 1, p. 56.
- tLe,¢(t), ¥(t)are analytio functions of ¢, regular in (1, %, ), and ¢/ (¢), ¥/ () do nes
vanish simultaneously. in (7, t,). Compare KNESER, Lehrbuch der Variations-Rechnung, p. 3.

1 “Infinite’’ inasmuch as the transformation (1) contains the arbitrary tunohons X(w, v),
Y(u,v).

] Compare LIE, Die Grundlagen fiir die Theorie der unendlichen continuirlichen-Gruppen, Leip~
ziger Beriohte, 1891, p. 316, and LIE-SCHEFFERS, Confinuirlicke Gruppen, p. 764,

| Compare LIE-SCHEFFERS, Geometrie der Beriihrungs-Transformationen, p. 12. It must; how-
ever, be remarked that L1E assumes the ourve in the non-parametrio form v=7(«), and m&-
ingly obtains (3) in non-homdgeneous forms.
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by adjoining further the equations (4) to 7", we would obtain a ¢twice extended
point transformation,” and a corresponding group 7", and so on.

§ 2. Definition of invariants of the function F(z,y,«,y’).

‘We now apply the group 7" to a function F'(x, y, ', y'). We suppose
that 7 is an analytic. function of its four arguments, regular in the vicinity of
every point
T =a, y=2>b, ¥=ad, Y=,
for which (a, b) lies in a certain region R of the wzy-plane, while at the same
time (a’, 8') 4= (0, 0). We suppose further that /" satisfies the homogeneity
condition of the calculus of variations,* namely,

F(z,y, ey 0y’)=0eF(2,y,%,9y)
for every positive «. Substituting for «, y, «’, 3’ their values from (1), (8) in
our function F'(x, y, «, ¥'), we obtain
F(z,y,2,y)=F(X, Y, X v+ X, Y v+ T,v),

or
6) - F(z,9,%,¥)=G(u,v,v, ),
where @ is defined by

G(u,v,u,v)=F(X, Y, X o+ X,v, Y o'+ X).
From this and the homogeneity condition, it follows at once that

G(u, v, xv, 00') =G (u, v,u,?)

for every positive «.
From (5) we can compute the partial derivatives of @, for instance,

(6) G,=F,X +F, Y, G.,=F,X+F,¥Y, .
whence

1 : 1
M F,=5(Y,6G,—-X6,), F,=5(-X6,+ZX8,).

Following the general method outlined by L1t in his paper Ueber Differential-
Invarianten,t we now adjoin equations (7) to (1) and (8), considering ¥, ¥,
@, G, as new variables. We obtain then a transformation between the vari-
ables 2, ¥, «’, ¥, F,, F,,, on the one hand, and v, v, «’, ¢, G.,, G, on the
other. The totality of these transformations corresponding to the totality of
point transformations (1) form a group 77.

*Compare KNESER, Lehrbuch der Variationsrechnung, § 3; BOLZA, Lectures on the Caleulus of

Variations, § 24 b.
tMathematische Annalen, vol. 24 (1884), p. 537 1., and in particular p. 569.
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We might also extend 7', by adioining the solutions 7, ¥, of the equations
Gu = Fz‘Yu + ’Fy ‘Yu + Fz’(quu’ + qu‘v,) + Fy'(I’uuu, +1’uo”')’
Go = Fqu + FV Yv + Fr'(Xuvu’ + vav’) +Fv'(Yuvu’ + Ifovvl)’

and still further by adjoining equations for the second partial derivatives of
F and G, and so on. In this manner we should finally get an infinite con-
tinuous group 7'®), whose transformations connect =, y, &', ¥, - -+, ¥, y®),
F, F, F, F, ..., Fm with u, o o, v, .-, u®, o®),
G, @&, G, G, -, G,m where m is the order of the highest partial
derivative of /' and G.

We next define Jnvariants under these infinite continuous groups as follows.
Let Ip(x, y, 2, y', 2", y", - -+, 2®, 4*)) be a function of the arguments indi-
cated, and of #" and its partial derivatives up to those of the m-th order. Further
let Z;(u, v, u', v, 4", v", - . .) be the same function of u, v, u’, v, u”", v", - - -, u®), v,
and of G and its partial derivatives up to those of the m-th order. Then if
Lo(u, v, o, v, )=Ip(x, y, o, y, - - ) for every transformation of the group
T'™), we say I is an absolute Invariant* under 7®. Wae call I, an Invariant
of Index p if I(u, v’y ¥y - -+ ) = DPIp(%, y, &, yy - ), where ‘

o(X, ¥)

D= o(u,v) ’

Furthermore call 4, which is the highest order of the derivatives with respect to
¢ occurring in I}, the order of the invariant, and the highest order, m, of the
partial derivatives of #', which occurs in Iy, the class of the invariant. As
examples, we mention

8 G (u,v,u,v)=DF (x,y,«,y)t

of class 2, order 1, in(iex 2, and |

9 Te(u,v, o, o, u",v") = DTp(%, y, > ¥y s §*)
of class 2, order 2, index 1, where .

G G, G,

1= 2 =— =T ' Gx= = T Y w

Tp=F,,—F,+F(y —a"y), To=Gu— Co + G, (¥ 0" —u"?),
thus showing the invariance of the so-called LEGENDRE and EULER conditions
of the calculus of variations under extended point transformations.

- %< Differential Invariant "’ in L1E'S term inology.
1 30LzA, loo. cit., p. 138.
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§ 8. Invariants with several sets of cogredient variables.
‘We now introduce a second series of variables
vy W W L S R
. . LyYs X yY 9y Uy VyU 3V y -
cogredient with
4, 4 ’ 4 ” ’ ’ ” 4
LyYsXyY g vy Uy Vy, Uy Vy-ooy
that is, connected by the same transformations,
10) =Xu + X,0, y=XY,u+ ¥,

and 80 on. We thus obtain a further extension of our group and correspond-
ing invariants of #, with two sets of cogredient variables, satisfying for all
transformations of the group the equation,

Io(u, v, w, vy ooy w0 ) =D (2, y, 2y 9y oy 2y Yy -0
An example * of such an invariant is
. e F, (z,y,7,y) +9‘F,/(x’ Yo s Y)s
for which
11) v G (v, v, o, V)40 G (u, v, ¥, v')=d:‘.F'z Az y, & )+ Y F [z, y, @, ¥),

as may be verified at once by means of (6) and (10).
From (11) it follows at once that the WEIERSTRASS E-function

Ep(@, y, 2, Y2,y ) =F(@, 25 ) — [CF,(x, 9, %, ¥) + y F (2, 9, @, ¥)]
is an absolute invariant, i. e.,
Eg(u,v,w,v,u,v)=Ep(x,y, 2, ¥, «, v)-
Invariants of this kind also occur when we consider two curves,

L: x=x(t), y=y(t),
and N
L:  z=3%(T), y=y(7).

At the point of intersection P we have

T =, Yy=y,
and if we put at P

_ds . dy . df
=@ YT TTa YT 4o
équation (11) shows that the condition of transversality of Z and Z is preserved

in passing from the xy-plane to the uv-plane.
Another invariant of this kind is the expression 'y’ — 'y, for which

* BoLzA, loc. cit., p. 183, eq. 28.



1908] IN THE CALCULUS OF VARIATIONS 322
t
L
P
L T
(12) (W' —u'v')= D2y —='Y).

This last example has an important application in the calculus of variations.
When we consider a set of curves in the uv-plane

u=u(t,a), v=1v(t,a),
then the corresponding set in the wy-plane is

13) x=w(t, a), y=y(t, a),
where

z(t,a)=X[u(t,a),v(t, a)], y(t, a)=Y[u(t, a), v(t, a)].

Hence,
ox 06X ou 0OX ov oxr 06X ou oJ0Xov

Gt ouot Tov ot é6a—ouodat v da
oy 0¥ ou O¥ dv oy 0¥ ou 0¥ dv

= oudttT ot da—ouwoat o oa

The variables

;- aw ’ ay ’ au /e _a:v
Sar YTar YT "Toa
are therefore cogredient with
. Ox . Oy . Ou . Ov
"o YT “Ta "Ta

and consequently from (12) the Jacobian -

o(=, )
o(t, a)

- A(t,a)=

is an {nvariant of index — 1; i. e.,

o(u,v) Loz, y)
a(t, a) =D o(¢ty a)’




328 A. L. UNDERHILL: INVARIANTS [July

If, in particular, the set of curves (18) is the set of extremals through a fixed
point P, then the equation
A( t, ao) =0

furnishes the conjugate * point P, to P, on the particular extremal a = q,.
But on account of (9) the image of the extremals in the wv-plane is the set of
extremals through the image @), of P,.

It follows, since A is invariant, that the conjugate @, of @, on the extremal
a = a, in the uv-plane, is the image of the point P,. In other words, the con-
Jugate of the image is the image of the conjugate.t

Another result from (12) is as follows: If 7,(x, y, 2, ¥, ---) be an invariant
of index p, then

(z'y =2y Y Ie(z,y, 2,9 )
is an absolute invariant. For instance, F' (x’y' — x'y')* is an absolute invari-
ant, according to (8).

The following lemma will be of importance :

From every invariant which contains only the variables ', y' of the second
set, and which is, moreover, homogeneous in x', y', an invariant with only one
set of variables can be derived by replacing =, y' by F,,, — F,, respectively.

Proof. From (T) we have

D(F,)=(G)X,+(— G)X,, D(-F)=(G)F.+(-G,)F,
Hence the equations (10) are satisfied by

vw=GG,, =G, ©'=DF, y=—DF,.
If, therefore,

Ty(uyv, oy, - u, ) =D Ip(2,y, 2,9, -+, 2, ¥'),

for all transformations of the group under consideration, then we have in par-
ticular,

Io(u, v, 9,0, ooy Gy —Gy) =D Ip(v,y, %y, ---, DF,, — DF,).
If, furthermore, 7 is homogeneous in z', ' of degree m, then
Io(ua v, UV, - Gr" _Gu') =DP+MIF(W9 Y «, y", Tty Fy" - z')’

and 7 is an invariant with only one set of variables. The index is increased by
the degree m of the homogeneity of I in &', y'.

§4. Methods for the construction of jnvariants.

For the determination of all invariants of a given group 7'{“} one might use
the general method developed by LiE in his paper Ueber Differential-Invari-

* BoLzA, loc. cit., p. 63.
1 First given by A. L. UNDERHILL in a paper before the Chioago Section, Aprii, 1905.
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anten,* which reduces the problem to the solution of a complete system of linear
partial differential equations.+ The application of this method to the present
problem becomes, however, very complicated on account of the great number of
adjoined variables. We therefore employ different methods, which lead more
directly to those invariants which are of paramount importance in the calculus
of variations.

The simplest of these invariants have been used already as examples in the
preceding sections. They are the functions

F(x, y,'w', ¥), *F, (z,y,%,y)+ y‘Fv,(x, Y, %, y), F(x,y,2,9),
T(w9 Y, w,9 yl7 x"a y"), E(wy Y, w" 3/,’ w‘a :‘/\)a A(t'» a)'

In order to obtain further invariants, we now develop methods for the deriva-

tion of invariants from alieady known invariants. We denote by Z.(z, y, &/,

%', -++) an absolute invariant under 7'}, so that

(14) IG(u9 v, u’y v )=IF(wa Y, «, y,a )

for every transformation of 7"().

a) The method of differentiation.

Consider now u, v as functions of ¢, and »®, v® as their A-th derivatives
with respect to ¢. Then z, y will be functions of ¢ determined by (2), and simi-
larly their derivatives «, ¥/, 2", 3", -- by (8), (4) and the successive derived
equations. The equation (14) becomes then an identity in ¢, and it may be
differentiated with respect to ¢. We have

dl, dI,
(15) dtG = Tit_F’
i e,
ol, , oI, , oI, ol,;
2wl T v ta 570"+
(16) ou ov Ou ov

aI . aIFI aIF ” i‘&'n
=—a—w—w+ﬁy+§*w7x+ay;?/ + e

where it will be remembered that I, is a function of =, y, 2, ¥, --- and of #
and some of its partial derivatives which are themselves functions of =, v, =, ¥
Equation (16) appears at first as an identity in ¢. But it holds for any func-

tions u, v having derivatives of sufficiently high order. Let w, v,, %, vy, %, ¥p, - - -
”

be an arbitrary system of values of the variables u, v, %, v, ¥’, v", - .-, and
Tos Yo» Tgs Yos Tas Yo + - - the corresponding values of =, y, &, ¥/, =", ¥, - - - ob-
*Mathematische Annalen, vol. 24 (1884), p. 637.

1 This method was used by ZorAwsKI for the géodesic problem ; Acta Mathematioa, vol.
16 (1892), p. 1.
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tained by the transformations (1), (3), (4), and so on. Then in order to show
that (16) holds for this arbitrarily chosen system of values, we choose for the
functions u(¢), v(¢) which we substitute in (15),

2 ()

[2
u(t) =u, +u011+u02,+ +u“M',

A )

’ t 7” ()
'v(t)='vo+voi~!+vu-2—l+...+von_‘H,

and put after the differentiation £=0. The right side of (16) is therefore a
new absolute invariant, whose class and order are each one unit higher than
that of 7, and it accordingly corresponds to a further extended group. Thus
we obtain from the absolute invariant,

I=F=oF,+yF*
of order 1 and class 1, the new absolute invariant
F, +yF, +a'F, + y'F,

which is of order 2 and class 2.

b) The &-process.

We suppose now that the functions w(¢), v(¢) considered under (a) depend
upon a parameter €. Then equation (14) is an identity in ¢ and €, and we
may therefore differentiate it with respect to e,

oI, oI,
O~ Oe’
i. e., if we denote differentiation with respect to € by a dot,

ol,, ol,, &I o ol _ oI, oI, 6[ ¥ oI,
(17)73&?“ ——G +6G L G = Ox +61, : ayy

This equation appears again at first as an identity in ¢, e. But since « (¢, €),
v(¢, €) are arbitrary, (17) remains true for all systems of values of

. o, o)

’ ’ L
Uy Vy Uy Vy -y Uy Vy Uy Vy -0y
on the one hand, and of
’ ’ J [ J . (X4
TyYs Ty Y, cory Ly Ys Ty Yy -y

on the other hand, which are connected by (1), (8), (4) and so on, and also by the
following relations obtained from (1), (2), (4) by differentiation with respect to e:

* BoLzA, Lectures, p. 120, eq. 9.
Trans. Am. Math. 8oc. 23
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Xau+ X, y=Vau+Xpo,

&= X, 0 + X, (w0 + ud) + X' + X, + X,
¥ = Yyt + ¥, (w0 + ud)+ F,00 + Y, + ¥ v

The proof of this last statement is entirely analogous to the corresponding
proof given under (¢). The right hand side of (17) is therefore an absolute
invariant under a further extended group obtained by means of these last equa-
tions by adjoining the new variables &, 7, @', ¥, - -

Our process transforms therefore an absolute invariant into an absolute
invariant, under a further extended group. We shall call this process the
« 8.process,” because it is essentially identical with the d-process of the calculus
of variations,* and we shall use, in the sequel, the symbol & to indicate the
first order term of an expansion with respect to a parameter e. Thus

oI,

x

81, = Iye= e ¢
Similarly
. Ox , . O
8x=we=5;e, 8x=we=é—€—a—te,
and so on.

If we have found by the « 8-process” an absolute invariant with respect to
the group extended by the adjunction of

&, :&s &, ?./'a Tty
we may apply the process a second time, and thus obtain a new absolute invari-

ant with respect to the group obtained by adjoining the higher derivatives with
respect to e,

o eo ee; ooy

LyYy Ly Yo e

Numerous examples of this process will occur in the next chapter.

CuaPTER II. Invariants under extended point transformations.

§ 5. The invariants arising from the first variation.

We apply the general principles of Chapter I to the invariants connected
with the first and second variations of

I= f lIf’(w, y,«,y)dt.
to

The starting point is the fact that F is an absolute invariant (cf. (5)) for the

*BOLZA, Lectures, 34c. If we put after the differentiation ¢ =0, and then multiply by ¢,
we obtain exactly the d-prooess of the caloulus of variations.
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group of extended transformations (1), (3); whence it follows by § 4 that 6F
and & F are also absolute invariants under the same group. We shall be able
to break up each of these into invariants which are directly connected with the
minimizing of I.

The first variation of #' may be thrown into the two forms*

d d d
SF = sw(ﬁ;_aiﬁ;,) + Sy(Fy—d—tFy,) + G (Fbo + Fdy)

d
= Tw + d—t(Fx,Sa: + F,dy),

where
w=1y 8z —xdy.

Since 8x and &y are cogredient with z* and ¥, it follows from (11) that
F 8+ F, 8

is an absolute invariant; and also, by § 4a, its derivative with respect to ¢.
Hence it follows, since 8/ is an absolute invariant, that 7% must also be an
absolute invariant under the extended group of transformations (1), (3). We
define &, 7' and &, 7 by the equations

d d
81F= Sx(Fx —;ith;>+8y(Fy—d—tFy/)= Tw,

82F= &ch, -+ 8?/1’:’,,

8, F" and 8, F each being an absolute invariant.

(18)

§ 6. Flirst form of 8(8, F').
The work will be similar to the WEIERSTRASS transformation of the second
variation,t but will be more general inasmuch as we do not assume, as WEIER-

STRASS does, that the second variation is computed along an extremal. We
define

L=F —yy'F,, M=}[F +F +F(&/+2y)], N=F,—a5'F,
whence it follows that .

L+ My =F — 3Ty, My + Ny =F, + }Tx.
‘With WEIERSTRASS we set

d-L 72
Ll=Fxx_ﬂ_y ﬁyl’
% Bowrza, loo. cit., § 25a.

1 BoLzA, loo. cit., § 27a.



1908] IN THE CALCULUS OF VARIATIONS 328

d'M ” n
(19) M=F, —a t=Y
_daN
N=F, dt + zﬁ'n
whence
(20) L+ My =3Ty, M+ Ny =—41T%.

If the « &process” is applied to the first form of 8, ¥, this form becomes, after
reduction,

(@1)  8(8,F) =T — w0 (Fyu') + L,55% + 2M, aby + N, 7.

§ 7. Second form of 8(8 F').

In order to apply more conveniently the subscript notation we will place

F =H.
From the definition (14a@) of H follow the equations:
F.=y'H, F, ——zyH, F, =<1,
F,, =yH, F, =—oyH, F, =«H.

Futhermore H is positively homogeneous of degree — 3 in 2’ and ¥/, i. e,
}L;w'+}1‘1,y’= -_ 3H.

Making use of these relations and applying the « &-process” to the second form
of &, F'in (18), we obtain

(22) 8(81F)=w[A8;v+BSy—-%(w'H)]-l—TSw,
where
(28) -7+ 3@y, B-1,- %),

A comparison of (21) and (22) then gives
(24) L, %" + 2.M,8x8y + N, 8y* = w(Adw + BSy)

§ 8. The absolute invariant ®(x, y, =, vy, z", y", =", y", 8, 8y).

The absolute invariant 8(8, /') contains the variations &x, 8y, 8x', 8y', 8",
8y”. The next step is to split 8(8, ') into an aggregate of absolute invariants,
one of which contains only the variations 8x and 8y, and these homogeneously.
Then by § 8 we shall derive an invariant with only one set of variables, i. e.,
not containing any &’s.
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For this purpose we first introduce in 8(8, #') of §7 the absolute invariant
@ defined by the equation ® = wH?*, and assume H <+ 0 along the curve con-
sidered. It follows after reduction that

T T d(Hb+ H8\
B(SIF)=7135“’—9717“’32(' /e y)“‘""
Vi H 6z + H, 8y d H d(H,
) —211*“’[ H S“dt( ) 8ydt(H)]

® H;z HII
+ g (A% + 333/)—“’”(2171"2— 2}1)

Since 7" and H are invariants of index — 1 and + 2 respectively, and since
®, and therefore »” and 8w are absolute invariants, it can be shown that each of
the first three terms of 8( 8, /") is itself an absolute invariant.

On account of the fact that 8( 8, Z7) is an absolute invariant itself, we obtain
the following absolute invariant under the extended group (1), (3), which con-
tains only the variations 8x and 8y, and these linearly and homogeneously :

¢ (117, y, w’, yl, xu, yu, x///, ym’ 8.’1:, sy)

17T Hé+HSy d(H d(H,
(264) =§m[___1f__/_+bdt< ) Sydt( ,,)]

H;z HII
+H§(A8w+B8y)—m(4Hz —o)-

With the help of (24) this may be written
w@(w, y, mf, y” w’l, yl/, ml/l yil’ Sw Sy)

1Tl Hbo+HYy o d(H\ o d(H
(26b) =omi|~ H dt(H) ydt(H)]

H/Z HU
+ L8 + 2 M8y + N, 8y — w’(zy—z_m)

§9. The absolute invariant K (=, y, 2, y, 2", y", ", y").

The absolute invariant @ is homogeneously linear in &x, 8y, these latter vari-
ables being cogredient with #’, /. Therefore we obtain by § 8 an invariant of
index 1, if in @ we replace 8z and 8y by F', and — F', respectively. In order
to obtain an absolute invariant, we divide by H'* and denote the final result by
— KF. We have then the following theorem :

THEOREM. The function F(x, y, %, y') possesses with respect to the point

transformation
z = X(u, ), y=Y(u,v),
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and its extensions, the following absolute invariant :

C o 1 H® 1H"
K(w’ Yy YT Y X 5 Y )=—F—B(AFy,—BFx,)+(4-fﬁ—§—E)

17 H d(H, H, d(H,
—ﬁﬁ[—Fv'{Tf“az(‘H‘)}+F»'{‘z}—%(‘ﬂ)”'

This invariant may also be written in the following form:

(27a)

’ ’ 4 " "’ 7" 1
K(:I), Yo Xy Ys X YT, Y )=—‘ ZTI[LxFyz'—2MFx’Fy’+Msz’]

F
(27b)
(H’2 17\ 171 o (H _d(HN| o (H d(H,
+ @“é"}i)—wﬁ - v’{?f“«?t(?{') o mE—a\m) )

Up to this point the curve
x=1ux(t), _3/=?/(t)’

for which XA is computed and to which the differentiations with respect to ¢ refer,
has been entirely arbitrary. A will simplify considerably when this curve is
an extremal. In this case 77= 0, and as a result the right hand members of
(20) are zero, and hence we may write with WEIERSTRASS

L,=y'F,, M =-—4yF, N =oF,.

The substitution of these in (27b) leads to the following result :
Corollary. For the special case of an extremal the invariant K takes the

Jorm
(28a) = !

where F\, F, have the same meaning as in the WEIERSTRASS theory, and the
stroke indicates, here and hereafter, that K refers to an extremal.
Had we used (27a), K would appear in the form

—~ 1F' 1F, AF,—BF,

By comparing these last two equations a new expression for the WEIERSTRASS
function #), is found, viz.:

(29) F,= }F(Fy,fi — F,B),

where 4 and B are the values of A, B along an extremal.
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CHarrER 1II.  Invariants under combined parameter and extended point
transformations. A normal form of & 1.

§ 10. Invariants with respect to paraméter transformations.

The principal object of the present chapter is to derive from the invariant K
another invariant X, which will remain invariant not only under every point
transformation but also under every parameter transformation. Let

(39) t=x(7),
be an admissible parameter transformation,* and = = 6(¢) the inverse trans-
formation. For brevity set

dr

= &(t)=n,
where A > 0, and denote by ¢ the transform of a function ¢ (¢) by means of (30).
We are easily led to the following results:

F=7\.F, th=Fd‘T, H=7\.—3ﬁ, T=T.
We define I(x,y,«’,y’,2",y",---) as an absolute invariant with respect
to the parameter transformation (30), if it satisfies
Lz, y, 2y, - )=1(% 7, &, - )

or I= 1, for all systems of the arguments connected by the relations:

€r = ’.5, Y= g,
w’ = Xfi:’, y = l.g/,
mﬂ — 7&252" + X’C;:,, Y= xzyﬂ + xI?I,

. . . . . . . . . . . .

where A > 0.
If the functions «(¢), y(¢) depend upon a parameter ¢, whereas x (7) of (30)
is independent of e, one finds at once that

8$=8’Z’, 8y=817,

where the operator 8 is again equivalent to - 9/0e.

Then more generally, if I(z,y,«,y’,.--) be an _absolute invariant with
respect to parameter transformation, the equation 7= 7 becomes an identity in
eand 7, if we substitute in the left hand side ¢ = x (7). Hence

o8I = 81;

i. e., the «“8-process ” transforms every absolute invariant with respect to param-
eter transformations again into an absolute invariant.

* BoLzA, loo. cit., § 24a.
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It follows that

w=A\w, o= \"# (7),
where
o =wH? .
§ 11. Combined point and parameter transformation.
To a curve

L: x=uw(t), y=1y(t),

we now apply first the point transformation (1a) and then the parameter trans-
formation (30), or vice versa, since they are commutable. As a result of the
relations found in § 2 and § 10, we find

F(x,y, 2,y )= G(u,v,%,v)=rG(%, v, @, ?),
F(w,y,w' y’)=D-2G (u, v, u, v')=p—2x-3G (%, v, o, 5’),

®=A\" }(D,
where
o= (v8u— u'dv)- {H(u, v, u, )},

From these last results it follows that the functions

T
(31) S= VeV ik
(32) V=owFi,

are absolute invariants under the applzcatwn of combined point and parameter
transformations.

§ 12. The absolute invariant ®,(z, y, ¢, ¥, =", y", =", y”, &z, 8y).

Our starting point is the fact that w7/ F is an absolute invariant under the
combined group, and that when the “8-process ” is applied to this expression, we
again obtain an absolute invariant which in turn may be broken up into several
separate absolute invariants. We may write

a(“}f’) 5(VS)= S8V + V38,

and will fix our attention on &8, which is an absolute invariant since S, V, and
8V are absolute invariants. This has the form

f T 8T 13H 8OF
s8= i) =5(r-27 -2 7 )
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Since § is an absolute invariant and since A is independent of e, it follows that
8F'[F is an absolute invariant, and we are led to the following expression as an
absolute invariant under the combined group :

87 18H 1 . H® 1H"\)

H. 8z + H 83/ H, % + H, 8
_é H H ’

Next we notice that if 7 is an absolute invariant under the combined group
then so is

1 dI
F dt
Setting
1 _, 1 _,
(33) 7V =V V=V,

in which ¥, and V, are each absolute invariants, we may write

3T S8H 1 vV [F' 8F”
T oH = T(A8”+B’33/)+2SF2[F‘ Q‘Ff]
1 V[H® 1H"| 18xd[FH,| 1[ Hsbx + H
~FS rfzz*é‘ﬁ]’fﬁz " |7 T ' ]
18y d(FH,7 V, 1 d[F(H.5+ H,b)
sFa| # |TS T iwr @ H ’

Since H is homogeneous in «’, 4’ of order 8, it follows that the last term and
also the next to the last term are absolute invariants. Hence the remaining
terms multiplied by S, constitute an absolute invariant under the combined
group. Denoting it by ®, we obtain

q)o(l', Y @y &y 2, y”, o, Sy)_.PSw+ st

-V F” 3 F:? -V H/Z 1 H”
2F*| ' F ~ 2 _F’T] 4T 2 " |’
in which

4 and B have the meanings given in (23), and S is defined by (31).
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§ 13. The absolute invariant K, (z,y, <, y, " y"» 2", y”).

The absolute invariant ®, under the combined group is homogeneous and
linear in & and 8y, and these variables are cogredient with «’, y'. Since the
parameter part of the group introduces only powers of A, and since in the cogre-
dient variables no such factors are possible, we can apply § 3 and get an invariant
of index 1 if in ®, we replace 8 and 8y by F, and — F, respectively. In
order to obtain an absolute invariant we multiply by 1/H4F'? and denote the
result by — K. Noticing that V= wF'* becomes by this substitution F'$ H},
we obtain thus the theorem :

THEOREM. The function F(x, y, ', y') possesses with respect to the
extended point transformation

z=X(u,v), y= Y (u,v),
and the parameter transformation ¢t = x (1) the following absolute invariant :

/, 4 7 4 " "
K (x,y,o,y,2", 9", 2", y")

1 /’ ’ 4 ” " " 1 F" 3 F’z
(34) =~—§[K(w,y,x,y,w,y,x,y)_§(*.~_§__2):|
T [H,F,—HF,7 .
+2EIF74["‘V EI- "]F,

where K is given by (27a).
As before in § 9, so here in this chapter we have used as yet a general curve

x=1wx(t), y=y(t),
for which K| has been computed, and to which the differentiation with respect

to ¢ referred. In case the curve is an extremal along which 7= 0 the formula
(34) becomes

~ 1[1F' 1F' F, 1F" 8F"
(35) B=pl|imi—sd -7 |
§ 14. Computation of K, for Kneser’s curvilinear cosrdinates.

We suppose that the u, v introduced by (1) instead of x, y are KNESER’s
curvilinear coordinates;* in other words, the curves v == ¢ are extremals for

the integral
I =f‘ G(u, v, w,v)dt,
to

while the curves u=c are the transversals of this set of extremals. The
function G (u, v, %, v') has the following characteristic properties: }
G(u,v,u,0)=1, G(u,v,v,0)=1, G (u,v,u,0)=0.

* KNESER, loc. cit., § 16 ; BoLzA, loc. cit., 35 b, c.
1 BoLza, loc. cit., p. 185.
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We propose to computé K,. The arguments of the functions @, &, G, are
u=u(t), v=c, u=1u(t), v=1v(t)=0,
and one can easily compute the values
L=0, M=0, N=—wu@G,.

But since & is an absolute invariant under the combined group, we may choose
the parameter ¢ on the extremal v = ¢ at pleasure. We select » = ==¢ according
as u increases or decreases with ¢. Then also

N=0,
and from (19)
Ll = ‘Ml = M = 0,
so that

Further

Finally if we put

G (u,v,£1,0)=h(u,v),
then

G;= :I:hu’ G;’=:|:kuu’

and substituting these values in (35) we have the following theorem :
TrEOREM. For KNESER’s normal form of the integral I the absolute
invariant K, takes the followiny form,

— 1 &*vh
(36) K)=—7z7ur’

where h(u,v) = G,(u,v,=1,0).

§ 15. An invariantive normal form of the second variation.

We restrict now our problem by supposing the end points to be fixed. Then
the second variation computed along an extremal of

I= le(w, Yy, x,y)dt
to
is

§T= f ‘w8 Tit.
o
By using the results of §§ 7, 8, 9 this may be transformed inte
t
&= —flw(w”+ I?w)dt,
t

and then, by introducing ¥V as defined in (32), into



1908] IN THE CALCULUS OF VARIATIONS 886
= _f'FV(V, + B V)de.
to

In case a change of variable is made by means of

a= det,
t

where to ¢, and ¢, correspond a, and a,, we find

321=_f’( a,+KV)Vda

Integrating the first term by parts, and recalling that ¥ by definition vanishes for

a, and @, , we have the result:
When F, is positive along the extremal under consideration, the second

variation of

I= f‘F(a;, Y, y)de
t

may be reduced to the invariantive normal form

(87) #I= j: ' [(%;V)’_Eotﬂ] da,

in which
V= oF, a=dez,
to

and K, is the invariant defined in § 18.
As a result of this form the following corollary may at once be stated :
Corollary. In case K, < 0 along the extremal we have &I> 0.

Cuarrer IV. Application to the geodesic problem.
§ 16.
The function (2, y, 2, y’) for the geodesic problem has the form
F(z,y, %, y)= Ve’ + 25y + ¢y,

where 8, &, ¢ are the well-known functions of = and y only, used in surface
theory. The functions H, F, and 7" have the following values:

8g — &* 7 r
(1/8 12+ 2hlyl+ gyﬁ) (l/sxﬁ_'.zgw/yr-'-gyﬁ)”

(38) Fo=



337 A. L. UNDERHILL: INVARIANTS [July

where
T = (6§ — &)(#y —2'y)
+ (80+ FY) [(F.— 16,)7 + 6,2y + 16,5
—(F + gy ) [38.%" + 8,2y + (&, —38,)¥" ]

a) The invariant S. -
In the case of a geodesic the absolute invariant

T
S"qu

is identical with the geodesic curvature.*

b) The imariant K,

Since X, is an absolute invariant for peint as well as parameter fransforma-
tions, we select the Gaussian normal form

ds? = du® + m*dv?,
in which u, v are geodesic parallel ootirdinates, and take for ¢ the arc of the
curve on the surface, so that
= Vu® + m”? + m =1,

Since this system of cotrdinates is ldentlcal for the geodesic problem with the
KNESER coordinates in § 14, we may use the results there found.
From (38) it follows that

G, =m?,
and by using (86), that
- 1Pm
E=—now
Accordingly we have the result :

In the case of the geodesic problem the absolute invariant K, is identical
with the Gaussian curvature.t

Combining this result with (37), we have the JAcOBI-BONNET ] theorem :

On a surface of negative curvature a given point has no conjugate pomt on
the geodesics which pass through it.

* BoLzA, loo. cit., pp. 129, 146.
1 SCHEFFERS, Anwendung der thmnttal und Integral- Rechnung auf Geometrie, vol. 2, p. 503.

}Comptes Rendus, vol. 40 (1855), p. 1311; vol 41 (1855), p. 32. JACOBI, Gesammelte
Werke, supplementary volume, p. 46.
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¢) Computation of K.

For the computation of &K we assume a system of isometric coordinates; 1. e.,
F= 1/8(11;".*. y,z_)

and substitute this value of # in (84). Since (34) is an invariant under param-
eter transformation, we may then choose as the parameter ¢, the arc s of the
curve which makes /"= 1. It will be found that

8.+6, 6 +6 117

(39) By=—e + s "2

In the case of the geodesics the absolute invariant K&, has the value
1 117
o PRI}
(40) =527
where 1/p is the Gaussian curvature * of the surface at the point (z, y) and
1/p, is the geodesic curvature 1 at the same point.

* SCHEFFERS, loo. cit., vol. 2, p. 499.
1 Ct. 16 a), above.
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ADDENDA.

The following pages give, under the headings 4, B, C, detailed proofs of
certain statements made in Chapters II and III, and the computational work of
a result stated in Chapter IV,

A : The absolute invariance of

I, 80+ H,8y
H

under the point transformation
2= X(u,v), y=F(u,v)*
If H denote the transform of H under the transformation, then from (8)
I?(u, vy, v )=D(u,v)H(X, ¥V, X v + X, Y u + Fo).
By differentiation it follows that
H,=D*(H,X,+H,7,),
T,= D*(H,X,+ H, ¥,).

Since
S = X 8u+ X dv, 8y= Y, bu+ ¥ v,
we have
]?", Su + H, 8 = D*(H o + H,8y),
and hence

E‘,Su + H—o’ 8’0 _ I{I/SQ? -E_Hy,sy
7 B H
B : The absolute invariance of

F( Hr'sm + H;I' By )
H

unaer the point transformation
z=X(u,v), y=FY(u,0)

and the parameter transformation t = x (7).t

F and H are homogeneous of order + 1 and — 3 respectively in @, ¥/, i. e.,
| *Cfp 329,

t P. 333.
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F(a,y,er,ey)y=cF(a,y,2,y),
H(x,y, ke, 0y )=c*H(x,.y, o, y),
and from the latter, we obtain
I (w,y, e ky) =k T (2, Y, @ Y,
H (2, y, k' ey’ )=x"H, (x,y,2,y),

where « > 0.

As a result of these relations, it follows that /', /,* H, and Ify , are invari-
ants of order + 1, — 3, —4, and — 4 respectively under the transformation
t =x(7), wherein

r=7, y=71, @ = AT, ¥y =My,
and A =d7/dt >~ 0.
Since &z and dy are absolute invariants under ¢ = x (7) we see at once that,

F(H,éx+ H,dy)
- H

is an absolute invariant under parameter transformation.

This expression is identical with the invariantive expression of A, with
the exception of the factor /. As F is an absolute invariant under point
transformation, we see that the above expression is an absolute invariant under
combined point and parameter transformations.

C: The computation of K for the geodesic problem.t
The complete form of K is from (34),

1
F*H

11777 1H” Ir¥” 8 F”*
trlagr—e m |2l F2 Fr

1 T [ (H_d(H, o |2 d(H,
TeFH| T T\ H T dt H> T _'Ii'—li't(_ﬁ')}]

T [H,F,—H.F,7] .
* are H :

K= — [{ﬂFy/—ILFxf}+{ By g () + F, zz“"‘")}]

The various quantities which appear in /A are to be computed for

V)
where the parameter ¢ is arbitrary.

*Cf. ¢ 10.
t%16¢.
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After the computation for the general ¢, each quantity is in turn simplified

by making the permissible choice of the arc s of the curve for the parameter ¢.
The fact that a quantity has been thus simplified is noted by the sign =-.
The following may be easily verified :

F -1, F' -0, F” -0,
2 288 3 &EF

]{l =g &%, = Fi o T 288,
. 28% 288" GsSF 3 EF 15 &R 2w
H'=pit pr— pe =9 g1 T4 Fr = 2+,
Next,
TF/ =T, F.= p(yT.—oT).
We have,*
r—r _F vr=rF _ % p
yl=r, — de =« —wl=0 — dt ="
whence
’ d 4 d
y Tx = Fr/ - dt FXJ',, - 7‘:1 = F:/ - (]6 F:/!/"
and

ny

& & d v
LF, =T, F,= p(F.+F,) = gy (For 4 F,)

As a result

From

it follows that
Fz — Sr(wfz + yﬂ) + 2S(wlwu + y'y//) - O,

t:u< w/z + y;Z) + 2S( wuz + y,,z) m 48’(53’.",’” + yryﬂ) _ 2@(%’-’1:/” + y/yru)’

and
d r” d 4 ’ornr ’rnr ’ r " ’ "
Fﬂ'di(Hy )+F"'dt(Hm )=8[8(yy" +xx") + 28 (yy" + xx")]
- 'S‘q" <3 72 72 )
=g — ¢ (=" +y").

In order to obtain a value for «”* + 3 the following relation is employed:
"'.l yl 2 ! w/ y/ I: : w, m,/ f

” ” ,”

| N K ’” : * N ’ P r” ; ’
[y vy Y Y
* BoLzA, loc. cit., ¢ 25.
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whence

(Y =y F = (& ") (¢ + y) = (e gy )
and
a_ (Y — )2—(wb +yy')

m/rz + y
Pty

The value of 2'z” + y’y” is taken from F” - 0 and that of wy” — "y’ from
(38), i. e.,
U:y —_ é

7. Cn g+ &2y —x"y).

After making these substitutions, we find

oo’
©

(Hz")+F (Ha"):— S T8y — )=

One computes without difficulty that

7 H,_d(H, H, d(H,
~sma| = w7 = (il = = 2 COH

_ 3T2_ (8.y — s,m')_l’

2¢2 &

and
T [H,F,—H,F, .
HF‘[ H ]F = 0.

The substitution of these computed quantities in A leads to (89).




