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Iterated Limits in General Analysis.
By Ravepr E. Roor.

Introduction.

In a former note* we have briefly indicated a method for the investigation
of iterated limits of functions on an abstract range. It is the purpose of the
present paper to give a more comprehensive account of the method there pro-
posed. The paper has its origih in the thought that in most of the definitions
of limit that are employed in current mathematics a notion analogous to that
of “neighborhood” or “vicinity” of an element is fundamental. In the domain
of general analysist various ways of determining a neighborhood of an element
have been employed, notably the notion of voisinage used by M. Fréchet,} and
the relations K, and K, used by E. H. Moore, either as undefined or as defined
in terms of a “development” of the class of elements constituting the funda-

mental domain. §

A definite class of elements being assumed, the notion of “neighborhood”
of an element is essentially that of a subclass having a special relation to the
element. In taking this relation as undefined and at the basis of our system
of postulates we occupy a position intermediate, as regards generality, between
the extreme position of those who take the notion of “limit” itself as undefined, ||
and that of those who define “limit” by means of ether relations which give rise
to notions analogous to that of “neighborhood.” The character and form of
the postulates adopted are determined largely by two fundamental require-

* Bull. Am. MathA. Soc., Vol. XVII (July, 1911), p. 538.

 The term general analysis” is here used in & technical sense to indicate mathematical analysis
pertaining to a class of elements whose character is not apecified.

t “Sur quelques points du calcul fonctionnel,” Rendiconti del Circolo Matematico di Palermo,
Vol. XXII. '

§ E. H. Moore, “ Introduction to a Form of General Analysis,” pp. 126 and 138.

) || For example, Fréchet in the first chapter of the paper reforred to above, and F. Riest in his paper

before the International Congress of Mathematicians at Rome, 1908 (*Stetigkeitabegriff und abstracte
Mengenlehre,” Atti, Vol. II, pp. 18-24).
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ments;* first, to provide for an adequate treatment of ideal limiting elements,
and second, to insure the persistence of the specified conditions under compo-
sition of ranges.

In Chapter I, we consider a class  of elements and an undefined relation R
between subclasses of 5, the system (B; R) being subjected to a set of postu-
lates that permit the definition of ideal elements in such fashion that the system,
when once extended by the adjunction of ideal elements, is closed to further
extension in this manner. It is shown also that from two or more systems
a composite system may be derived, and that the domposite system satisfies
the postulates if and only if the postulates are satisfied by every component
system. '

A somewhat less restrictive body of postulates, considered in Chapter II,
pertain to a system (B; Il; T), P being a class of elements, I a class of ideal
elements, and T a relation between subclasses of P and individual elements of
B or U. A subclass R of B having the relation 7 to an element p of SB or to
an ideal element u of I may be thought of as a generalized neighborhood of
p or u. The postulates of Chapter I, with the definition of ideal elements for
the system (P; R), lead to a system satisfying the postulates of Chapter II.
We obtain for our system a generalization of a portion of the theory of point-
sets by establishing relations between our postulates and the more general
conditions involved in the notion of “limit” as used by Fréchet, and those
involved in the “Verdichtungstelle” of F. Riesz.

In the third chapter a system (B®; U; T') is supposed to satisfy the postu-
lates of Chapter II, and functions u defined on the range B, a subclass of _‘ﬁ, are
studied relative to limits and continnity. The treatment is not intended to be
exhaustive, the theorems developed being such as are suggested by familiar
theorems on multiple sequences and functions of real variables. Interesting
features of the general theory associate themselves with the presence of ideal
elements in the system, and with the study of a property of functions which
has much the same force as uniform continuity, but which we have called
extensible continuity. _

The fourth chapter is given to applications of the general theory through
direct specialization of the system and particular determination of other arbi--
trary features. Special systems (B; Il; T') are specified, by consideration of

* E. R. Hedrick (Pransactions, Vol. XII (1911), p. 289) obtains by his “inclosable ”’ property of the
fundamental domain essentially a generalization of the notion ¢ neighborhood,” but his aseumptions are
made from a different point of view and, involving a certain uniformity, are more restrictive than the
postylates of the present paper.
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which the theorems of Chapter III pertain to: The theory of multiple sequences;
functions of real variables; functions on a range for which there is defined a
relation of the type of either of the relations K, and K, used by Professor
Moore; functions on a range subject to the voisinage used by Fréchet; and
functions on a range whose elements are real-valued functions on an arbitrary
range. In some cases the system (PB; U; 7') is reached by the mediation of a
system (; R), and in some cases directly. In the applications, under certain
restrictions on the class 3, the property extensible continuity is found to be
equivalent to uniform continuity in each case where the latter is defined.

We find it advantageous to draw largely upon the notation and terminology
used by Professor Moore in his work on General Analysis. Convenience and
economy of notation are conserved by the adoption of letters for elements,
classes, etc., whose connotation renders frequent explanatory remarks un-
necessary. Classes of elements are denoted by B, 2, R, ete., while their elements
are denoted by p, g, r, etc., respectively. Classes of classes are, in general,
denoted by u, v, w, ete.; properties and. relations by P, @, R, etc., or simply by
the numerals attached to their definitions. Superseripts denote, in general,
defining properties or conditions, the character of the superscript as well as of
the base symbol serving to determine the nature of the limitation. Thus,
R*® gtates that R is a subclass of P, p* that p is an element of R, P that P
has the property P, etc. The symbol D is a sign of implication, to be used
in the statement of a proposition. That which precedes the sign of implication
'is hypothesis or given data, and that which follows is conclusion or a true
statement concerning the given data. Thus, if 4 and B are’propositions,
4.D.B is read “A implies B” or “if 4 then B,” and if x represents
a number in a certain interval and F a definite function on the interval, the
‘proposition “for every two numbers z, and «, of the interval F (z,) —F (z,) <k”
may be written, #,.2,. 2 .F (x,) —F(z,) <k. The reversed symbol C denotes
“is implied by” and v» is the symbol of logical equivalence, “implies and is
implied by.” In a complex statement the symbols D, C and v» carry punctu-
ation marks, ., :, .:, ete,, the primary implication of the proposition being
indicated by the greater number of dots. The mark 3 is read “there exists,”
and the mark 2 may be read “such that” or “where” as the sense of the
proposition demands.

The independent‘use of the symbolical statement of propositions is confined
largely to the proofs of theorems, where it is most useful in conserving pre-
cision and brevity, and where the technical symbols may be least objectionable

to the general reader.
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CHAPTER L
Tae SystEM (R; R): ExTENsioNn AND COMPOSITION OF SYSTEMS.

§ 1. Introductory: The System (R; R).

In this chapter we consider a system (; B) consisting of a class B of
elements p and a relation R on ordered pairs of subclasses of . While the
relation R is of the definite type indicated, it is not farther specifically defined.
We specify a system (; R) by specifying the class § and the relation R, i. e.,
a criterion which determines for every two subclasses R, and R, of B whether
or not R, has the relation R to R,.

For example, take for B the class of all points of an ordinary Euclidean
plane. Consider a circle as the class of all points within and on its circum-
ference, then we may specify a relation B in terms of geometry as follows:
Every circle whose radius is different from zero has the relation R to the point
at its center considered as singular subclass, and every two concentric circles
whose radii are different from zero have the relation R to each other. In no
other case does the relation R hold.

In this example we have a definite system (%; R). ‘The pertinence of the
relation R as specified to the study of limits of functions defined for a set of.
points in the plane is obvious. A study of the current theory of real-valued
functions, in particular in connection with questions of continuity and iterated
limits, leads to a determination of bodies of postulates on systems (8 ; R) which
serve to validate a theory of continuous functions and multiple and iterated
limits associated with such systems (f; B) in general.

Subclasses of B are, in general, denoted by R, and the notation R R R,
indicates that R, has the relation R to R,, while i, "R R, indicates that R, does
not have the relation B to #,. In case it is desired to imply that a subclass
consists of a single element, we may for simplicity, and for our purposes without
confusion, use the notation for single elements. Thus R R p indicates that the
class f has the relation B to the singular subclass whose element is p. 'Fhe
letter v denotes a class of subclasses i of B, and, for a given element p, v, is
the class of all subclasses # having the relation R to p, i. e.,

v,=[all Ra RRp].

Thus, in the example above, », is the family of concentric circles whose common
center is at the point p, excluding the point circle of the family.
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§ 2. The Postulates and Certain Fundamental Definitions.

Preliminary to the statement of postulates for a system (¥; B), we note
that a class v of subclasses # of ¥ may have one or more of the following
properties:

1. Every member R of the class v contains at least one element p.

2. The relation B holds between every two classes R, and R, that are
members of v.

3. There exists a sequence {3t} of members of the class v such that for
every i of v there is a number ng such that for n>ng the class R, is con-
tained in 3. ‘

4. For every R of v there exists an R, of v such that for every p in R,
there is a subclass R, of { having the relation R to the singular class p.

5. If v, is a class containing v and having properties 1, 2, 3 and 4,
then v = v,.

6. If v, is a class having properties 1, 2, 3, 4 and 5, and not containing v,
then there exists a member R, of v, and a member R, of v such that R, and R,
have no common elements.

7. For every element p of P there is an R of v which does not contain p.

These definitions may be more concisely stated in symbols as follows:
R.o.Jp*

R.R.OD.R RR,. ,

IR [(n.D.R). R :D:Fnean>n,.D. 8]
Ro:o:gRapt.D. 3R :2N,Rp.

VL VMR Sy =,

6.* v}t v, . g RP.R) 2 gqpa ™. PN

7. p.OD.gRap ™ |

These properties, 1-7, may be called propositional properties.+ It is not
here asserted that any of the defining propositions are true with respect to any
class v, but it is clear that the question whether or not a given one of these
propositions is true with respect to a given class v is a question of the presence
or absence of a definite property for the class.

O

The desired postulates might now be stated in the following form:

* The minus sign here signifies negation. Thus ~3 is read “there does not exist,” and p~ R indicates
that p is not an element of the subclass R. v indicates that v is not a subclass of v,.
+ See E. H.Moore, loo. cst., p. 20.
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(A) For every element p the class v, has properties 1-6, 1. e.,

1.2.3.4.5.8
Py

(B) For every element p it is true that every R of v, contains p, while
if p, is distinct from p there is an R of v, not containing p,.- In symbols:

pP:D:(RBp.D.0%).(0,Fp.D.3R2RBRp.p7 ).

But for convenience of reference, as well as. to provide for discussion of
the independence of the conditions on the system, we separate these assump-
tions into simpler components, which we state explicitly in the following seven
postulates:

I. #Rp.o.p*%
II. RRRp . R, Rp.DH.RNRR,.
L. paogifts[(n.D.RRBRp). RBp:D:Jngan>ng.D.R%)].
IV. RBRp:D:3 R, 2[R RBRp. (p1.D.3%FsRRp))].
V. v (RBp.D.R):Div=0,.
VI o348 gy . 5.3 (R]. Re) 2 ~g3p,3pF . ph.
VII. pFp.D.gqReRBRp.p ™

Postulates I and VII are together equivalent to the statement (B). A
corollary of postulate I is that for every p the class v, has property 1, while
postulates II-VT state that for every p the class v, has the respective properties
2-6.

The following examples are pertinent to the question of consistency and
independence of the postulates. Example 0 is an instance of a system satis-
fying the seven postulates, and the remaining examples each violate one postu-
late and satisfy all the others, the examples being numbered in the order of

the postulates violated.

Ez. 0. The class P is the class of all complex numbers. The notation &,,,
where d is a positive real number and p is.an element of R, stands for the sub
class of P consisting of all elements p, of B such that |p, —p| <d, that is,

R,=[all p, 3 |p,—p| Sd].
The relation R is specified as follows : For every p and every d the relation

R,, Rp holds, and for every p and every d, and d, the relation R, , R R, holds.

The relation holds in no other case.
Ex.1. The system (®; R) is specified as in example 0, except that R,

does not contain the element p, hence
R, =[all p,¥p 3| p, —p|Zd].
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Ex. 2. The class § is the class of all complex numbers, and the notation
R,, has the same significance as in example 0. For every p and for every d
the relation R,, Rp holds, but in no other case does the relation R hold.

In this example postulates V and VI are satisfied vacuously, 1. e., their
hypotheses are incapable of fulfilment, there being no class » which has prop-
erties 2 and 3.

Exz. 3. The class 3} is the class of all points of a given Euclidean plane.
The designation “line” is used to indicate a subclass 2 constituting the class
of all points of a line. Every “line” has the relation R to every one of its
points, and every two intersecting “lines” have the relation R to each other.
In no other case does the relation R hold.

Here “intersecting”’ is interpreted as ‘“having a point in common,” so that
a “line” has the relation R to itself. Postulates V and VI are again satisfied
vacuously. ‘

. Ex. 4. The system (; R) is as specified in example 0, except that in the
particular case p = 0 the classes R,,p consist only of real elements p,, 1. e.,

R = [all real p, 3 |p,| <d].

Ez. 5. Again, the class B is the class of all complex numbers, and the
notation R,, has the same significance as in example 0. The relation R is as
specified in example 0 except that for the particular element p, =0 the relation
Rip B0, holds only in case d is less than or equal to unity.

Exz. 6. The class P consists of two elements, p, and p,.* The cases in
which the relation R holds are listed as follows:

»,Bp,, p,Rp,, BRP.

Ez. 7. Again, ¥ is a class consisting of two elements, p, and p,. Follow-
ing is the list of cases in which the relation R holds:

BRp,, PRp,, BRP.

In this instance postulate VI is satisfied vhcnously, since any class v that
has properties 1-5 possesses the single member B, and is therefore coincident
with both v, and v,,.

.

* It should be remembered that elements do not enter in the relation R. The notation for elementa
is substituted for class notation as a matter of convenience. The class vp, consists of one member, the
class R having the single element p,, and has no member in common with that class v whose only member

is .
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§ 3. Euxtenston of the System by the Adjunction of Ideal Elements

Making use of properties 1-7 defined in § 2, properties that may be
possessed by a class v of subclasses : of B, we proceed to the definition of
ideal elements for the system (B; R).

Def. 1. An ideal element of the system (% ; R) is a class v of subclasses
R of P having properties 1-7.

The letter » invariably stands for an ideal element.

TreorEM 1. If v is a class having properties 1-6, then v is an ideal ele-
ment u, or there is an element p such that v =v,.

Proof : If v has property 7, it is a u by definition; if it has not property
7, then there is an element p common to all classes R of v. Since v, has
properties 1-6, we clearly have v=v,.

Let U denote the class of all ideal elements of the system ($; R), and let
£ be a class consisting of the elements of P, together with all ideal elements,
i.e, C=P + U. We denote elements of £, in general, by g, subclasses of <
by &€, and classes of subclasses by w. A certain technical form of corre-
spondence between classes is of frequent occurrence, and it is therefore con-
venient to adopt a special symbol, ||, to be read corresponds to, which we define

as follows:
Def. 2. ©|j R indicates that & consists of the elements of R together with

every ideal element » such that there is a subclass i, of ® which belongs to
the class® 4. In symbols: ’

ElR:=:€E =R+ [all wa g RT 2 %7].

Def.3. w]| v indicates that w consists of all classes © for which there
exist classes R in v such that € ||R. In symbols:

wlvi=:w=[all &ag R 2E| R

It is obvious that for every 3 there is a unique © such that & || R, and .
that for two distinct classes 3, and 3, the corresponding classes €, and €, are
distinct. It follows that for every v there is a unique w, and that for two
distinet classes v, and v, the corresponding w, and w, are distinct.

Let S be a relation of the same type as R defined as follows:

Def. 4. The relation €,S &, holds if and only if one of the following
conditions is fulfilled :

* No confusion need arise from the fact that. the letter u denotes at the same time an element of £
and a class of subclasses of £, as well as of B. It was this double role that led to the adoption of small
letters as notation for classes of subclasses in general.
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(a) 3 R,.R)3RRR,.SIR,.G|R,.
(b)) FR.u)2R.G R, (¢.D.q=u).

In condition (b) the ideal element u considered as a class of subclasses
contains R, and considered as an element of £ constitutes the singular sub-
class &,.

We now have a definite system (2Q; §), which we shall call the extended
system derived from (P; R). We investigate the character of this extended
system with respect to the seven postulates. The properties 1-7 defined for
a class v are defined also for a class w, if in the notation we replace v by w,
p by ¢, R by € and R by S, and with similar changes of notation we have the
seven postulates stated for the system (Q; 9). ‘

TreorEM II. The seven postulates are satisfied by the extended system
(2;8). |

In proving this theorem it it convenient to establish first the following
lemma : '

LemMma. The necessary and sufficient condition that a class w shall have
properties 1-4 or 1-5 or 1-6 is that there shall exist a class v having the
corresponding properties such that w| v.

In considering the necessity of the condition we have available in éach case
the fact that w has property 2. This is sufficient to secure the existence of a v
such that wljv. It is sufficient, then, to assume a definite w correspondmg to
a definite v and prove the following propositions:

(a) w'd4, >, plEe4 , (b) w14, oy, s
(¢) whtdss =, vs, (d) Rt LI WYL
(e) wi2d4ss o, v°, (f) w1888 = 48

(a) : Since w has property 1, every & of w contains a g, that is, either
aporau Every R of v has a corresponding & in w, hence it contains either
this element p or an R, of this class u. Therefore » has property 1. That v
has property 2 is evident from definition 4, and from property 3 of w there is
a sequence {&,| such that the sequence {R,}, where & || R,, is effective in
establishing property 3 for v. Since w has property 4, we have

(1) Svimy:gx6rag%h.n.q8826,5¢,
and we wish to prove

(2) Reeo:igRep™.D. 3R R/ERp.
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Given an 3 of v, take © such that S|}, then &* and (1) applies. Take R,
so that &, || R,, then R] and every p of R, is in €,. For every p of R,, then,
there is a subclass &, of € such that &,8 p, and there is an R, such that
&,||R,, then clearly R and R, Bp. Thus v has property 4.

(b) : The proof is obvious for properties 1, 2 and 3. As to property 4,
we have condition (2) above and wish to prove (1). Given an & of w, there
is a corresponding R in v, so that (2) applies to provide an R, fulfilling the
conclusion of (2). Take &, to correspond to R,, then € and every p in &,
is in #, and an &, corresponding to an R, furnished by (2) meets the require-
ments of (1). Further, every u in €, possesses a member R, which is a sub-
class of R,, and since R, is necessarily a subclags of R, we see that the class €,
corresponding to R, is a subclass of &; and clearly &,S u, therefore w has
property 4.

Propositions (c¢) and (d) are easily verified by the use of (a) and (b).

(e) : From property 6 of w we have

(3) w]l.2.3.4.5 . w—wl . : . 3 (@;l‘, . @:) F) —aq F q@: . qSt,
and we wish to prove
(4) vttt v . g (R R) e gpep™. ™

If v, has properties 1-5 and does not contain v, then there is a w, such that
w, || v, which does not contain w and which, by (b) and (d), has properties 1-5.
Proposition (3) is now applicable, and the €, and &, thus available have corre-
sponding classes i, and R, which obviously fulfil the conclusion of (4).

The proof of (f) is similar to that of (e).

The proof of the theorem is now easily completed. In analogy with
previous notation, we denote by w, the class of all classes © such that GSg,
and we observe that for every p we have w,| v,, while for every u we have
w, |l u. Since every v, and every u have properties 1-6, it follows from the
lemma that the class w, has properties 1-6. Postulate I being obviously ful-
filled, it remains to consider postulate VII. We wish to show that

$¥Fe¢.2.3€32(658¢q,.49:°%).

If both g, and g, are elements of B, postulate VII on the system (B; R)
assures us of a class ! such that the corresponding class & is effective. If
either g, or ¢, is a w, then, since by property 7 of » and postulate I the class
is not contained in any class v,, the corresponding class w, is not contained in
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any class w,, and therefore property 6 of w, is effective, the desired conclusion
being an immediate consequence.

It is desirable now to show that'the extended system (£; §) is closed to
this process of extension; that is, if we repeat the process of extension the
second exiended system coincides with the first. We may state the required
theorem in the form: -

TaeoreM III. No ideal elements arise in the extended system (2; S).

Proof: Suppose a class w to have properties 1-6, then there is a class ¢
having properties 1-6 such that w| v. By theorem I v isa u ora v,, and in
either case w is a w, and therefore does not have property 7.

Following is an instance of a system which illustrates effectively the ope-
ration of the foregoing definition of extension:

Example. The class P is the class of all rational numbers. If p, and p,
are two distinct rational numbers, then, if p, is less than p,, the class R, is
the class of all rational numbers on the interval p, p,. That is,

mmms [all p 2 p, < p S p,].

The relation ®, , R®, ,, holds if and only if the intervals p, p, and p,p, have
a common sub-interval, i. e., if p,<p, and p;< p,; and the relation R,  Rp
holds if and only if p, < p < p,. In no other case does the relation R hold.
It is not difficult to see that the system (; R) here specified satisfies the
seven postulates. We proceed, therefore, to investigate the matter of ideal
elements. Consider a class v having properties 1-6. By a little attention to
the requirements of properties 3 and 4 we see that there exists a sequence {3}
of members of v such that for every » the class R, is of the form R, ; , where
the sequence {p,} is an increasing monotonic sequence of distinct elements
and the sequen;:e {p,} i8 a decreasing monotonic sequence of distinct elements;
and, further, such that every member R of v contains a member R, of the
sequence. In view of property 5, then, the two sequences {p,{ and {p.| have
a common limit. If this limit is a rational number p, then v coincides with v,,
while if the limit is an irrational number a, then v consists of all classes R, .
such that p, < a < p,. In the latter case v has property 7 and is an ideal
element of the system (P; R). Since it is obvious that for every irrational
number a the class v consisting of all classes ), , such that p, < a < p, has
properties 1-7, we see that the ideal elements « of the system (®; R) are in
reciprocal one-to-one correspondence with the irrational numbers in such fashion

that, if u corresponds to a, then
u=[allR, . 2p <a<pl.
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We-may therefore consider our definition of ideal elements, in this instance,
as a definition of irrational numbers.

The extended system (£;S) is seen to be as follows: £ is the class of all
real numbers; two intervals with rational limits that have a common interior
element have the relation S to each other, and every interval with rational
limits has the relation S to every one of its interior elements (considered as
singular class), but in no other case does the relation S hold.

\ § 4. Composition of Systems.*

Two classes of elements, P’ and B”, determine a “product” or composite
class, B = P’ P”, consisting of all elements p of the form p = (p’,p”), where
p’ and p” belong to the classes P/ and B” respectively. It should be borne in
mind that these bi-partite elements, p = (p’,p”), which we shall denote simply
by p’p”, are not in any sense products of the elements p’ and p”, but rather
that p is a notation for the pair p’p”. From R’ and R”, subclasses of R’ and
B” respectively, we have # =R’ R", a subclass of P consisting of all elements p
of the form p = p’p”, where p’ and p” belong to R’ and R” respectively.
Similarly, if v’ is a class of subclasses R’ of P/, and v” is a class of subclasses
R” of P”, we have the composite class v = v’ v”, the class of all R =R R”,
where i’ and R” belong to the respective classes v’ and v”.

If R’ and R” are relations of the type discussed in § 1, defined for ’ and
PB” respectively, then from the two systems (B’; R’) and (8”; R”) we derive
what we shall call the composite of these two systems, the system (B; R),
where P = $’P” and R is a relation of the same type as R’ and R” defined
as follows:

Def. 4. For a system (; R), composite of (¥’; R’) and ($”; R"), the
relation 3, R R, holds if and only if there exist classes R;, R, R; and H; such
that R, =R R and R, =R, N;, and such that the relations R;R’'R, and
R’ R” R, hold. ) ’

It may be observed that the effectiveness of the foregoing definition is
independent of the conditions imposed upon the component systems. It is
convenient throughout the present section to regard the systems involved as
unconditioned, except as conditions are specified in the hypotheses of the
several theorems. .

TaroreM IV. The seven postulates are satisfied by the system (B; R),
composite of (PB’; R’) and (B”; R"), if and only if they are satisfied by both
component systems.

* Compare T. H. Hildebrandt, AMERICAN JOURNAL oF MATHEMATICS, Vol. XXXIV (1012), p. 250.
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We consider first the following lemma :
Lemma I. If v=v'v", then the following propositions hold:

(a) ,01.2.8.4 . D . ,vil.2.3.4 R 'U" 1.2.8.4’ (b) ,0!1.2.8.4 . ,vll 1.2.8.4 . 3 . vl.ﬂ.l.l,
(C) vl.2.8.4.6 . D . 'v" . ,vn 5, (d) 011.2.4.4.5 . 'U” 1.2.8.4.6 . D R ,vS’
(e) v 1.2.8.4.6.6 . v:e " 6’ (f) vn.z.a.m.o v 1.2.3.4.5.6 e ‘U..

~ (a) and (b) are sufficiently obvious if only we remember the significance
of the relation v = v’ v”.

(¢) : Suppose a class v; to contain v’ and to have properties 1-4. The
composite class v, = v;v” then contains v and, by (a) and (b), has properties
1-4; by property 5 of v then v, = v, and therefore v; =¢’. In similar manner
it may be shown that v»” has property 5.

(d): Suppose v, to contain v and to have properties 1-4, and consider
the two classes v; and v, defined as follows:

v =[alR2g R".RA):R=R"R"],
vy =[allR"agq (R .R2) e R=RH'R"].

1t is not difficult to see that these classes have properties 1-4, and also that v}
contains v’ and v; contains v”; then by property 5 of v and v”, we have
v; =o' and v; = v”, and consequently v, = v.

(e) : Suppose v; has properties 1-5 and v'"°*, then if v, = v;v” we have
v}2345 and v ; hence by property 6 of v,

3@ e gpaph. o™

The classes R, and R, are of the forms R, =R R, and R, = R R;, where
R, and R; are members of v] and v’ respectively, and R and R; are members
of v”. By properties 1 and 3 of v”, R and R, have common elements, there-
fore R and R; can have no elements in common, and consequently v’ has
property 6. In like manner it may be shown that »” has property 6.

(f): Suppose v}**4% and v™™; take v] and v{ defined as in the proof of
(d) above, then as before they have properties 14, and by (b) the composite
class , = vjv; has these four properties. Since v, clearly contains v,, and v,
has property 5, we have v, = v,; hence by (c) v, and v] have property 5.
Since v is not contained in v,, either v’ is not contained in v;, or »” is not
contained in v} ; suppose the former, then since v’ has property 6, we have

3 (miv', . m;v’) 2 —3 pl 2 prm’, . plll',.

Take R, and R so that R is a member of v and R, is a member of v”, and
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take R, = R R and R, =R, R;; then R, and R, are members of v, and v,
respectively, and clearly they can have no common elements. Thus we show
that v has property 6.

We record here for future reference certain results reached incidentally
in the foregoing proofs:

Lemma II. (a) If v has properties 14 and

v=[allR3gR".R):R=RR"],

then v' has properties 1—4.

(b) If v has properties 1-5, then there exist classes v’ and v” such that
v=10v"v".

Taking up now the proof of the theorem, we assume that the composite
system (; R) satisfies the seven postulates and show* that as a consequence
both component systems satisfy them. Ior a given p’ there exist elements p
and p” such that p = p’p” and v, = v, v,., and since every R of v, contains p,
clearly every R’ of v, contains p’, so that postulate I is satisfied by (¥’; R’).
It follows also from lemma I that postulates II-VI are satisfied by this system.
If pl = p;, then taking p, = p;p” and p, = p, p”, where p” is any element of
B”, we have p, 3 p,; hence there is an R not containing p,-such that R R p, .
But such an R is of the form # =R’ R”, where R’ R’ p; and R” R” p” ; and since
p, is in R, we see that p; is in R’ and p” is in R”. Clearly then, p; is not in R’,
so that the system (’; R’) satisfies postulate VII. In like manner the system
(B”; R”) is shown to satisfy the seven postulates.

The remainder of the theorem, 1. e., that if the postulates are satisfied by
both component systems then they are satisfied by thé composite system, is
sufficiently evident without detailed discussion.

From the system (P; RB), composite of the two systems (PB’; R’) and
(B”; R”), we may derive an-extended system (£; S) by the process defined
in § 3; or we may take first the extended systems (£’; §’) and (2”; S”) and
form their composite system, which we denote by Q; S’). It is desirable to
compare the two systems (£; S) and (2; S’) thus derived. Let it be assumed
that the systems (P’; R’) and (B”; R”) satisfy the seven postulates; then the
systems (2; S) and (Q; S) also satlsfy them. The class 2 consists of all
elements of the four forms |

"

(1) g=p'p", (2) g=ww", Q) g=pu, (4) g=up"

* It is necessary to exclude the trivial case in which the class P has no elements.
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Now all elements p = p’ p” belong to B and are therefore in £; also, since all
classes ' and u” have properties 1-7, every class ¥ = »’u” has properties 1-7
and is an ideal element of (; B) and consequently appears in £. Farther,
it is clear that a class v of the form v, u” or u"v,’,’,, has properties 1-7 and is
therefore an element of L.

Conversely, every element of £ is either a p or a u; every p is of the form
p =p'p"” and therefore is in £; every u is a class having properties 1-7,
hence, by lemma II above, is of the form w = v’v”; and by lemma I above
v" and v” have properties 1-6; therefore by theorem I ¢’ is a v, or a w, and

v” is & vy or a u”, so that every u of Q is of the form u’ " or v} u" or u' vj..

We arrive, then, at the following theorem:

Taeorem V. If from two systems, (B'; R’) and (B”; R"), which satisfy
the seven postulates we derive (2;S) by composition then ewiension, and
(2; :S’) by extension them composition, the two systems (2; S) and (2; S’) are
related as follows :

(a) The elements q of 2 are in reciprocal one-to-one correspondence
with the elements q of D in such manner that, if q corresponds to g, then
gq=7p'p" and § = p’'p”, or q is of the form u=u'u", where §=u’'u", or of the
form u = v, u”, where g = p’w”, or of the form u = w’ v,.., where § = u’' p”.

(b) If under the correspondence of (a) q corresponds to G, then the
classes © such that © 8 q are in reciprocal one-to-one correspondence with the
classes € such that ©8G in such manner that, if € corresponds to &, then
under the correspondence of (a) the elements of © correspond to elements of
€, and those elements of © which do not correspond to elements of & are of the
form p’'w” or v p”.

For a given g a class & such that @S q must be of the form € = e e,
and if &' contains an element p’ for which there is no subclass R’ of &’ such
that R R’ p’, it is obvious that for every u” in ©” the element p’u” is in &,
while the corresponding element v,.u” is not in the class & that corresponds
to € under the correspondence of (b).*

* An important fact to be noted here is that it is with respect te the relations 8 and § that this
discrepancy appears. Our purpose in defining a relation 8 and an extended system (; §) is to show
more completely than would otherwise be possible the operation of our definition of ideal elements. We
make no further use of relations 8, but treat ideal elements u as associated with systems (P; R). A con-
siderable simplification is introduced in Chapter II. It is sufficient for our purpose that if U’ is the class
of ideal elements arising in (P’; R’) and U” is the class of ideal elements arising in (P”; R”), then the
class U of ideal elements arising in the composite system (; R) may be regarded as 1dent1co.l with the
sum of the composite classes 1’117, W' P” and P'U”. And this is seen to be permissible, in the sense that
11 consists of all classes u of the form u’ u” or u’'v”’p or v'p u”.
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Consider a set of r systems, (B'; R'), (B2; R?), ...., (®"; R"). From the
first two we may construct the composite system (P'2; R“?), and from this
system and (P%; R®) we obtain the composite system (R-*2; R">3). Con-
tinuing in this way we arrive at what may be called the iterated composite
system. (B --7; R»-~7). From the definition of the composite of two given
systems it is at once evident that this iterated composite system is as follows:
B -»r ig the class of all elements of the form p =p!p?.... p", where
P, P’ ...., and p" belong to the respective classes P, P2, .... B~ That is,
Ploowor =PIP2 . ... P". If R}~ and Ry ---~" are subclasses of P --*, then
the relation Rl Rb-r RL-~7 holds if and only if there exist classes

LR, ..., R and Ry, RE,...., R such that Ry-r=RIR.... R and
Rywr=R;R:.... R and the relations R R'R}, RIR*RE, ...., RIR"R; are
all fulfilled.

It is clear that any other iterated composite system derived from this same
set of r systems taken in different order can differ from the one considered in
notation only. It will be observed, also, that if we form the composites of
groups of systems into which this set of r systems may be divided, and then
take the composite of these composites, we arrive at a composite system differ-
ing only in notation from the iterated composite system first considered. Thus
we see that, aside from possible differences of notation, there is a unique com-
posite system of any finite number of systems of the type (B; R).

An obvious generalization of theorem IV is:

TaeoreM VI. The composite system of a finite number of systems satisfies
the seven postulates if and only if every component system satisfies them.

As a partial generalization of theorem V we have:

TaeoreM VII. If (B; R) ts the composite of the systems (P'; R'),
(B2; R?), ...., (B"; R"), then all elements of the form q=q'q*.... q", where
at least one ¢* is an ideal element of the corresponding system, and the remainder
are elements of the corresponding classes B, may be regarded as ideal elements
of the system (B; R), in the sense that the class u = Vyu Vi . ... v, (im which,
if ¢* is a u', vi. is understood to be identical with the class u') has the properties
1-7. And every ideal element of the composite system is a composite class of

the type indicated.
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CHAPTER I1
ProPERTIES OF A SYSsTEM ForR WHICH IpDEAL ELEMENTS ARE DEFINED.

§ 5. Postulates for a System (B; U; T'), an Instance of which is Associated
with Every System (B; R).

We have seen in Chapter I that the postulates I-VII on the system (; R)
permit of an effective definition of ideal elements for the system, and that the
postulates persist under the process of composition, this process being suitably
defined. - A body of postulates more simple in form and more general in appli-
cation, yet adequate for a development of a theory of multiple and iterated
limits, may be stajed for a system for which a definition of ideal elements is
assumed to exist independently. Special instances of systems may arise,
where ideal elements may be defined in terms of special features of the system
in such manner that the enlarged system shall possess all the properties that
are essential for the application of our general theory of functions, but where
it may be very difficult or impossible to treat the system as a special instance
of a system (; R) satisfying our postulates.* For this reason, as well as for
the sake of simplicity, we specify here the conditions on which we rely for the
development of the following theory.

The system consists of a class P of elements p, a class U of ideal elements u
and a relation T between subclasses R of P and elements of the class © =P 4 1.
The notation for this system is ($; U; T'), but the symbol T is largely sup-
pressed in practice. That a given subclass # has the relation 7’ to a given
element g is indicated by %9 while 2”7 indicates that the relation T does not
hold between R and q. A relation T' is said to be defined for the classes B
and I when a criterion exists determining for every ® and every g whether
Rior R E '

Following are the postulates: t

* Instances of this sort are found in the systems (B; K,) of §17 and (P; V) of §18.
+ We discriminate notationally between the present postulates and those of §2 by the use of
parentheses with the numerals. The postulates may be read as follows: )
(I) If R has the relation 7' to p, then p is an element of R.
(II) Every R having the relation T’ to an ideal element u contains at least one element p.
(I1T) For every g there exists a sequence { R } of classes having the relation T to ¢ such that
for every R having the relation T' to ¢ there exista & number ng such that for n > ng
Rn is a subclass of R. .
(VI) For every ® having the relation T to an element ¢ there exists another class R, having the
relation T to ¢ such that for every p in &, there is a subclass R, of R having the relation
T to p.
(V) If q, is distinct from g, there exist classes R, and R, having the relation 7 to g, and ¢,
respectively such that there is no element common to R, and ®,.

3
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(I) %r.o.p%.

(II) &R*.o.3p*%

(III) g.:o:J{Rte[(n.D. R . (R gn,‘an>n,.:.§R )].

(IV) Re:o:gRia(p™.D.3RF:2R).

(V) a.F¢.D2.3(RP.RE)2-gpap™.p™

A system (B; U; T') may be derived from a system (B; R) as follows:
Let B and U of the system (B; U; T') be respectively the class P of the system
(B; R) and the class of ideal elements arising in (; R); and let a subclass R
have the relation 7' to an element p if and only if RRp, and let R have the
relation 7 to an ideal element « if and only if R is a member of the class u
which constitutes the ideal element of the system (B; R).

It may easily be seen that if the system (B; R) satisfies the seven postu-
lates of § 2 the resulting system (; 11; T') satisfies the five postulates stated
above. By the mediation of the foregoing definition of I' in terms of R, either
example 0 of § 2, or the example of § 3, may serve to establish the consistency
of the present postulates; and in this same way examples 1,3, 4 and 7 of § 2
serve as instances of systems satisfying respectively all but (I), all but (IIT),
all but (IV) and all but (V). To complete the proof of the independence of
the five postulﬁtes we have only to show a systém failing to satisfy (II) but
satisfying the remaining four postulates. Such a system is the following:
P is the class of positive integers, and Ul consists of a single ideal element u.
The relation R? holds if and only if R contains only the smgle element p,
while R* holds if and only if R is the null class.

From two systems, ($’; U’'; 7”) and (B”; U’ ; T”), we derive a composite
system (B; 1; T), where B = P’R” and U consists of all elements of the form
wu” orwp’orpu,ie, =00 4+WPBR" 4+ P'UN”, so that if Q' =P" + W
and Q" =PB” +11” and O =P + U, then T is the product or composite class
Q' 2", The relation R? holds if and only if there exist classes R’ and R”,
subclasses of B’ and B” respectively, such -that ® = R’ %", and R'¢ and R"?",
where g =¢q’ q”. Obviously, this definition of the composite system is consistent
with the definition employed in § 4 and the above definition of 7 in terms of R.

Analogous to theorem IV of Chapter I is the following theorem, the proof
of which should cause no difficulty : '

THaEOREM I. The composite system (B;U; T') of two systems (P’; U ; IT”)
and (B”; U ; T") satisfies the postulates (I)—(V) if and only if both com-
ponent systems satisfy them.
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As in § 4, the definition of the composite of two systems leads to a unique
composite system for any finite number of systems of the type considered.
We clearly have here a theorem analogous to theorem VI of Chapter I.

§ 6. Limiting Elements: Postulates of F. Riesz.

The notion of limiting element of a subeclass is of primary importance for
the purpose in hand. From the point of view of the present investigation, it
is sufficient to define limiting elements only for subclasses® R of P.

Def. 1. An element q is a limiting element of the subclass R, of P if
every R such that R? contains an element of R, distinet from g, i. e., if

Ri.o.FJpFqsp™.p%

If g is a p, it is an actual limiting element, and if a w, it is an ideal limiting
element; and if g is an element of R,, it is a proper limiting element of R,,
and if not an element of R,, it is an improper limiting element of R,.
Evidently, a proper limiting element is always actual, and an ideal limiting
element is always improper, but a limiting element may be for the same R,
both actual and improper. ‘

In his papert on “Stetigkeitsbegriff und abstracte Mengenlehre” before
the International Congress of Mathematicians at Rome, 1908, F. Riesz proposed
a set of postulates on which to build, for an abstract class, a generalization of
the theory of point-sets. -He first assumes an abstract system which we may
denote by (B; C), where P is a class of elements p, and C is a relation between
subclasses % of B and individual elements p, in the sense that p is a limiting
element or element of condensation (Verdichtungstelle) of the class R. It is
of interest here to note that if the abstract class of Riesz be identified with our
class B, and if the relation C be assumed to hold if and only if the element P
is a limiting element of R by definition 1, then the resulting system is found
to satisfy the postulates of Riesz. We establish this fact by proving the
following theorem, the four propositions of the theorem being somewhat more
general than the four conditions necessary to secure the postulates.

Taeorem IL. . (a) Every limiting element of R is a limiting element of
every class R, containing R.

* To define limiting elements for a general subclass of £ it would be necessary to resort to a situ
ation analogous to that of §3; but since the extended system (Q; 8) is of the same character as (B; R),
we should thus revert essentially to the situation found in the special case when the class U of the system
(P; U; T) contains no elements. This special case furnishes a close analogue to the usual method of
procedure in the matter of limits.

+ Atti, ete., pp. 18-24.
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(b) If R=R + R, then every limiting element of R is a limiting element
esther of R, or of R,.

(c) Omnly infinite classes have limiting elements.

(d) Each limiting element of R is uniquely determined by the totality of
all subclasses of R of which it is a limiting element. |

Proof: Proposition (a) is immediately evident from definition 1.

(b): Let ¢ be a limiting element of R=%R,+R,. We are to show that
q is a limiting element of 9711 or of #,. By postulate (III) we have

(1) FiRfe[(n.D. R . (R:D:Fnezn>ne.D.R])];
then by definition 1 we see that

(2) ”-3-31’”3?”:’:4-1’?"-P”-
A sequence {p,} thus secured satisfies the condition
(3) R:d:guwzn>ng.D.p7.

Since either R, or R, must contain an infinite subsequence of {p.}, we may
suppose that R, contains the sequence {p..t, where, if m, 3£ m,, then n, Fn,,_ .
For a given R only a finite number of terms of the sequence {p, } can precede
the term pny in the sequence {p,}; hence by (3) we have

Re.o.gmap?d

and since by (2) every p,_ is distinct from q, we see that g is a limiting
element of R,. ’ :

(¢): Let g be a limiting element of R. If possible, let R consist of a
finite set of elements, p,, p,, ...., p,. By postulate (V) we see that for
every element p, distinct from g there exists a class R, not containing p, such
that #f. By an application of postﬁlate (III) we secure a class R such that R,
which is a common subclass of all the classes R,. This class R clearly contains
no element of R distinct from g; hence we reach a contradiction.

(d): We are to show that if g, and g, are distinet limiting elements of .‘h,
then there is a subclass of R that has one of these as limiting element but not
the other. By postulate (V)

FRE R g pept . ph

Denote by #, the greatest common subclass of # and R,; then it is clear that g,
is not a limiting element of R,. For a given R such that R* there exists by
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postulate (III) a common subclass R; of R and R, such that RP. Since g, 18 a
limiting element of ®, R, must contain an element p of R, distinct from a4
and this element p is obviously in ®,. Thus every # such that ¢ contains
an element of R, distinct from g,; that is, ¢, is a limiting element of %, .

The four postulates of F. Riesz are equivalent to the four propositions of
this theorem if we restrict limiting elements g to actual limiting elements p,
and if in (b) R, and R, have no common elements.

For the purpose of introducing ideal elements into the abstract class %P,
Riesz considers a system which we may denote by (B; V'), where V is a relation
between subclasses R of P of the same type as our relation BR. He postulates
for the system (; V) four properties as follows:

(1) If R, and R, have the relation V, and R; contains R, and R, contains
R,, then R; and R, have the relation V.

(2) If R, and R, have the relation V, and R, is divided into two classes,
then at least one of these has the relation V to R,.

(3) Two singular subclasses can not have the relation V.

(4) If R, and R, both have the relation V to a given singular class p,
then they have the relation V' to each other.

A definition of C in terms of V is given by Riesz, by which the relation C
holds for a class R and an element p if and only if the class i and the singular
class whose element is p have the relation V. A system (; C) thus obtained
from a system (P; V') which satisfies the first three conditions above has the
first three properties postulated for the system (; C).

From a system (P; U; I') we obtain a system (; V) as follows: The
class P of the system (B; V) is identical with the class P of the system
(B; U; T'). The relation ¥V holds between two subclasses of B if and only if
the two have a common limiting element (actual or ideal) or one subclass con-
tains a limiting element of the other.*

It is easily seen that if the system (PB; I1; T') satisfies the five postulates
of §5, then the resulting system (; V') fulfils the four conditions prescribed
by Riesz. In fact, the propositions (a), (b) and (c) of theorem II contain
sufficient conditions on the system (B; Il; T') to secure this result.

Riesz defines an ideal element as a class v of subclasses # which satisfies
the following conditions:

(a) If R belongs to v and R, contains R, then R, belongs to v.

* Compare Riesz, loc. oit., p. 23.
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(b) If R belongs to v and consists of two subclasses, R, and R,, then
either R, or R, belongs to v.

(c) Every two classes R, and R, of v have the relation V.

(d) The class v is not contained in any different class v, having
properties (a), (b) and (c).

(e) No element p is contained in every R of v or has the relation V to
every R of v.

A special case of theorem II, (d), is the proposition: Every ideal element u
is uniquely determined by the totality of all subclasses of P of which it is a
limiting element. It is not difficult to see that such a totality of classes for a
given u constitutes a class v fulfilling the five conditions just given. In fact,
condition (a) follows from proposition (a) of theorem II, condition (b) from
(b) of theorem II, condition (¢) from the definition of ¥ in terms of T, and
conditions (d) and (e) from (d) of theorem II. Thus every element of the
class U of the system (B; 1; T') corresponds uniquely to an ideal element of
the system (; V).

It may be observed that by the mediation of the definition of a system
(B; U; T) in terms of a system (B; R) there is associated with every system
(B; R) a definite system (B; V), and that if the former satisfies the seven
postulates of § 2, the latter must fulfil the conditions stated by Riesz. It is
clear, also, that every ideal element arising in the system (; B) by our defini-
tion corresponds uniquely to an ideal'element arising in the associated system
(B; V) by the definition given by Riesz.

§ 7. The Fréchet Limit: Properties of Classes.

In his thesis, “Sur quelques points du calcul fonctionnel,” Paris, 1906,
M. Fréchet* makes use of an undefined relation between sequences of elements
and individual elements. By imposing certain conditions on this relation he is
able to develop a theory, analogous to the theory of point-sets and of continuous
functions, in which an element that has the undefined relation to a sequence
plays the role of limit of the sequence. It is of advantage here to show that
the notion of limit of a sequence of elements as defined below satisfies the con-
ditions stated by Fréchet. '

Def. 2. The sequence {p,| has the limit g if and only if for every R such
that R? there is a term of the sequence such that all following terms are in the

class #. In symbols:+

* Rendiconts del Circolo Matematico di Palermo, Vol. XXII.

+ The notation lim ps==¢ is here. replaced by the more convenient but equally suggestive notation
fA=w
L ap==q. Note that a sequence may have an ideal element as limit.
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Lp,=qa=:({pd-9)3 (R :D:Fna2n>ne.D. ).

The conditions stated by Fréchet for the definition of the limit relation
between sequence and element are implied by the following theorem :
Tarorem III. (a) A sequence formed by repeating a single element has

that element for limit.
(b) A4 sequence can mot have two distinct limits.
(e) If a sequence }p,} has a limit q, then every subsequence {p,_| such

that n, becomes infinite with m has the limit q.
Proof: Proposition (a) is an immediate consequence of postulate (I).

(b) : Suppose a sequence {p,! to have two distinct limits, ¢, and g¢,. By
postulate (V) we have

IR .RE)e—gpaph. ph.
But by the supposition
Jug 2n>ng . D.pF and Jng 2n > ng .. ph.
By considering p, such that n is greater than both n, and n,, we reach a

contradiction.
(¢) : By hypothesis we have

Riio:gngin>ng..pft,

and since n,, becomes infinite with m there is for every ny a number my such
that if m is greater than mg, then n_ is greater than ng; thus

Ri:o:gmgam>mg.D. 0k,

which is the required condition.

The three propositions of the theorem are equivalent to the properties of
the Fréchet limit, except that he uses instead of (¢) a less restrictive condition,
obtained by adding to the hypothesis of (¢) the restriction that the elements of
the subsequence are taken in the same order as in the original sequence. In
the proof just given we made use only of postulates (I) and (V), so that these
two conditions on a system (B; U; 7') are sufficient for the development of a
theory at least as extensive as that pertaining to the class (L) of Fréchet.*

* Fréchet denotes by (L) what we should represent by (P; L), where L is a relation between
sequences of elements of P and individual elements of . Observe that the limit relation which we have
defined differs in type from that of Fréchet to the extent that we include ideal limiting elements. One
gees, however, that the presence of ideal elements does not interfere with the application to the present
situation of the theorems proved by Fréchet on the basis of his limit relation and without the aid of his

écart or his voisinage.
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TuroreM IV. 4 necessary and sufficient condition that q shall be a limiting
element of R is that there exist a sequence }p,} of distinct elements of R such
that L p, = q. .

It is necessary: By postulate (III) we have

FiRJ2[(n.D.R) . (R:D:Imgan>n5.D. 8,
and, g being a limiting element of R, we have by definition 1,
n.D.3 P F 2. pr-

The sequence {p,} thus secured is such that L p, = ¢, and since the elements
of the sequence constitute a class having the limiting element g, we see by
theorem I, (c), that the number of distinct elements of the sequence is not finite.
There exists, then, an infinite subsequence {p,_ | of distinct terms such that =,
becomes infinite with m, and which, by theorem III, (¢), bas the limit g.

It is sufficient: This pi‘oposition is a direct result of proposition (a) of
theorem II.

Theorem IV shows that our definition of limiting element of a subelass is
consistent with the definition employed by Fréchet. It may be noticed that in
establishing these relations with the work of Fréchet, and the relations to the
work of Riesz discussed in tlie previous sectioh, no use has been made of
postulate (IV); it is clear, therefore, that while we have sacrificed much in
the matter of generality, we gain somewhat in the extent of the theory avail-
able for our system. We consider here certain properties of subclasses that
are found useful in the next chapter. '

Def. 3. The derived class of a subclass R is the class of all limiting
elements of H.

Def. 4. A subclass is closed if it contains its derived class.

Def. 5. A subclass R is compact * if every infinite subclass of R has at
least one limiting element. '

The propositions of the following theorem, which are given by Fréchet,
are seen to be valid here, his proof of (d) being entirely applicable to the
present situation, and the first three propositions being obvious deductions
from the definition of compactness.

* See Fréchet, loc. cit., p. 6. Here, again, attention must be called to the fact that we recognize
ideal limiting elements.
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TreoreM V. (a) Ewery subclass of a compact class is compact.

(b) If every subclass of R is compact, then R is compact.

(¢) 4 class formed of a finite number of compact classes is compact.

(d) If every member of a sequence {R,} of subclasses of a compact class R
is closed, contains the succeeding member, and contains at least one element,
then there is an element common to all classes of the sequence.

A proposition somewhat different in content from this last, but permitting
of a very similar proof, is stated by Riesz,* and may be stated here as follows:

TraeoreM VI. If every member of a sequence {R,} of infinite subclasses
of a compact class R contains the succeeding member, then the members of the
sequence possess at least one common limiting element.

An important proposition in the theory of point-sets and in the analogous
theoriest in the domain of general analysis is the following: “The derived
class of every subclass is closed.” The following theorem, in the proofi of
which we find the first use for postulate (IV), reduces to this proposition in
case no ideal elements exist, ¢. e., in case U is the null class.

TueoreM VIL. If R, is the class of all actual limiting elements of R, then
every limiting element of R, is a limiting element of R.

Proof: By postulate (IV) we have for a given limiting element g of .‘ﬁl ,

(1) i :gqRIeph .. g RF2 R

Now such a class R, must contain an element p of ﬁl distineét from g. Then
there is a subclass R, of R such that R, and p being a limiting element of R,

* Loc. cit., p. 20.

1 E. R. Hedrick, “On Properties of a Domain for which Any Derived Set is Closed,” T'ransactions
of the American Mathematical Society, Vol. XII (1911), p. 289. ) .

i Fréchet shows (loc. cit., p. 156) that this proposition does not follow from the hypotheses he has
made on the class (L). He secures this theorem only after the introduction of the notion of voisinage.
The following example shows that the theorem is not a consequence of postulates (I), (II), (III) and (V),
which, as we have shown, are together as strong as the postulates on the class (L) combined with the
postulates of Riesz. We specify a system (P; U; T) as follows : %P consists of an element p, a sequence
{pn} of elements, and a double sequence { pmn } of elements. Two elements having different notations
are distinct. U is the null class. The relation R? holds if and only if R consists of the element p
together with all, excepting a finite number, of the elements of the sequence {pa }. For a given n, the
relation RPa holds if and only if R consists of the element psn together with all, excepting a finite number,
of the elements of the simple sequence { pmn }. For a given m and n, RPm» holds if and only if R con-
sists of the single clement pmn . This system satisfies postulates (I), (II), (III) and (V). For a given n
the element pn is the limit of the sequence { pmn } ; and the sequence { ps } has the limit p. The
subclass R consisting of the elements of the double sequence { pma } has for its derived class the class R,,
which consists of the elements of the sequence { pa }. The only limiting element of R, is p, which is not
in R,. Thus the derived class R, is not closed.

4
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there is by theorem IV a sequence of distinct elements of % in %,, and there-
fore in R. Clearly then we have

Ri.o.3pFq20%. 0%

that is, ¢ is a limiting element of R.

The proofs of the following propositions relative to a composite system
should cause no difficulty.

Tareorem VIIL. If (B; U; T') is the composite system of the systems
(P uL; 1), (P2 U T, ..., (P UG T, and if R=R'R2.... R, and
a=q'q¢....q" the following propositions hold:

() If, for every m, p,=plpt....p., then Lp,=q if and only if for
1=1,2,....,r we have L p} = ¢'.

(b) The element q is a limiting element of R if and only if every q*
(t=1,2,....,r) is contained in R* or is a limiting element of R, and at
least one of the g* is a limiting element of the corresponding R°,

(¢) R is closed if and only if every R¢is closed (1 =1,2,....,7r).

(d) R is compact if and only if every Rt is compact (i=1,2,....,r).



CHAPTER IIL
A THEORY oF FuNcTIiONs BasEpD oN PRroPERTIES oF A SvsTeM (P; U; T).

§ 8. Initroductory.

In this chapter we are concerned with a definite system (B; U; T), which
is assumed to satisfy the five postulates of §5. In § 10 and § 12, in order
to provide for the features of iterated limits, special hypotheses are made with
regard to the composite character of the system. Subclasses of P are, in
general, denoted by R; but a definite one of these subclasses, denoted by %,
receives special consideration, being the range of the independent variable in
our theory of functions. The derived class of P is denoted by &, and £ is the
least common superclass of P and 8. The letters p, g and ! denote elements of
the respective classes P, O and &, while a general element of P is written p, and
g is an element of the class Q= % + .

Functions are denoted by the letters 6, ¢, u, etc. The notion of function,
in general, involves two classes, one called the range and the other the class
to which the function-values belong. If X and ) are two classes of elements,
then a function @ on ¥ to.9) is a correspondence between elements of X and
subclasses of ¥), whereby to every element z of X there corresponds uniquely
a subclass 0, of §). If, for every z, 0, consists of a single element y of ), then
0 is a single-valued function on X to §). In the present chapter we consider
only single-valued functions on a subeclass of O to %, where 9 is the class of
all real numbers with the ideal elements + o and — adjoined. The notation
9 stands for the class of all real numbers, and the letter ¢ invariably represents
a real number, while the letters e and d always denote positive real numbers.*

§ 9. The Character of a Function in the Neighborhood of an Element.

We take as the subject of discussion a definite function u on P to 9. In
the consideration of the character of the function u with respect to a particular
limiting element ! of the range, three symbols play an important réle:

* The letters e and d replace the usual ¢>>0 and §>0. There can be no doubt that convenience and
economy are conserved by these and other special notations. We find sufficient precedent in the work of
Professor E. H. Moore on “General Analysis.”
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(a) lim p,: upper limit of u, as p approacheés I.
p>1 ’

(b) lim g, : lower limit of u, as p approaches I.
>

(¢) lim g,: limit of u, as p approaches /.
p—>1

Following are the conditions under which these symbols may represent definite
finite numbers:
Def.1. The relation ITE[;P = a is equivalent to the following two con-
P>l

ditions* on y, ! and a:
(1) e::gqRizptfi.D.p,Sa+te,
(2) e.R::gptFElay,2a—e.

Def. 2. The relation lim u, = a is equivalent to the following two con-
]

ditions on g, ! and a: " }
(1) e::qRspMFEl.D.u,2a—e,
(2) e.R:i:igptFilsy,Za+te

Def.3. The relation lim y, = a is equivalent to the following condition
p=>1
onu,landa:

e:D:gRsptEl.D.|lg,—al|=Ze.

These definitions lead to the obvious theorem:

Traeorem 1. The limit of u, as p approaches a limiting element | is a
number a if and only if the upper limit and the lower limit of u, as p ap-
proaches | are both equal to this same number a. In symbols:

};i-l:lz#p:a: (/):}’i_;lll(tpzéi_%yp:a.

For a given limiting element ! of 8 we have also the following analogue
of the Cauchy condition for convergence:

TueoreM II. The following two conditions are necessary and sufficient
for the existence of a finite limit of u, as p approaches l:

(1) If R there exists a p in R distinct from I such that u, is finite.

(2) 6:D=3m53p1'¢l~pz'¢l~3- “‘m_l‘p.!ﬁe-

Proof: That the conditions are necessary is quite obvious, As to their
being sufficient, we observe that since / is a limiting element of P we have a
sequence {p,} of distinct elements of P such that

* Condition (1) may be read: “For every e there exists a class R¢ such that R! (R. has the relation
T to ) and such that for every p in R. distinct from I the function-value up is less than or equal to
a+4e¢”; and (2) may be read: “For every e and every R such that R! there exists a p in R distinct from
such that the function-value xp is greater than or equal to a —e.” The conditions in definitions 2 and 3
may be read in similar fashion.
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(1) Ri:D:Ing2an>ng.D. 00
If for a given e we consider the class i, required to exist by condition (2) of
the theorem, we see that

Jnn,>n.n>n.23.|u —u, |Ze

By condition (1) of the theorem the terms of the sequence {u, }{, after a finite
number of terms, are all real numbers; therefore the sequence is convergent
to a finite limit by the condition just written. Let this limit be a, then

(2) e:D:AnIn>n.D. u,—a|<s,

and by condition (2) of the theorem we have for this same e

(3) amiazgﬂ.#l.pno:#l.:.Iyp—‘apnl§§.

Since, by (1), this conclusion is fulfilled for some value of n, we see that, by
(2) and (3),

p*Fl.o.|p,—a|Zle;

that is, the limit of u, as p approaches ! is a.

TueoreM III. If for a given l there exist a number a and a class R such
that R' and such that, for every p in R, |u,| < a, then there exist numbers a and a
such that

"l,i_;m‘y,,zci and %i:?lypza.

Proof: By use of postulate (III) we secure a sequence {R,} such that
for every n we have R! and R¥, and further, such that each term of the sequence
is contained in the preceding term. For every = let a, be the least upper bound
of u,, where.p belongs to R, and is distinet from !, and let a, be the greatest
lower bound of u, with the same restrictions on p; then the sequences {a,} and
{a,| are respectively decreasing and increasing monotonic sequences of real
numbers. Since a@,>a,, both sequences converge. Let & and a be the limits
of these sequences, then it is clear that they are respectively the upper limit
and the lower limit of u, as p approaches /. ,

In the following definition, in which we employ the symbol, =, of defini-
tional equivalence, we indicate the conditions under which the limit, upper limit
and lower limit of u, as p approaches a limiting element / may be infinite
elements of the class 2.

Def. 4. With respect to an arbitrary limiting element ! of B the following

are definitional identities:
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(a) limpy,= twi=ia.R.D.3p%Flay, >q,

>

(b) limpy, =—wi=:a.R.D.3p0Fl3y,<aq,
. p>i

(¢) limy,= +oo.:—=~:.limyp=+oo.:=-—=:.a::):3§l%japm-=#l.3.yp>a,
> P>l .

(d) limp,= —w=tlimy, =—w.i=ae:D:gRip*FEl.D.y < a.
p>i P>l

TreoreM IV. If {p,} is a sequence such that Lp, =1, then

lim g, < lim g, < lim g, < hm Uy
1 > n—)»

These four symbols clearly always represent definite elements of the
class 5[; i. e.,, “the quantities always exist? finite or infinite.” The proof of
the theorem follows immediately from theorem-IIT and the foregoing defini-
tions, with some use of well-known properties of sequences of real numbers.

TaroreMm V. For a given | there exist sequences {p,} of distinct elements
such that Lp, =1 satisfying each of the conditions:

a) lim = lim
( ) ro o, o>t Uy
b) lim lim g, .
(b)  lim g, = o
Proof of (a): First, suppose that hm Ly = + . Consider a sequence

}a } of real numbers such that lim a, = —l— o, and a sequence {R ) as required
R=I00

to exist for ! by postulate (III). We have by definition 4, (a),
n.D.g3pFla2y, >a,.
A sequence {p,} so secured has the desired properties, namely, Lp,=1 and
lim =4 .
fa->o [lp' o
Next, suppose that lim g, = a. Consider a sequence {e,} of positive real
P>l

numbers such that lim e, = 0. By condition (1) of definition 1,
n—po

1) n:D:g R apteEi.o.p,<a+e,.

Take a sequence {R,}{ such that for every » R, and R%¥=, and such that if R’
the classes ER,,,' after a finite number, are all contained in R, all of which may
be done by means of postulate (III). By condition (2) of definition 1 we have

2) n::JotFlsy, >a—e,.
Clearly, L p.=1, and since p, is an element of R, , we have by (1) and (2)
niD:|p,—al<2e,
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and, the limit of e, being zero, it is seen that the limit of u, is a, so that the
sequence {p,| is of the kind desired.

In case lim g, = — oo the proof is entirely obvious, and an entirely
P> .
analogous proof is available for the condition (b).

Traeorem VI. (a) For a given limiting element 1, lim u, = a if and only
>l

if for every sequence {p,! of distinct elements such that Lp, =1 it is true

that lim u, = a.
n>
(b) Proposition (a) still holds if a be replaced by + © or by — .

This theorem* is an immediate consequence of Theorems IV and V.

§ 10. Iterated Limits at an Element of a Composite Range.

Let the system (P; U; T) be the composite of two systems, (P; W, 3 I7)
and (iB" n”; T"), and let P = P’ P”, where P’ and P” are subclasses of
P’ and P” respectively. ILiet 2 and 2” be the derived classes of B’ and B,
and let Q' =%+ & and Q" =P” 4 8”; then we have for the derived class
of P the class L= Q" + 'Y, while Q=P+ L=L2’'Q".

We consider again a definite function # on B to 9. - For every p’ the
symbol u, represents a function on B” to 91, having for every p” the function-
value . Similarly, for every p” u,, is a function on $’ to 9. The symbols

Hm gy pry UM prys o, llm ot oy Lim ey pn
L R P> PV
represent definite functions, the first two being deﬁned on P” to 9 and the
last two on B’ to 9.
- TueoreMm VII. For a given limiting element | =1'1" we have

(a) EIEI lim ‘llpr’,H > lim llm Uprpr S Ti?ﬁ m Upr prr

P11 plp it P Pl P31 pl U
(b) lim lim py,» < Tlim lim g, ,. < Tim Tim ot o +
P pI Y P ply ' =>-" ply-It

It is clear that the symbols indicated always represent definite elements
of the class 9, and the inequalities follow easily from theorem IV.

Tareosem VIII. If I=10V1", then there exists a sequence {p,} of distinct
elements such that

* Compare]Alfred Pringsheim, “Zur Theorie der zweifach unendlichen Zahlenfolgen,” Mathematische
Annalen, Vol. LIII (1900), p. 301; also Franz London, *Ueber Doppelfolgen und Doppelreihen,” same
volume, p. 330. Analogies between the theorems of §9 and § 10 of the present paper and theorems by
Pringsheim and London in the papers here cited, analogies extending in some instances to the very details
of the proofs, are so apparent that they call for no special notice. A method of specializing the present
general theory to secure a theory of multiple sequences is shown in § 14.
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Lp,=1 and lim g, = lim lim g, .,
n—)a pl!_)l" p’+lﬁ

and the proposition remains true if the iterated upper limit be replaced by any
of the three quantities
lim Im gy, Lm lm gy,n, lm lm gy ..
I P> Dl P> Pyl
We indicate the proof for the case of the iterated upper limit when this is
a finite number a. Let 0 be a function on P” to I such that for every p”

6,” = lim Yoo then lim 6,, = a, and by theorem V there is a sequence {p, }
o'yl U
of distinct elements such that L p, = 1” and such that

(1) e:DiAmIn>n.0.

We may regard the sequence {p, | as chosen so that 0, " is finite for every =;
then again, by theorem V, there exists for every n a sequence {Dmnl of distinet

e
‘—a|§2"-

elements such that Lp,,, =1 and such that lim g, ,» = 0 ». Take a sequence
m—*m Pan?

{e,! such that the limit of e, is zero. We have

(2) niigm 3m>m, .. yp;.p:—0,:|§e,,.

Consider a sequence {R,! such as is required to exist for I’ by postulate (III).
Take a sequence {m,} such that for every » p;, , is in R, and m, > m, ; then
clearly Lp,, ,=1 and by (2) we have ‘
(3) n.o “”—0,,4

For a given e we may take #n, so that ¢, <~ 3 € for n > n.; therefore we see by (1)

and (2) that lim g, ,=a. Take a sequence {p,| such that for all values of «
Adm  manin

Po= Pm.n P ; then by theorem VIII, (a), of Chapter II, we have Lp, =,

and also lim g, = a.
n-)0
The proofs of the remaining cases offer no new difficulties, and are omitted

in the interests of brevity.

TaeoreMm IX. If 1 =1U'1l", then
(a) lim g, < lim lim g, < Tim lim g, < hm 73
p_.)g pn_}w pl__)‘l p"—)l" !>V
(b) If the limit of u, as p approaches 1 emsts," then

lim Lim p,,, = lim lim g, = lim g,.
o>V ply-V "1 >V >l

* The term “exists” is employed in the usual sense, to indicate that the limit is defined, ¢. e.,
represents a definite real number or 4+ ® or —w. The theorem may be regarded as comparing iterated
limits with multiple limits; we can not, however, adopt with consistency any special notation to indicate
that a limit is “multiple,” since no class is assumed to be linear, a.nd the limits studied in §9 may be
regarded as multiple limits of any order desired.
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The propositions of this theorem are easy deductions from theorems V,
VI, VII and VIIL

We have just derived, in terms of iterated limits, a necessary condition
for the existence of the limit of u, as p approaches a limiting element J. To
derive sufficient conditions on the iterated limits for the existence of the limit
is a matter calling for additional restrictions. For this purpose it is con-
venient to introduce certain uniformity features. We indicate that a condition
is satisfied uniformly with respect to the elements of a class by placing the
notation for the class in parentheses following the symbol for the condition.
Thus, if R” is a subclass of $B”, and 0 is a function on P” to ﬁ[ finite for every

p” in R”, and such that lim Yy o = 0, for every p”, then we may indicate that
o' >V
the limit function @ is approached uniformly on R” as in the following

definition:

Def. 5. hm yp,=0(§R") i=t.e::gRypEEl. "”‘".3 o—00| Ze.

It will be observed that the uniformity of the condition consists in the
existence for a given e of a single %, effective for every p” in R”. Similarly
we write: _

Def. 6. (a) liﬂ {lpl=+w (m”)o:Eno .3:am;l’aplﬂ:#:ll'p'lﬁ".a u[l"p">a’

pl ’
(b) plli_I:IHy,,f:: —o (R")i=ta:D:gqR p®FEl.p" ¥ .5 .u,n<a.

TaeoreM X. Ifl=1'l" and R” is a class such that R"", and if R"' is the
greatest common subclass of R’ and P, then the following propositions hold:

(8) lim gy, =6 (R").>. hm 4, = im 6,, . lim g, = lim 6,

o' > ’__)_; pu_>;n
(b) lim py =+ o0 (7). : lim 4, = + o,
() limpuy =—e (#).3.lim = — o0 ;

provided that in case l’ is a p’ we have in the respective cases the additional
hypotheses

(a) lim 0,,, < lim Uy " and llm Uy o S l]m 0,11,

p''—> [n p” > pl—>-" “pl-y-in
(b) lim Ly g0 = +oo,

pry-1
() limpuyyp=—o;

pH—y-

and in case l"” is a p”’, in (a) the further hypothesis

lim 0 o é Opi < llm 0 o *
P P"+V’
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We prove proposition (a), supposiﬁg that I’ and !” are improper limiting

elements of P’ and P” respectively. Suppose first that ,l'i_m;lﬂ,," = a; then for
a given e we have i

(1) 39‘;’."'3p"w"0300,"§a+'6"
np »gp e
(2) ‘ ml'-D-BPan-"O,"?_-a—Qa
and by definition 5,
(3) 3 8?,’," 3 plﬂ" . p"ﬁ" e IO O 0,"| ,<=g.

Let R; be a common subclass of R, and R”, such that R, ¥, since such classes
exist by postulate (III); then by (1) and (3) we have

p’m".D.opuéa—l-g,

’ 173 % e
pm'n.p m..:- [t,,p,,——ep,,l_sé;

therefore, if R, = R, R;, we see that
4) p™.5.u,Sate.
Any class R such that R must be of the form R = R; Ry, where R;¥ and Ry .
Since R; and R, have elements in common, and since Ry and R” have a common
subeclass which fulfils the hypothesis of (2), we have from (2) and (3)
() IpPapu,2a—e.
We see, then, from (4) and (5), that Tim g, = a.
>
Now suppose that Tim 6,, = + o ; then for a given a we have

I
(6) ’m:lll.:. ap”m‘gopﬂ>a+1’
and, taking e <1, we have by (3),

"™ .. |y —0p| S1.
Let R and let R = R; R;, then since R; and R, have elements in common, and

since f; and R” have'’a common subclass which fulfils the hypothesis of (6),
there is & p in R such that u, > a, and thus lim g, = + «.
1

The proof in case lim 6,,=—o is not difficult. Under the same hypotheses
Cpr
with respect to I’ and I” we easily see that lim 6,, = lim g,.

pll__-;ill 1
If we remove the restrictions on I’ and /”, the additional hypotheses then
available easily lead to the desired conclusion.
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The proofs of (b) and (c), which offer no new difficulties, are omitted.

We obtain conclusions similar to those of theorem X under more mild
hypotheses as follows: )

Traeorem XI. If I=11" and if 0 and 0 are functions on P" to 9, then

(a) A sufficient condition for the relation Tim y, < lim 0, is
p>1 T g
| RV 3 [e Hiee R | ?R;" 2 p,m:. . p"iR” oD e Uy g < Gpn + e],

(b) A sufficient condition for the relation lim g, 2 lim 0, is
> - P

C | RV 3 [e Hiee R | 31,'," 3 p'ﬂl'. o p"ﬂt" oD e Uy =>' Qpll _— 6] H
provided that if 1" is a p”’ we have for (a) and (b) the respective conditions,

l—iﬁ a,u g a‘" a’nd‘ lim Q,u S an .
oV LS ‘

We observe that if 5,," is finite for every p” in R”, and if § = 0, then the
combined hypotheses of (a) and (b) are equivalent to the hypothesis of (a)
of theorem X, while the combined conclusions are equivalent to the conclusion

of X, (a) only in case lim 6,, = lim (-)p" = lim 0, = lim 6,,. If for every p”
P11 P o=V o

in B” we suppose 5,,,, = — w0, then (a) is equivalent to theorem X, (¢), both
in hypothesis and in conclusion, and similarly X, (b) is a corollary of XI, (b).

§ 11. Continuity of Functions.

We return now to the general situation considered in §9. Making use of
the notations there employed, we turn attention to questions of the continunity
of the function g on the range .

Def. 7. A function u on P to 9 is .continuous on P if and only if u, is
finite for every p, and for every proper limiting element ! of P 1'1_1:1‘ ©, = .

4

The definition here given is analogous to the usual definition of continuity
of a function of a real variable. With the present postulates on our system
(B; U; T) we are not able to define an analogue of uniform continuity on a
range; but by requiring, in addition to the conditions of definition 7, that there
shall exist a finite limit for the function x4 at every improper limiting element
of PB, we obtain a form of continuity that in most applications is equivalent to
uniform continuity. We call this extensible continuity, and a function having
this property is said to be extensibly continuous. We have then:

Def. 8. u is extensibly continuous on P if and only if it is continuous
on P and for every improper limiting element ! of § there exists an @, such
that lim u, = a,.

p->i

The following theorem is obvious:
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Tarorem XII. If P is closed, then u is continuous on P if and only if
u is extensibly continuous on B.

With every function u on B to % there are two associated functions, ¢ and ¢,
called respectively the upper and lower limiting functions of u on P.

Def. 9. ¢, the upper limiting function of x on %, is a function on the
range O such that, for every I, ¢, = 11_1:1 u, and, for every p not in &, ¢, = u,.

Def. 10. 4, the lower limiting function of u on %P, is a function on the

range £ such that, for every I, ¢, = lim g, and, for every p not in &, ¢, =g, .
=
The functions ¢ and ¢ are then functions on O to 2. They lead to greater

economy in the statement of propositions on the function u.
‘ TreoreM XIII. (a) u is continuous on P if and only if for every element
p the function-values ¢, ¥, and u, are equal and finite.

(b) u is extensibly continuous on B if and only if for every q the function-
values ¢, and ¥, are equal and finite, and for every p they are equal to u,.

(e) If u is extensibly continuous on B and R is the greatest common sub-
class of B and Q, then ¢ is extensibly continuous on R and for every u in Q

lim ¢; = ¢,.

i The truth of (a) and (b) is obvious. As to (c), it should be remarked
that since Rt is a subclass of Q, ¢ is defined on R, and since R is a subclass
of P, continuity and extensible continuity are defined for functions on R to 9.
Further, in view of theorem II, (b), of § 6, and theorem VII, of § 7, we see
that every limiting element of R is a limiting element of B. Since by (b) ¢ is
finite for every 7 (element of ®), it remains, for the proof of (c), merely to

show that for every [ we have lim ¢; = ¢,. Since u is extensibly continuous
r>1
on B, we have for every /, lim g, = ¢,; that is,
P>l :

Nl e

(1) e.l::gaReptFl.0. |g,—9| <
By postulate (IV) we see that

(2) IR p™. . 3R RP

We wish now to show that

(3) MmEIL.D.|Pr—¢ e

If 7 is a p, this follows from the fact that %, is necessarily a subclass of R,.

If 7 is not a p, it is an improper limiting element of P, and we have by an
application of (1),
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(4) I p* .. (gr—p,| <3

By use of (2) and postulates (III) and (V) we may show that R, contains an
element p of R, distinet from 7; then (3) follows from (1) and (4).

Taeorem XIV. (a) If P is compact and u is extensibly eontinuous on R,
then u is bounded on B, by finite bounds.

(b) If P is compact, then there exist q, and q, such that the least upper
bound of u on P is either ¢, or u,, and the greatest lower bound of u on P
is either ¢, or u,, .

(e) If B is compact and closed and u is continuous on B, then there exist
p, and p, such that the least upper bound and the greatest lower bound of u
on P are respectively u, and u,,.

Proof of (a): Suppose that u is not bounded from + o, and consider
a sequence {a,} such that l_i;n a,= + . We have then

(1) NeD e Pnd My > Gy

Since P is compact, and since the number of distinct elements in the sequence
{p,} can not be finite, there exists a subsequence {p, | of distinct elements of
the sequence {p,} which has some element ! as limit. Since u is extensibly
continuous, there is a number g, such that

(2) e:D:AM3Im>m, D lu, —aje

Now we may take an #, such that for » > », we have a, > a,+ ¢, and since
there exist values of m greater than m, such that n, is greater than »,, we see
that (1) and (2) are contradictory. Thus u is bounded from -+ o, and in
similar manner we may show that u is bounded from — .

Proof of (b): The least upper bound of u on § may be a finite number a
or + . In either case there exists an element p such that g, is this least
upper bound, or there is a sequence {p,} such that the limit of g, is this least
upper bound. If the former is true, then g,= p meets the requirements of the
theorem; if the latter is true, then there is a subsequence {p, | of distinct
elements of {p,} which has a limit /, and clearly we have ¢, as the least upper
bound of g on P. Similarly g, exists, fulfilling the conditions of the theorem.

Proof of (¢): Since P is closed, every g is a p, and since u is continuous,
¢, = u, = V¥, for every p; therefore (c) is a corollary of (b).

§ 12.  Functions on a-Composite Range.

Returning to the special case when _the system (B; U; T) is the composite
of the two systems (P’; W; I') and (B”; U”; T'”), and using the notations
P, &/, & and B”, 27, ", as in § 10, we discuss the character of a function u
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on P to 9 with regard to continuity and related properties. Use is made also
of the upper and lower limiting functions, ¢ and 4, of x on B. We notice
that for every ¢’ ¢, and ¥, are definite functions on 2, and for every g”
¢,» and ¢, are definite functions on L.
Taeorem XV. (a) If I is such that for every l of the form I =1V p”
®, is finite and li_l:xl ¢, = P, then ¢, is continuous on P”.
4

(b) If U is such that for every.l of the form 1l =1V q” ¢, is finite

and lim u, = ¢,, then ¢, is ewtensibly continuous on P” and for every l”
>

Lm @, ,n = Py .
P>

(c) If uis continuous on™P, then for every p” w,n is continuous on P’
and for every p’ u,, is continuous on P”.

(d) If u is extensibly continuous on B, then for every p” u,. is exten-
sibly continuous on B’ and for every p’ u, is extensibly continuous on P”.

The propositions of this theorem are easy deductions from theorems I
and IX, (b).

In the following theorem we employ the notation for uniform approach
to a limit that was introduced in definition 5.

Taeorem XVI. (a) If U is such that in every R’ such that R'Y there is
a p’ distinct from U such that u, is continuous on PB"”, and if there ewists a
function 0 on B to A such that li—IBI uy =0 (B”), then 0 is continuous on P".

e’

(b) IfVis such that in every R’ such that R'" there is a p’ distinct from U’
such that u, is extensibly continuous on B", and if there exists a function 6 on
B to N such that lim u,y =0 (B”), then 0 is extensibly continuous on P".

-V

(¢) With the additional hypothesis that U’ is an improper limiting element
of B, or, in case U is a p’, that u,, =0, for every p”, we have for both (a)
and (b) the additional conclusion that for every p” 0, = Py = Yy, and for

(b) the further conclusion that for every l” li-I:lz 0 =Py =vpp.
p” i
We prove first the lemma: \

Lemma. If 1=V1" and R"" and R is the greatest common subclass of
P and R, and if for every R’ such that R'Y there is a p’ distinct from U’ in R’

and a number a such that im u,, = a, and if there exists a function 6 on P
pH U

to 9 such that lim py =0 (R""), then there is an a, such that lim 0,y =a,.
> . SN

By the uniform approach to the function 6, we have for a given e,

’ 'R ’ 22 4 . e
(1) aﬁe”apm.:[:l.pﬁ QDOIF’IPII_OPIIlég;
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and by the remaining hypothesis on u there is a p; in R, such that, taking
account of theorem I, we have

(2) am"”'3p"m" * . pé,m;, * 1 e i‘up;p’;___[lp;p:' __<_§.

By postulate (IIT) it may be shown that there exists a common subclass R; of
Ry and R” such that R;". If p; and p, are any two elements of R, distinct
from I, we have by (1) and (2) the three conditions

e e
lop;'_#p;pflég’ I(‘p;p/.'—ep"'ls§§ and |y — [‘n/p;'l=3y

from which we obtain |6, —60,| <e. Since condition (1) of theorem II is

obviously fulfilled, we conclude that there exists an a, such that lim 6,, = a,.
pM -

From the lemma and theorem X, (a), the present theorem should now be
evident.

The language “u is continuous on P’” might conveniently be used to indi-
cate that for every p” the function u,, is continuous on P’; and this manner of
speaking is especially advantageous if the continuity on P’ is uniform on ‘8”
i. e., uniform with respect to p”. Thus we have

Def. 11. (a) pu is continuous on P’ uniformly on ‘B" if and only if for
every p the function value g, is finite, and for every proper limiting element /'
of B’ lim uy = uy (B").

P>V

(b) u is extensibly continuous on P’ uniformly on $” if and only if u is
continuous on P’ uniformly on PB”, and for every improper limiting element I’
of P’ there exists a function § on R” to ¥ such that ]i._l;l' uy =0 (B").

pl ’

The following theorem is a result of an easy application of the propositions
of theorem XVI,

Tarorem XVII. (a) If u is continuous on P’ uniformly on B” and if
for every p’' u, is continuous on PB”, then y is continuous on P.

(b) If uis extensibly continuous on B’ uniformly on B and if for every
P’ u, is extensibly continuous on B, then u is extensibly continuous on P.

The following theorem, the notations of which may easily be interpreted
by analogy with those previously defined, is not without interest, and is found
convenient in some applications that follow.

Taeorem XVIII. If (B; 1; T) is the composite of three systems,
(F; W; 1Iv), (B”; W5 T7) and (B; W"; T'), and if u is defined on P =
PP B, and 1 =1V 1"1", then the following propasitions hold:
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(a) If there ewists a function 0 on P’ P” to A such that lim u,m =
piy-un

0 (B’ B”), and if there exists a function a on B to A such that for every p'”

lLim lLim g, n = a,m, then there ewists a number a such that lim lim 6, .
Pl pl-yI . IS plyU

= lim a’,m = a.
plll_)[lll
(b) If, in addition 1o the hypotheses of (a), there exists a function & on

P B to A such that for every p™’ Lim wy,m==Em (B"), then there exists a
P>V
function y on B’ to A such that lim 6, =y (P"').
/>
Proof: By the first hypothesis in (a) we see that

(1) p" e ) Iim Mgt g1 = 0’,’/ ($'),

plll+llll
and by the second hypothesis we know that there exists a function £ on P B
such that
2 "ep. . i ol ! == &1 o111y
( ) p p - pll_;lll’[‘pp 7 EII "

therefore, applying the lemma to theorem XVI and theorems X, (a) and IX, (b),
we see that there exists a i on " such that

3 7. lim = lim = Y.
3) pre2 pr>v op' 4 pnl—)lmf”" "=y

Now, for a given e, the first hypothesis in (a), (2) and (3) give respectively
the conditions

nopn ’ ” 200 R " €

(4) 3%,” 3p.p".p ® *l e ) yp,,",,m——o,',,n|§§,
” 7 e . 'y 'R ’ | e

(5) 2”0 D R 0 E VD [y — | S5,
’” . v IR ’ e

(6) b4 ::).Em,:,n?pmaw#:l e ) Gp,pu——-y,,u|§_§.

Since for every p” and p’”’ the two classes R;,,,» and R;,» have a common p’
distinct from /', we see from (4), (5) and (6) that lim £, =y (B”), and
pr =y

",

since by the second hypothesis lim £, ,» = a,» for every p”’, we have the
S

conclusion of (a) by another application of theorems X, (a), IX, (b) and the
lemma to XVI.

As to proposition (b), it remains to prove that the approach of 6, to y
is uniform on P”. This follows from (4) and the following two conditions,
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which come respectively from the special hypothesis of (b) and the fact that
lim £ =y (B"),

Py

ur tD:3 .sn;‘;m 2 p’may" :# . p" N I i(lplpnpm Epnpml - 3 N

3 ‘ﬁ:n,m 3 pn . p/ntﬁ:.n * ., -
for, since R,’ and R,’ have a common p’” distinct from I/, we have

prm"w¢l/.pn.3.

pm—ypnl =3 ’

ot ot ypn l _<_ e,

CHAPTER 1IV.
AppLICATIONS OF THE (ENERAL THEORY BY DIRECT SPECIALIZATION,
§ 13. Introductory.

In developing the theory of Chapters I, IT and III it has not been necessary
to specify the character of the elements under consideration, and the nature of
the conditions postulated is such as to provide great latitude in the matter of
applications. Special theories are obtained by particular determination either
of a system (; R) which satisfies the postulates of § 2, thus giving rise to a
system (B; U; T') of the required character, or directly of a system (P; U; T')
which satisfies the postulates. of § 5. In the present chapter we suggest, by
means of chosen examples, certain methods of procedure to secure these special
theories. The first instances used, viz., multiple sequences and functions of
real variables, are chosen not because of any novelty of form or content of the
results reached, but rather because of the interest that’may be attached to the
manner in which various familiar theorems, usually treated as independent,
emerge as special cases of the same general theorem. The remaining examples
are in the domain of general analysis, and are chosen to show the availability
of the present method in certain fields already shown to be fruitful of interest-
ing and useful theories.

§ 14.  Multiple Sequences.

We may specify a system (B; RB) as follows: The class B is the class of
all positive integers; the relation ®, R R, holds if and only if R, and R, are
equal and consist of a single element, or there exist two positive integers,
n, and n;, such {hat R, consists of all integers greater than », and SR., consists
‘of all integers greater than Ny.

6



120 Roor: Iterated Limits in General Amnalysis.

This system clearly satisfies the postulates of § 2, and the resulting system
(B; U; T') therefore satisfies the postulates of §5. This latter system is said
to be of type 4,, and is as follows: The class P is the class of all positive
integers, 1 is a singular class having only the element o ; the relation R*
holds if and only if R consists of the single element #, and the relation R°
holds if and only if R consists of all integers greater than some given integer.
The composite system of r systems of type 4, is a system of type 4,.

To obtain a theory of multiple sequences, consider the special case when
the system (B; U; T') of Chapter III is of the type 4,, and the class P coin-
cides with . A function wuon P to 91 then gives an r-fold sequence of function-
values, every one of which is a real number or 4o or —w. Since the nature
of the range in this instance renders it unnecessary to place in evidence the
notation for limiting element, and since it is desired to emphasize the character
of the limits as multiple limits, it is expedient to adopt notation which places
all the variables concerned in evidence. Accordingly the notation lim g, . .

(nl....n")
is used to indicate the limit of the function-value y,,... .- a8 the variables »!. .. .»n"
simultaneously increase without limit. Similarly, the notations lim g, . .

(nl....n")

and lim . ., indicate respectively the upper and lower limits under the
= )

. i)
same conditions. Explicit definition of these symbols in the light of defi-
nitions 1, 2, 3 and 4 of Chapter III should cause no difficulty. For example,
1in ... . = 6 is equivalent to the conditions: (a) For every e there exists

(nl....n")

n,....n7 such that if n*>nf (1=1,2,...., r), then u, .. <a+e; and
(b) For every ¢ and every n'....n" there exist »i....n] such that n{ > n‘
(1=12,....,r) and such that al....ng 2a—e.

Among the contributions of § 9 to the theory of multiple sequences are
the following, which we record in the form of a theorem.

TreroreM 1. (a) The limit of the multiple sequence {u,.. ..} is a finite
number a if and only if the upper and lower limits of the multiple sequence
are both equal to a.

(b) The limit of the multiple sequence {u,... .-} ewists and is finite if and
omly if for every m'. .. .n" there exist m}. .. .n] such that n{i>n' (i =1,2,....,r)
and such that u, .. .. s finite, and for every e there emist n;. .. .n; such that, if
ni>ng and wf>nf (1=1,2,....,r), then |ga . or—Ha...f| Se. :

(e) If there emist w}....n; such that, for m* > mi (1=1,2,....,7), g, .
is finitely bounded, then there exist numbers a and a such that
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lim gy, =a and lim gy, =6

(nt....n") (nl....n")
(d) 1If the simple sequence |, .. ..} is such that lim nf = o (1=1,2,
.oy 1), then ‘
lim cesen? S lim “nl....8" -5-_ lim s O S lim ni....R7
('L--_-_-ﬁf)[l”1 T ae loovnome m-}ﬂy.:' - “@*.:::)F

(e) There exists a simple sequence of the kind described in (d) having
for limit lim y,.. .. .., and also one having for limit Hm ... ..

wi....n") (at....n")

(f) T'he limit of the multiple sequence exists, finite or infinite, if and only
if all simple sequences of the kind described in (d) have the same limit; and
the limit of the multiple sequence is the common limit of the simple sequences.

In §10 we may consider the systems ($’; W'; 7") and (8”; U”; T”) to be
of types 4, and 4, respectively, where r, 4 r, = r; then our hypothesis with
respect to (B; U; T) is fulfilled. The real force of the theoremsa on iterated
limits is here realized only by repeated application of the principles established,
a process made available by the persistence, under composition of systems,
of the canditions specified in our postulates. We may conveniently use the
notation™® - lim fr....nr t0 denote the result of taking the upper limits

(nl....n0)....(nt....n7)

as the variables n!. .. .n" tend to infinity in groups, the group ‘. .. .»n" passing
to the limit first, etc. Analogous notations, easy of interpretation, may be
used for limits of other types. With a little reflection the theorems of § 10
are seen to yield the following results:

TreoreM II. (a) For every expression of the type

lim are v« onrs
(n....n%)....(0%....8°)
where the grouping of the variables and the arrangement of wpper and lower
dashes are entirely arbitrary, there exists a simple sequence {u,: ... ..} suok that
1'_u>n ne=w (1 =1,2,....,r) having the given expression for limit.

(b) An expression of the type menitioned in () is not less tham tke ex-
pression obtained from it by replacing any number of upper dashes by lower
dashes; or by the subdivision of any group that has an upper dash and giving
the subgroups either upper or lower dashes; or by combining any number of
adjacent groups and giving the combined group a lower dash. [n particular,

* Compare Bromwich and Hardy, “ Some Extensions to Multiple Series of Abel’a Theorem en the
Continuity of Power Series,” Proceedings of the London Mathematical Society, Series 2, Vol. II, p. 161.
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if the limit of the multiple sequence exists, then every expression of the type
discussed is equal to the limit of the multiple sequence.*
(¢) 1If there is an s-fold sequence {0,.... ..} such that for n'>n; (i=1,2,
vevey¥) Oy o 18 finite, and such that
B fhegs e = O (),

(n*+1....n

where R* consists of all n* greater than n} (1 =1,2, ....,r), then

lim [lnl....n' = lim enl....n' and lim ﬂnl....n' = lim onl..;.nl;
(nl....n7) (nl....n%) (nt....n") (n....n?)

and if for similarly chosen R'... . R* we have
lim Fﬂ""l....ﬂ' = + (s o] (ml. o .?R'),
"

(et ..n

then we also have
Hm py, . o=+ ©;

(nl....n")
and this latter statement remains true if + o be replaced by — .

The theorems of § 11 and § 12 are clearly applicable to multiple sequences,
although in some cases the results are trivial, and in some cases are identical
with results already obtained from §9 and §10. We note here the fact that
if the system (B; U; T) is of type 4,, then an extensibly continnous function
on P gives a convergent sequence of finite terms, while analogous statements
hold for systems of type 4,. If we assume the system to be of type 4, and
consider u defined on the class B = %, then the lemma to theorem XVI, § 12,
may be interpreted as follows:

Taeorem III. If the s-fold sequencé {0ns... ne} 18 SUCh that
lim )[ln'+l....n' — 6 ($l° o '$')1

(ne+1,., .0
and if for every m't'....n" there are values nit'....n{ such that ni > »'
(i=s+1,....,r) and such that uz+, . . is a convergent s-fold sequence, then
§0,1....0e} 18 @ convergent s-fold sequence.

§ 15. Functions of Real Variables.

To obtain applications of the general theory to functions of a real variable
we might, as in the previous section, specify a system (; B) in which P
should be the class of real numbers and R should be so defined as to secure
ideal elements corresponding to +w and —w. For the sake of simplicity,
however, we proceed at once to the specification of a system (P; 11;T). P is

* Compare the note by G. H. Hardy, Proceedings of the London Mathematical Bociety, Series 2,
Vol, 1I, p. 190,
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the class of all real numbers; U consists of two elements, + o and —w ;
a class R has the relation T to a given element p, if and only if there is a
number d such that R consists of all elements p such that |p —p,| <d; R has
the relation 7' to + o if and only if there is a number d¢ such that R consists
of all elements p such that p >a; and R has the relation T to — if and only
if there is a number a such that R consists of all elements p such that p < a.

Such a system, which obviously fulfils our postulates, is designated as a
system of type B,, and the composite of r such systems is a system of type B, .
Attention should be called to the fact that with this special determination of
the system (; 11; T') the definitions and theorems in Chapter II relative to
limiting elements, and, pertaining to properties of subclasses of P, are in
accordance with the usual treatment of these features of the range of a real
variable.

It may be seen, without detailed discussion here, that in this instance the
theory developed in Chapter III is a theory of muItiple and iterated limits
and continuity of functions of several real variables. The definitions and
terminology employed render the interpretations of the various theorems im-
mediate, except for the fact that the term “extensible continuity” has not been
in use to denote a property of a function of a real variable. We show in
theorem V that this property, for functions on a limited number set, is equiva-
lent to the property “uniform continuity.” For convenience in the proof of
theorem V we prove first the following theorem:*

Tueorem IV. If the system (R; U; T') is of type B,, then every subclass

B of B is compact.

Proof: In view of theorems V, (a) and VII, (d) of § 7, it is sufficient to
consider the special case when r =1 and P =P. Let {p.i be a sequence of
distinct elements of . If any limited subelass of P contains an infinite sub-
sequence of {p,{, then by a well-known property of the number system this
subéequence_ gives rise to at least one limiting element. If no limited subclass
of P contains such a subsequence, then, considering a sequence }a,} of real

numbers such that lim a, = + o, we see that for every m there is an n,
m-—>o
such that p, > a, or p, < —a,. Clearly at least one of the infinite ideal

elements is then a limit of a subsequence of {p,}. '
TaeoreM V. If the system (B; U; T) is of type B,, and if u is defined on
the subclass B of B, then we have the propositions:

* There is a difference in the force of the term ‘compact’” as employed here and as employed by
Fréchet (Rendiconti del Oircolo Matematioo di Palermo, Vol. XXII, p. 6), due to the fact that we recog-
nize ideal limiting elements while Fréchet does not.
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(a) If u is extensibly continuous on B, then u is uniformly continuous
an B.

(b) If B is limited and u is uniformly continuous on P, then u is exten-
sibly continuous on P.

Proof of (a): By the definition of extensible continuity we see that for a
given limiting element p of B and for an arbitrary positive number e we have

Pf—lﬂﬁdep-:)' “‘m—‘lplgze
(+1=12,....,7);

(1) 3d,ep=p'....p".p,=pi....D1.

while for an element p that is not a limiting element of B we have

pi—p|Zd,.D.p,=p
(i=1,2,...., ).

(2) Jdp=p ... 0 .0,=pi....00.

Consider a function  on P defined as follows: For every limiting element p
of P let §, be one-half of the least upper bound of the set of values effective
as d,, in (1). For every element p that is not a limiting element of P let 3,
be one-half of the least upper bound of the set of values effective as d, in (2).
This function § is positive for every p, and we proceed to show that the greatest
lower bound of § on P is positive. Let a, denote this greatest lower bound of &
on B, for the value of e in question, then since P is compact by theorem IV,
we see by theorem XIV, (b), of §10 that either there is a p such that §, = a,

or there is a limiting element ! of P such that lim §, = a,. In the former case
P> ’
a, is clearly positive. In the latter case we have by the extensible continuity

of u on P, applying theorem II of §9,

| IR epf.pt.D. |y, —u,| e

Now we clearly have I =q'....q and ®,=R'.... %", where the relation f¢*
holds for i =1,2,....,r; therefore each of the i must be of one of the three
forms: (a) all pf such that |p°*— ¢*{ <d*; (b) all p* such that p* > a‘; (c) all
p* such that p* < a’. Consider now a class ®, =R]....%R], such that R{, defined
as follows: If R is of form (a), then R¢ consists of all p* such that | p*—q'|<d;
if ¢ is of form (b), then R{ consists of all p* such that p'>a‘+d; if R is of
form (c), then R{ consists of all p’ such that p‘< a‘—d. The number d is
one-half of the least of the &, in case any of the R are of form (a), and other-
wise d is unity. For a given R,, then, R, is a definite class, and for every p

in R, we have §,24d. Clearly lim §,>4d, so that a, is positive. Naw re-

1 .
ferring to (1) and (2) we see that if p, =p}....p{, and p,=p;....p;, and
|pt — p}| < a,, then |u, —pu, | Ze; that is, g is uniformly continuous on .
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Proof of (b): Since uniform continuity on ¥ implies the convergence of
{, as p approaches any proper limiting element of P8, and since, B being limited,
every limiting element of % is finite, it is sufficient to show that g is convergent
at every finite improper limiting element of . By hypothesis we have, if
py=pi....p1 and p,=p;....pi,

(3) e:D:3d,|p—p<d(i=1,2,....,7).D. g, —u,| e

If ! is an improper limiting element of P, then for a given e we may take
R =R!....R, where R =[all p'3 |p'—¢|<d,/2]1(:=1,2,....,7), where
l=4¢q'....q, and obviously, if p, and p, are both in R,, we have by (3)
|y, — .| S €. Thus, by theorem II of §9, u is convergent at I.

Interesting results are obtained if, in § 10 and § 12, we take one of the
component systems to be of type 4, and the other of type B,. We notice here
a few special cases.

In theorem IX, (b), of § 10 let (ZJ}';I;I'; T') be of type 4, and (—‘f&” ;U T")
of type B,. Let P’ =’, but let B” be an arbitrary subclass of B”. ¥ is
necessarily the ideal element «, but we take I” as a proper limiting element
of B”, this class being assumed to have such a limiting element. If we replace
the notation p’ by » and p” by =, and set I” = x,, the theorem yields the
following:

TaeoreM VI. If {£,(x)} is a sequence of functions defined for every x

of the set B, and if Tim £,(2) =£(2) and lim §,(2) =£(x), and if for every e
. npw o -
there exist m, and d, such that |E,(z) —a| < e for n > n, and z such that

|z —x,| £ d,, then we have

lim £ () = & (2,) = lim £(2) = £ (2,) = a.
292, 292,

A sequence of functions satisfying for every e the condition of the hypoth-
esis of this theorem is here designated as a sequence “totally* convergent
at z,.” By similar specialization we obtain from theorem X, (a), of § 10 the
following:

* If there is an interval @-—d bo @, 4 d such that, for every @ in the interval, lim £a(2) =f @),
R=P-00

and if for every e there is an n, and a de such that for n > ne and w,—de <@ <@, -+ d we have the con.
dition |én (@) — £ (@) | < e, then the sequence may be called “uniformly convergent at a,,” by analogy with
the use of this term in the theory of series of functions (W.H. Young, Proceedings of the London Math.
Bociety, Series 2, Vol. I, p. 90; also Vol. VI, p. 29). In case the limit function £ (o) exists for all values
of @ in an interval @,—d to @, d, total convergence at @, implies uniform convergence at »,; and ia case
the number of functions of the sequence that are continuous at @, is not finite, uniform convergence at @,
implies total convergence at ,; but for an unconditioned sequence of functions total convergence at a
point and uniform convergence at a point arc independent properties.
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TrareoreM VIL. If a sequence of functions is uniformly convergent on a set
consisting of all elements x in the interval from x,—d to x,+ d and f the
limit function is continuous at x,, then the sequence is totally convergent at x,.

And from the same theorem, but taking (%'; 1l’; T") to be of type B,,
and (B”; 0" ; T") of type 4,, we have

Tarorem VIII. If the functions of a sequence are equally* continuous.
at z, and if the sequence is convergent at x,, then the sequence is totally
convergent at x,.

By taking account of theorem V of the present section we have the following
two theorems resulting from theorems XV and XVI of §12:

TaroreMm IX. If {£,(x)} is a sequence of functions defined on B”, and if
the sequence is convergent for every x in B”, then

(a) If the sequence is totally convergent at every proper limiting element
of B”, the limit function is continuous on P”.

(b) If the sequence is totally convergent at every limiting element of B”,
the limit function is uniformly continuous on B”.

TaroreMm X. If {£,(x)} is a sequence of functions defined on the limited
set B”, and if the sequence is uniformly convergent on B”, then

(a8) If for every term of the sequence there is a subsequent term that is
continuous on PB”, then the limit function is continuous on P”.

~ (b) If for every term of the sequence there is a subsequent term that is
uniformly continuous on PB”, then the limit function is uniformly continuous
on PB”. ‘

The remaining two theorems of this section are seen to follow from
theorem XVII of § 12, if we take account of theorem V of the present section
and remember that in the general theorems the situation is symmetrlcal with
respect to the two component systems.

Taeorem XI. (a) If {£.(x)} is a sequence of functions continuous on B,
and if the sequence s uniformly convergent on B”, then at every proper limiting
element of B” the sequence 1s totally convergent.

(b) If B” is limited and the functions of the sequence are uniformly con-
tinuous on PB”, and if the sequence is uniformly convergent on B”, then at every
limiting element of B” the sequence is totally convergent.t

* The functions of a sequence are equally continuous at @, if for every e there is a d¢ such that for
every n and for |o—a| < d. we have |én(2) —Ex(@)| < e. For a discussion of the term see Fréchet,
loe. cit., p. 11.

+ Theorems XI, (a), and IX, (a), together give the well-known theorem: ¢“A uniformly convergent
sequence of continuous functions has a continuous function for limit.” Propositions (b) of these two
theorems give the corresponding theorem for a sequence of uniformly continuous functions. We notice
that these theorems are corollaries of the two propositions of theorem X.
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Tuarorem XII. (a) If the functions of the sequence {&,(x)}| are equally
continuous on PB”, and if the sequence is convergent at every z in P”, then at
every proper limiting element of P” the sequence is totally convergent, and the
limit function is continuous on P".

(b) If B” is limited and the functions of the sequence are equally uniformly
continuous™ on B", and if the sequence is convergent at every z in B”, then at
every limiting element of B” the sequence is totally convergent and the limit
function is uniformly continuous on P”.

§16. An R Relation in Terms of K,.

The K, relation used by Professor E. H. Moore in Part II of his memoir on
“General Analysis” may be characterized as a relation on the composite class
B I, where P is a class of elements of any kind whatever, and J is the class of
positive integers.t In other words, K, may be considered defined for a class
if a criterion exists by which it may be determined for every element p and
integer m whether K, or "K_,; 4. e., whether the relation K, holds or does not
hold for p and m. While Professor Moore defines certain properties for this
K, relation, he does not permanently condition the relation by any fixed prop-
erties or postulates. '

We define a relation R in terms of K, as follows: The relation X, R R,
holds if and only if R, and R, both consist of the same single element p, or
there exist two integers m, and m, such that R, consists of all elements p such
that K, and R, consists of all elements p such that K, .

In order that the system (; R) obtained in this way shall satisfy the
seven postulates of § 2, it is necessary that some restrictions be placed on the
K, relation. The following conditions are found to be sufficient:

(1) For every m there exists a p such that K.
(2) For every p there exists an m for which K, does not hold.
(3) If m;<m, and if K,,,, then K .

Assuming that these conditions are fulfilled, we see that a class v, consists
of a single class ® which contains the single element p. One ideal element
exists, consisting of all classes R of the type #=[all p2 K], there being
a class R of this class of classes corresponding to each integer m.

* The functions of the sequence are ‘“equally uniformly continuous” on P” if, for every e, there is
a dg such that, if |@,—a,| <de, then the relation |£s (@) —én(as) | £ € holds for every n.
+ E. H. Moore, “Introduction to a Form of General Analysis,” p. 126.

7



128 Roor: Iterated Limits in Gemeral Analysis.

§ 17. Application to a System (B; K,).

In this section we consider a system (B; K,), where P is an arbitrary class
of elements and K, is a relation on PP I. That is, we suppose a criterion pro-
vided by which we are able to say for every p,, p, and m whether or not the
relation K, , ,. holds. The notation K, is used by Professor Moore for a re-
lation of this type,* and as in the case of the relation K,, the relation is con-
ditioned. by various hypotheses to secure desired results in the theorems in
which it is involved, but no permanent postulates or conditions are adopted.

For our purposes it is convenient to postulate the following conditions on
the systemt (; K,) :

(1) The relation K,,,, holds for every p and m.

(2) ¥ K,, ., then K, . ‘

3) If m <m, and if K, ., then K _ .

(4) For every m there exists an m, such that if K, . and K, ,,.,
then K

o™

(5) If p, and p, are such that K, , ,, holds for every m, then p, = p,.

Still further restrictionsi on the system (P; K;) would be required to
enable us to derive from it a system (B; R) which would fulfil our postulates.
These assumptions, however, furnish sufficient basis for a special definition of
ideal elements, and for the determination of a system§ (B;U; 7) which fulfils
the postulates of § 5.

An ideal element of the system (; K,) is a class s of sequences {p,} of
elements of 3, having the following properties:

1. If {p,} is a sequence belonging to the class s, then for every m there
exists an n, such that, if », and », are both greater than =,, the relation
K, ps=» holds. -

2. If {p,} and }p,! are sequences belonging to the class s, then for every m
there exists an n, such that, if n, and n, are both greater than =, the relation
K,, 3., » holds.

* Loo. cit., p. 126, )

1 A .system of the type here indicated forms the basis of T. H. Hildebrandt’s “ Contribution to the
Foundations of Fréchet’s Calcul Fonctionnel ” (AMERICAN JOURNAL oF MATHEMATICS, Vol. XXXIV, p. 237).
He gives a “complete existential thedry” for eight properties of the system, including the first three and
the fifth of the properties postulated here. The first three are among the properties considered by E. H.
Moore, loc. cit., p. 127.

1 A sufficient additional restriction would be the following assumption: If p, #p,, then for every m
there is a p such that Kp pm holds but Ky, pm does not hold.

§ A system (P; U; T) in which Ul is the null class may be derived by omitting this definition of ideal
elements. In this case assumption (4) may be made less restrictive by permitting m; to depend on p as

well as on m.
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3. For every p there exists a sequence {p,} of the class s and an integer m
such that for every » there is an #, greater than n such that K, ,, does
not hold.

4. Any class s, which has properties 1, 2 and 3 and contains s, must
coincide with s.

Let 11 denote the class-of all ideal elements arising by this definition and
let O =P + U, then we may extend the definition of K,, to make it a relation
on BL.Y, as follows: The relation K, holds if and only if there is a sequence
{p,} of the class s such that for every = the relation K, , holds.

To complete the specification of a system (B; U; I') it remains to define
a relation T for the classes P and lI. Let the relation R¢ hold if and only if
there is an integer m such that R consists of all elements p for which the
relation K, holds. That this system (%B; u; T) satisfies the postulates of § 5
easily follows from five conditions which are easily deduced from the assump-
tions on the system (; K;) and the special definition of ideal elements. These
five conditions, the first of which is identical with the first assumption, may be
written: ,

(1) The relation K,,. holds for every p and m.

(2) For every u and m there exists a p such that K,,,,,.

.(§) If m,<m,andif K, , , then K . . ‘ A

(4) For every m there exists an m, such that if K, , and K, ...,
then K, -

(5) If gq,F g, there exists an m such that no element p can fulfil both
relations K,,,, and K, .. .

The theory of Chapters II and III is available for any system ($; K,)
which satisfies the assumptions of this section, by the mediation of the asso-
ciated special system (B;11; T'). Here, as in the case of a real variable, there
is a close relation between the properties “uniform continuity” and “exten-
sible continuity.” If (; K,) is a system which fulfils the foregoing assump-
tions, and p is a function defined on a subclass P of B, then x is uniformly
continuous on P if and only if for every e there exists an m, such that if
K, pm then |u, —u,|Se. :

TueoreMm XIII. If (B; K,) is a system fulfilling assumptions (1) to (5),
then a function u is uniformly continuous on a compact subclass P of B if and
only if, with reference to the associated system (B; U; T), u is extensibly

continuous on B.
The proof of this theorem may be made similar to that of theorem V, § 15.
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§ 18. The Fréchet Voisinage.

In his thesis M. Fréchet® denotes by (V) a class of elements for which
there is defined, fulfilling certain conditions which he specifies, the notion of
‘“voisinage.” We may present his assumptions accurately, but in form adapted
to our purposes, as follows: With the class B of undefined elements is associated
a function ¥V, forming the system (; V). The function ¥ is defined on PR to A;
i. e., it assigns to every pair of elements, p, and p,, a real number, which is
denoted by (p,p,). The conditions postulated for this system (P; V) are:

(1) For every two elements p, and p, we have (p,p,) = (p,p,) >0.

(2) It (p,p,) =0, then p,=p,.

(3) If p, =p,, then (p,p,) =0.

(4) There exists a function ¢ (d) such that lim ¢ (d) =0 and such that
if (p,p,)<d and (p,p;) =4, then (p,p,) Z¢(d).

Proceeding now as in the case of a system (B; K,), we give attention to
the introduction of ideal elements.+ An ideal element of the system (P; V) is
a class s of sequences {p,} of elements of the class P which fulfils the following
conditions: |

1. If {p,}! is a sequence belonging to the class S, then for every d there
exists an n, such that, if », and », are both greater than =,, then (p, p,)<d.

2. If {p,} and 3{;,,3 are sequences belonging to s, then for every d there
exists an n, such that, if », and », are both greater than #,, then (p, i)m) <d.

3. For every p there exists a sequence {p,} of the class s and a positive
number 4 such that for every » there is an s, greater than x -such that
(P, 2) > d.

4. Any class s, which satisfies conditions 1, 2 and 3 and contains s must
ocoincide with s. ‘

‘We extend the definition of ' so that it is a function on B L), where, as
before, £ is the class B with ideal elements « adjoined, by assigning to (p u)
the value d, of the greatest lower bound of the set of numbers d for each of
whichk there exists a sequence {p,} of the class 4 such that (pp,) <d for every =.

In terms of this extended function V a relation T is specified: The relation
#e holds if and only if there exists a d such that Rt consists of all elements p
for which (pg)< d. It may be shown without difficulty that the system

* Rendiconti del Oircolo Matematico di Palermo, Vol. XXII, p. 17.

1 Here also we might specify a system (P; R) in which R should be deflned in terms of ¥V in such
manner as to fulfil our postulates, by the adoption of an additional condition on (; V). A condition
effective for this purpose would be: If p,==p,, then for every d there exists a p such that (pp,) <d,

while (p p.) > é.
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(B; 1; T), now definitely determined by the system (B; V'), satisfies the pos-
tulates of ¢ 5. As to the significance of the general theory of Chapters II
and III, in this special case, we give attention here only to a feature of exten-
sible continuity. Let (B; V) be a system satisfying conditions (1) to (4) and
let u be a function defined on the subclass B of . The function g is uniformly
continuous on P if and only if for every e there exists a d, such that if
(p1ps) S d., then |u, —p,[Ze.

In strict analogy with theorem XIIT of § 17 we have }

TreoreM XIV. If (B; V) is a system satisfying conditions (1) to (4),
then a function u is uniformly continuous on a compact subclass B of B if and
only if, with reference to the associated system (B;1;T), u 1s extensibly
continuous on B.

§ 10. A Class of Functions as Range of the Independent Variable.

By the mediation of our definition of a system (P; U; T') in terms of a
system (; V') our general theory is available for any class B of elements for
which there is defined a voisinage, or an écart, which may be considered as a
special voisinage. Among these classes P, is the class of all real-valued, single-
valued functions that are wniformly continuous on a given interval of the real
number system.® Our theory is equally applicable, however, to a class P
consisting of all real-valued, single-valued funetions on a range absolutely
unconditioned. : '

Let ® denote a class of elements %k, concerning which no hypotheses are
required. We consider a systemt (B;W; I') in which P is the class of all
single-valued functions on & to ¥, U is the null class, and 7 is defined relative
to a particular function ¢ on & to ¥. For a given function ¢ the relation T
is specified as follows: The relation :* holds if and omly if there exists a posi-
tive number e such that R consists of all functions p, such that for every &
| px — 0| Selo,|. This system obviously satisfies the five postulates of § 5.
Since in this special instance the class 11 is not arbitrary, and since the system
involves the arbitrary class & and the arbitrary function ¢, the notation
(B; T; &; o) is adopted for a system of this special type.

A necessary and sufficient condition that a sequence {p,! shall have the
limit p, by definition 2, § 7, is: For every e there exists an », such that, if
n > n,, then |p, —p,|Zelo,| for every k. If this condition is fulfilled, the

* M. Fréchet, loc. cit., p. 36.
+ We might just as readily set up a system (P; R) which would give rise to this aystem ($; U; 7)
by the process explained in §5, but the present plan is more direct.
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sequence {p,} of functions is said to approach the function p relatively uni-
formly,* the relativity being with respect to the scale function 6. Theorem IV
of § 7 now shows that a subclass R of P is closed (definition 4, § 7) if and only
if every sequence of functions belonging to R that converges relatively uni-
formly with respect to ¢ converges to a limit functiont that is in R. For
example, the class of all functions constant on & is closed; or, the class of all
functions p such that a, <p,<a, for every k is closed.

If we make the special hypothesis that ® is a subclass of a class P for
which there is defined a relation R so that (B; R) satisfies the postulates of
§ 2, then, through the associated system of the type (B; 1; T), the theory of
Chapter IIl is applicable to functions p defined on . With this restriction
on & and the hypothesis that ¢ is bounded on &, we have the following examples
of closed subclasses R of P: '

1. The class of all functions p that are convergent at a given limiting
element of 8. ‘

2. The class of all functions p that are convergent to a given limit at a
given limiting element of .

3." The class of all functions p that are continuous on f.

4. The class of all functions p that are extensibly continuous on f.

With the further hypothesis that (B; R) is the composite of two systems,
(¥’; R’) and (B”; R”), and that ® = & ®”, where & and ®” are subclasses
respectively of P’ and B”, we have the further examples of closed subclasses

.of B: '
5. The class of all functions p such that, for a given limiting element

Il=Ul" of & lim lim p, ,. exists and is finite.
| DN

6. The class of all functions p such that, for a given limiting element
l=U1" of ® and a given number @, lim lim p, ,. = a.
I IEN S =Y

7. The class of all functions p such that, for a given limiting element
Il=10U1" of & there is (for each p) a function a on ®”, convergent at !”, such’

that lim p, = a (R”).

| R

8. The subclass of 7 containing every function p for which the corre-
sponding a has the limit a at I”. '

* E. H. Moore, loc. cit., p. 29; also Atti del IV Congresso Internazionale dei Matematici (Rome,
1908), Vol. II, p. 101.

+ A class of functions that is closed in this sense, for a given o, has the closure property Cg,
«closed as to S,” used by E. H. Moore (“General Analysis,” p.37; and A¢ti, etc., p. 101), where &, the scale
class, contains the single function ¢. If there exist positive real numbers a, and a, such that a; <|os| < @,
for every k, then closure as to o is equivalent to closure under extension by adjoining the limits of all
uniformly convergent sequences of functions of the class. Important instances in which this equivalence
is not effective are furnished by classes of functions defined for positive integers and giving rise to abso.
lutely convergent series (E. H.Moore, “General Analysis,” p. 38, as to MMI1l,; and At#, eto., p. 102, as

to SRIN),
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9. The class of all functions p such that for every £” p,. is continuous
on &'.

10. The class of all functions p such that for every k" p,. is extensibly
continuous on {'.

11. The class of all functions p continuous on ® uniformly on ®”.

12. The class of all functions p extensibly continuous on & uniformly
on ®”.

The proofs that these classes are closed* may be made to depend on the
general theorems of Chapter III in the same way that the theorems on sequences
of functions in § 15 are deduced from them.

Dropping now the special hypotheses on ® and o, we observe that
theoremt VII of § 7 reduces in this case to the fa.mxhar proposmon, “Every
derived class is closed.” '

Consider a system (P; 7; &; o) as defined above, where ® and o are
arbitrary, and consider a function u defined on a subclass P of B, finite for
every p. The function u is uniformly continuous on P if and only if for every e
there exists a d, such that, if |p,—p,.|<d,|0,| for every ]f’ then |u,—u, |<e.
We have again the relation between uniform continuity and extensible con-
tinuity: o
TaeorEM XV. If P is a compact subclass of a class B pertaining to a
system (B; T; &; 6), then a function u is uniformly continuous on B if and
only if u is extensibly continuous on P.

Note.—The investigations leading to the present paper were completed in June, 1911, and the manu-
script left the hands of the author in April, 1912. These facts are offered in explanation of what might
otherwise appear to be unwarranted disregard of certain recent contributions to the literature of this
fleld. We have added foot-note references to papers by E. R. Hedrick, Transactions of the American
Mathematioal Society, Vol. XII (1911), pp. 285-294, and T. H. Hildebrandt, AMERICAN JOURNAL OF MATHE-
MATICS, Vol. XXXIV (1912), pp. 237-290. At this point we should mention a recent paper by E. V. Hunt-
ington, on “A Set of Postulates for Abstract Geometry, Expressed in Terms of the S8imple Relation of Inclu-
sion,” Mathematische Annalen, Band 73 (1913), pp. 522-569, which obviously has a strong bearing in the field
of the present paper. Mention may also be made of a more recent paper by the present writer, “Limits
in Terms of Order, with the Example of Limiting Element not Approachable by & Sequence,” Transactions of
the Amerioan Mathematical Bociety, Vol. XV (1914), pp. 51-71, which pertains to the same general fleld

and in which relationships of various systems of postulates receive further attention.
ANNAPOLIS, Mp., February, 1914.

* These classes, 1-12, have also the property “self-closure” defined by E.H.Moore, 4¢¢, eto., Vol.II,
p. 102, and designated simply as “closure” in “General Analysis,” p.387. Other properties of general refer-
ence, 1. ¢., properties defined for classee of real-valued functions in general, and therefore applicable to the
classes here enumerated, are the five dominance properties, D, D,, D'y, D, and D, (“General Analysis,”
p.- 39). Classes 1,3,5,7,9, 10,11 and 12 have properties D, and D,; classes 2,6 and 8 have property D,,
and, in case the given number ¢ which enters in the definition of each class is positive or zero, they have
property D,, and property D’, in case a is zero; and the class 4 has properties D, D,, D, and D,.

t It is worthy of note that this general theorem, as applied in the special case now under con-
sideration, is, by an application of theorem 1I, (b), of § 68, equivalent to a special case of theorem III,
p. 52, of Professor Moore’s memoir on “General Analysis.” The special feature is, obviously, in the
reduction of the scale class & to the single function o.
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