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INTRODUCTION

The following general definition of the harmonic mean of a set of
segments is given by C. MacLaurin in A Treatise of Algebra, Appendix
Concerning the General Properties of Geometrical Lines, § 27: “A segment
PQ is the harmonic mean of a set of segments PP;, i=1,2, ... ., #%;

”
e N I . .
if 70" ‘E- PP Q is also called the harmonic center of P as to the

set of points §{P;}.”

This generalization and its application to polar theory were known
to Roger Cotes, who gives in Harmonia Mensurarum (1722) the following
general theorem called Cotes’s Theorem: “If a transversal intersecting a
curve C, of the ntt order in # points P;, revolves about a fixed point P,
the harmonic centeér Q of P as to the set of points P; describes a straight
line.” MacLaurin gives a proof of this theorem (op. cit., § 28).

Poucelet, “Mémoire sur les centres des Moyennes Harmoniques,”
Journal fiir Mathematik, Vol. 111, 1828, gives a treatment of the har-
monic mean based upon MacLaurin’s definition.

E. de Jonquitres, “Mémoire sur la théorie des pdles et polaires,”
Liouville’s Journal, sér. 2, Vol. I (1857), p. 249, applies the theory of
the harmonic mean to the polar theory of curves of the third and
fourth order.

L. Cremona, “Introduzione ad una Teoria Geometrica delle Curve
Piane,” Memorie della Accademia delle Scienze dell’ Istituto di Bologna,
ser. 1, Vol. XII (1861), pp. 305-436, gives a résumé of the preceding
theory and an extensive treatment of the properties of curves and sur-
faces of the nt* order from a purely synthetic standpoint, including a
treatment of palar theory based upon the idea of harmonic mean.

The geometric definition of Linear Polar (see § 3, Definition IV, ,)
used in the following treatment occurs in the Collected Memoirs of
E. Caporali, pp. 258-66. Caporali also considers the quadrangle-
quadrilateral configuration which is generalized in Part IV of this
paper. The generalized configuration is considered by F. Morley in a
paper on ‘“Projective Co-ordinates,” Transactions of the American
Mathematical Society, IV (1905), 288.

For a bibliography of the subject I refer to the Encyklopddie der
mathematischen Wissenschaften, 111, AB, sa, §§ 24, 25, 26, and III, C,
4 §s.
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SYNTHETIC TREATMENT
This section consists of a recursion sequence of geometric constructions
for the linear polar of a point as to a linear k-ad of points, as to a
k-line in a plane, and in general as to a %-hedron in #-space—the pro-
cess not being based upon the MacLaurin generalized definition of
harmonic mean.

ANALYTIC TREATMENT . . ;
In this section I show analytxcally that the hnear polars obta.xned
synthetically in section I harmonize with the analytic polar theory
for the n-ary k-ic which is the product of % linear factors, and the linear
polar of a linear point set is proved to satisfy the MacLaurin generalized
definition of harmonic mean.

ArgeBraic Loct . . . . . . . . . . .
In this section I give the application to the construction of the hnear
polars of algebraic curves, surfaces, and spreads.

CERTAIN CONFIGURATIONS WITH POLARITY PROPERTIES . .

In IVa the quandrangle-quadrilateral configuration in the plane is
considered from the standpoint of linear polar theory.

In IVb the quadrangle-quadrilateral configuration is generalized and
a self-dual configuration in #z-space is obtained consisting of an (n+4-2)-
point and an (#+-2)-hedron. The dual figures have interesting polarity
and incidence relations, and each face of the (7 2)-hedron contains
the same configuration in space of (#—1) dimensions.

In IVc the configuration is generalized to form an associated %-point and
k-hedron in n-space.

In IVd the corresponding associated pair of k-points on a line is
considered.

THE REcIPROCITY OF CERTAIN ASSOCIATED LINEAR SETS OF

Points . . . . . . . oL L
Associated linear 3-points are proved to be reciprocal. Associated
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CoNcOMITANT THEORY OF THE ASSOCIATED 4-POINT AND
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figure is proved analytically.
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I. SYNTHETIC TREATMENT:

§ 1. The treatment is based on the following assumptions for general
projective geometry from Veblen and Young, “A Set of Assumptions for
Projective Geometry,” American Journal, XXX, 376, § 9.

The point is an undefined element, and the line is regarded as an
undefined class of points.

A:. If A and B are distinct points, there is at least one line containing both

A and B.

A.. If A and B are distinct points, there is not more than one line containing
both A and B.

A;. If A, B, C are points not belonging to the same line, and if a line 1 con-
tains a point D of a line joining B and C and a point E, distinct from D, of a
line joining C and A, then the line | contains a point F of a line joining A and B.

Eo. There are at least three points on every line.

"Ex. There exists at least one line.

H. For any three collinear points 4, B, C there exists a unique
harmonic conjugate? point D (distinct from A4, B, C) of point 4 as to
the pair of points B, C.

DEFINITION OF AN 4-SPACE: S%, =2, 3, . ...

If F° and Fi-* represent a point and an (i—1)-space, respectively,
(F° not on Fi—1), an i-space S* is the set of all points {S°} collinear
with F° and the points of Fi—*.

A o-space is a point.

A 1-space is a line.

Eitr (6=1,2,3 . ..., n—1). It is not true that every point lies on every
i-space.

§ 2. In this treatment we consider a set of definitions and theorems
concerning 7 s-spaces in (s41)-space which shall be numbered 1, ;, II,,,
etc. The principal definition is the recursion definition IV, ; of the
polar s-space of a point as to an r-hedron in (s4 1)-space and the theorems
L., II, ;, etc., lead up to this definition.

* The substance of §§ 1, 2, 3, 4, 5 was developed in connection with Dr. Veblen’s
projective geometry course (Princeton, 19o8-9).
2 The harmonic conjugate point is defined by the usual complete quandrangle
construction.
b4



2 LINEAR POLARS OF THE E-HEDRON IN #-SPACE

DEeFINITION L, 12 The polar line of a point as to a pair of lines is the
harmonic conjugate line of the point as to the pair of lines.

THEOREM I, ;: The three polar lines of a point as to the pairs of
lines of a triangle form a triangle perspective to the given triangle.

Let P be a point and p,, p,, p; a triangle with vertices P,;, Py, P;,.
Let ¢i, g2, ¢; be the polar lines of P as to p, ps, ps 1, pr pa Tespectively.
q: and ¢, intersect on PPy, since the harmonic conjugate point of P as
to the points P;= (PP, p;) and P;, is unique. Similarly ¢,, ¢; meet
on PP and ¢, ¢: on PP;,.

The triangle ¢, ¢, ¢; is called the cogredient triangle of P as to triangle
P Iy Pﬂ PS’

THEOREM IX; ;: The Desargues Theorem. The intersection points of
the pairs of homologous sides of two perspective triangles are collinear.

DErRINITION IV; ;: Tke polar line of @ point as to a triangle is the line
of perspective of the given triangle and the cogredient triangle.

DEFINITION IV, o2 The linear polar point of a point as to a linear point
triad. Given points P, P;, P,, P, on the line p. Through P,, P,, P, pass
three non-concurring coplanar lines pi, ps, p; distinct from p. The polar
line g of P as to the triangle ., ., p; intersects p in the point Q, called
the linear polar point® of P as to the point triad P, P,, P;.

TreoreEM III, ,: If two triangles are perspective, the two polar
lines of a point on their line of perspective meet on their line of perspec-
tive.

Let the corresponding sides of the perspective triangles p;, p., #; and
2, P, p3 meet in the points Py, P,, P; of their line of perspective p.

¢: the polar line of P (any point on p) as to p, p; meets g; the polar
line of P as to $; p; in Q; on p, since the harmonic conjugate point of
P as to P,, P;is unique. Similarly ¢,, ¢z meet in Q, and g;, ¢; in Q; on .

Quadrangles (p:p2), (p:qr), (0:92), (Paga), and (pipi), (pigh), (gigs),
(pi¢2) have five pairs of corresponding sides meeting on p, therefore the
sixth pair of sides, i.e., ¢, the polar of P as to p,, $,, p; and ¢’ the polar

of P as to pi, pi, p; meet on p.2
Points Q;, Q,, Q; are a fixed point triad associated with P, P, P, P,

called the cogredient point triad of P as to P, P, P;.

THEOREM IV, ,: The linear polar point of a point as to a linear point
triad is unique.

* By Theorem IV, o the linear polar point is independent of the auxiliary triangle
and of the plane of the triangle.

2 Veblen and Young, op. cit., Theorem 7.



SYNTHETIC TREATMENT 3

From Theorem III, ., the cogredient point triad Q, Qs, Q5 are fixed
points and the linear polar point Q is determined uniquely as the sixth
point of the quadrangular set (P:, P;, P; Qs, Qx, Q).

The sixth point of a quadrangular set of which five points are given
is independent of the plane of the quadrangle, therefore, in finding the
linear polar point the auxiliary triangle may be taken in any plane
whatever passing through the given line.

§ 3- In order to generalize inductively in the plane the theorems and
definitions given in §2 for the 3-line and linear 3-ad, the following
definitions and theorems are assumed for the (k—1)-line and the linear
point (k—1)-ad and are proved for the k-line and the linear point k-ad
for k=4.

THEOREM I, ,: The k polar lines of a point as to the & (k—1)-line
figures of a k-line form a %-line perspective to the given -line.

For point P and k-line {p;}, (4=1, 2, . . . ., k) let g; be the polar
line of P as to the (k—1)-line figure {ps}, (k=1, 2, . . . ., k; k=i).

The k-line {g;} is called the cogredient k-line to {pi}, (i=1,2, . . . .,
k) as to point P.

Let R; 4 be the points of intersection of lines p; and PPy, (i=1, 2,

« « o k; iks, £) where Pg=(pspr).

Then g the polar line of {p;}, (=1,2, ... .k i3Fs) asto P and
¢: the polar line of {p;}, (=1, 2, . . . ., k; i=Ft) as to P intersect in
Q. which is on PP, because the linear polar point of P as to the (¢—1)-ad
Py, Ry, (i=1,2,... .k i%ks,t) is unique (Theorem IV, _; ,), and the
two k-lines {p;} and {¢;} are perspective from P.

THEOREM II; :: If two k-lines are perspective from a point, the
points of intersection of corresponding sides are collinear.

Given two k-lines {p;} and {g}, (i=1,2, . . . ., k).

Triangles pj, pjt1, Pi+a and gj, gj+1, gi+a are perspective from P, so
corresponding sides meet in points 4;j, 4j+1, 4j+2 on a line g;, (j=1,
2, 0.0 k—2).

Successive lines ¢; and @;4. have in common two points Aj1:, 4+,
(j=1, 2, . . . ., k—2),s0 that all the lines a; coincide and the intersec-
tion points of corresponding sides of the two given k-lines are collinear
on a line called the line of perspective.

DEFINITION 1V, :: The polar line of a point as to a k-line is the line
of perspective of the %-line and its cogredient k-line as to the given
point.k

* Cremona, 0p. cil., p. 364.



4 LINEAR POLARS OF THE E-HEDRON IN 7-SPACE

TueoreM III; ,: If two k-line figures are perspective from a point,
the two polar lines of a point on their line of perspective meet on their
line of perspective.

Let p be the line of perspective of the k-lines {p;}, {p/}. For a
point P on p let {¢;} and {¢}} be the cogredient &-lines and ¢ and ¢’ the
polar lines of P as to {p;} and {p}} respectively (i=1, 2, . . . ., k).

giand g; (i=1, 2, . . . ., k) meet on p, for they are the polar lines of
P as to the (k—1)-lines {p;} and {p/}, =1, 2,. . . ., k; j31) (Theorem
III,—., ), therefore the cogredient k-lines {g¢;} and {g} have p as line of
perspective. Then ¢; and ¢/ meet in Q; on p and {Q;} is called the
cogredient point k-ad of P as to {P;}, (i=1,2, ... . k).

The quadrangles P, (p/4,), Qrs, (psgs) and Py, (prgr), Qrs, (P545)
have five pairs of sides meeting on line p, therefore the sixth pair of
sides ¢ and ¢’ meet on p, (r, s=1, 2, . . . ., k; r3Fs).

DEFINITION IV, o: The linear polar point of a point as to a linear
point k-ad* Given points P, Py, P,, . . . ., Py on line p. Through P;
draw coplanar lines p; distinct from p, no three concurring. The lines
p; determine a k-line and the polar line g of P as to the &-line {#;} inter-
sects p in the point Q which is the polar point of P as to the linear k-ad
P, (i=1,2,....,k).

THEOREM IV o: The polar point of @ point as to a linear point k-ad
is unique.

Given P, P;, P,, . . . ., P, on line p. The cogredient point set
{Qit of P as to {Pi}, (i=1, 2, . . . ., k) is determined by Theorem
111, ,, and the polar point Q of P as to {P;} is determined uniquely as
the sixth point of any one of the quadrangular sets (P, P; P; Q; Q, Q)
(r,s=1,2,....k r¥s)

§ 4. In space of 3 dimensions.

DErFINITION I, ,:  The polar plane of a point as to a pair of planes
is the harmonic conjugate plane of the point as to the pair of planes.

DEFINITION I;,,: A k-kedron in space is a set of k-planes no 4 of
which have a common point.

The following definitions and theorems are assumed for the (k—1)-
hedron and given in full for the -hedron, k=4.

t Poucelet, op. cit., p. 231, defines Q by the equation Pn_Q= Z I_’% This defi-

nition is the usual basis of treatments of linear polar theory.
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THEOREM Ij ,:  The % polar planes of a point as to the & (#—1)-
hedrons of a k-hedron form a k-hedron perspective to the given k-hedron.

For point P° and k-plane {P3}, (i=1, 2, . . . ., k) let Q7 be the
polar plane of P° as to the (k—1)-hedron {P3}, (k=1,2,.... &
hj).

{3, (=1, 2, ... ., k) is called the cogredient k-hedron to the
k-hedron {Pi}, (i=1,2, ... . k) as to P°.

Let R} i be the line of intersection of planes P; and P° P, (i=1, 2,
.« .k iEs, 1) where Pi=(PP).

Then @ is the polar plane of the (k—1)-hedron {P}}, (j=1, 2,....,
k; j=s) as to P° and Q; is the polar plane of the (¢— 1)-hedron {P3i,
(U=1,2,.... k jFt) asto P.

@3 and @ intersect in line Q5 which is on plane P° P}, because the
polar line of P° as to the (¢—1)-line P}, R4, (j=1,2,.... k;
Jj=*s, t) is uniquely defined, and the two k-hedrons {P:} and {Q?} are
perspective from P°.

THEOREM II; ,: If two k-hedrons are perspective from a point the
lines of intersection of corresponding planes are coplanar.

For k=2, the theorem is evident.

For k=3. Any plane (not through a vertex of either k-hedron)
through the point of perspective intersects the % intersection lines of
pairs of homologous faces in collinear points by Theorem II; ., therefore
the % intersection lines of pairs of corresponding faces are coplanar and
the plane is called the plane of perspective.

DermNiTioN IV, ,: The polar plane of a point as to a k-kedron in
space is the plane of perspective of the %-hedron and its cogredient
k-hedron as to the given point.

§ 5. In space of n dimensions.

In order to prove inductively the theorems of §4 in n-space we
assume in (n—1)-space Theorems I;—;, s—2 and ITz_,, ,_,, leading to the
Definition IVs—;, -2t The polar (n—2)-space of a point as to a (5—1)-
hedron in (»—1)-space is the (»—2)-space of perspective of the (k—1)-
hedron and its cogredient (¢— 1)-hedron.

DEFINITION I, n—:: The polar (n—1)-space of a point as to a pair of
(n—1)-spaces is the harmonic conjugate (#— 1)-space of the point as to
the pair of (#— 1)-spaces and is determined as follows: Any line through
the given point and not through the (n— 2)-space of intersection of the
two given (n—1)-spaces intersects each (#—1)-space in a point. The
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harmonic conjugate point of the given point as to this pair of points and
the (#—2)-space of intersection of the two given (#— 1)-spaces determine
the harmonic conjugate (n—1)-space of the given point as to the pair
of (n—1)-spaces. This determination can be proved to be unique.

DEFINITION I 4—;: A7 n-space k-hedron is a set of k (n— 1)-spaces,
no #-+1 of which have a common point.

DEFINITION II; ,—:: Two k-hedrons are perspective from a point if
the (n— 2)-space edges, in corresponding pairs, lie in (#— 1)-spaces which
pass through the point of perspectivity.

THEOREM Ij ,—;: In m-space the % polar (n—1)-spaces of a given
point as to the %2 (2— 1)-hedrons of a k-hedron form a k-hedron perspec-
tive to the given %-hedron.

For point P° and k-hedron {P!~*}, (i=1,2, ... ., k) let O} be
the polar (n—1)-space of P° as to the (¢—1)-hedron {P;™*}, (k=
1,2, ....k k¥Ej.

{077%, (j=1, 2, . . .., k) is called the cogredient k-hedron of
k-hedron {P?7'}, (6=1, 2, . . . ., k) as to P°.

Let R?77 be the (n—2)-space of intersection of (n—1)-spaces P;~*
and P°P%? (i=1, 2, . . . ., k; 1s, t) where P *=(P;~'P;™).

Then Q' is the polar (#—1)-space of (k—1)-hedron {P;~},
(j=1,2, ... . k j¥Fs)astoP.

And Q7' is the polar (n—1)-space of (k—1)-hedron {P;'},
(j=1,2,.... k j¥t) asto P

Qr* and Q7" intersect in (n—2)-space Q% which is on (#—1)-
space P° P% " since the polar (n—2)-space of P° as to (n—1)-space
(¢—1)-hedron P%°, R:72, (j=1, 2, . ... k; j¥Fs, £) is uniquely
defined, and the two k-hedrons {P7~'} and {Q7~*} are perspective
from P°.

DermNrrioN I ,—,: A complete 2 (n—1)-space is a k& (#—1)-
space with no (n+1) (n—1)-spaces through the same point such that
each (n—1)-space cuts every other in an (n— 2)-space.

LEMMA: A complete & (n—1)-space is an #n-space k-hedron, i.e., has
all of its elements in an #-space.

Every (n—1)-space of a complete 2 (n—1)-space intersects every
other (n—1)-space in an (#— 2)-space, therefore the #-space determined
by one pair of (#—1)-spaces contains all the remaining (»— 1)-spaces,
since it contains two distinct (z—2)-space of every one that remains.
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THEOREM II; 4—,: The Desargues Theorem for m-space. If two
k-hedrons are perspective from a point, corresponding (#—1)-space
faces meet in (n—2)-spaces of the same (»—1)-space.

If {47~'} and {Br ™}, (i=1, 2,.... k) are perspective &-
hedrons, any pair of corresponding (n—2)-space edges A;;*=A47"",
A7 and B:7*=B;7, B;™' lie in the same (n—1)-space Ci.' and
therefore intersect in an (#—3)-space C73%. Then C;*=4;"", Bi™,
and C2~*=A%"*, B2~* contain C?3* and in general any pair of (n—2)-
spaces C7~%, C?~* which are intersections of corresponding pairs of
(n—1)-space faces of the given k-hedrons have a common (n— 3)-space,
therefore the whole intersection figure is a complete 2 (n— 2)-space
and hence must lie in an (r—1)-space (by the Lemma) which is called
the (n—1)-space of perspective.

DEFINITION IV g—r: The polar (n—1)-space of a point as to a
k-hedron in n-space is the (n—1)-space of perspective of the k-hedron
and its cogredient k-hedron as to the given point.

Thereoms III; 4—, and IV 4—, are unnecessary for #>2, as the
uniqueness of the linear polar is evident from the construction except
in the case of linear polars of linear point sets.

All the theorems and constructions .of this section may be dualized.



II. ANALYTIC TREATMENT

§ 6. It is possible to extend the set of assumptions given in § 1 to
form a sufficient basis for a system of homogeneous co-ordinates and to

proceed analytically (Veblen and Young, op. cit., § 2, p. 352).
For an n-ary linear form we use the Clebsch notation:

”
ag') = E QgXg

g=1

and we indicate the factored #n-ary k-ic

%
n, A ()
wi=11 e¥,

=1

"
.= E Qighg

g=1

where*

The polar operator? is written
9 c 3
' Y = g
<x ax>,, z; x‘axi

and the polar operator repeated r times is indicated

1AY
xa—“:_”

The (k—1)* polar or linear polar of the point '=(%;, %, . . . ., %) F
(0,0, . . .. 0) with respect to fz* where f%*+o0 may be written in

the form
()

k
9\ k-1 a
) (L b A ”, £ T &
(x 3x>,, y lk_"l' f2 ;Zx a
§ 7. The polar line of a point as to a 2-line.
Given point P:(x;, x,, x,) and lines p,:a®,=o0; p,:e=o.
The line PP11=P is

* The superscript (») is omitted when no ambiguity arises.
2 The subscript # is omitted when no ambiguity arises.
8
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The line x,=o intersects p, pr, . in Po, Py, Ps.

al(?:‘v af(?)a‘ (2) (2)
Py: 55— o ~& =% P,:e?:=0; P,:a’:=o0
aPy af
The harmonic conjugate of the point given by A.a,+X.ef=0 as to
the points ¢{”,=o0 and a{’,=o is given by the equation

Ala:.’)c— M:)z =o0.

Then the harmonic conjugate Q of P, as to P;, P, is

a"’ %%

-|- =0

3
a’y

then the line g=QP,, is

(3)

(
ade y Ouls
@ u =
a’y afc

the linear polar of P as to lines p, and p..

§ 8. The polar line of a point as to a k-line.r

Given point P (x, %3, x3) and lines i} : a; »=o0, (i=1,2, . . . , k).
For purposes of an inductive development we assume that the polar line
of a point P (xf, x1, ;) as to a (k—1)-line {4} : b;, =0, (i=1,2, ... .,
k—1) is given by the equation

k=1
bs', x

bi, z

=0

gy

then the cogredient %-line of k-line {#;} as to P will be
3

{g:t - Z 9—’13'=o, G=1,2,....,k).
&

Any line through the point of intersection of p; and ¢; is given by

the equation
B

E +a.a, =0, (=1,2,....k)
. a,,

=1

J*i

where g; are arbitrary constants.

These equations are all identical for a;= so that all the points

i, %

*Cf. Cayley, “Sur quelques théordmes de la géométrie de position,” Collected
Works, 1, 360.
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(pi @), 6=1, 2, . . . ., k) are collinear on the line

k
(%]

@,z

fm=1
which is the equation of the polar line of P as to the k-line {p;}.

$9. The linear polar point of a point as to a linear point k-ad.

Given point P (xf, 3, 0) and points P; : a?,=o, (i=1,2,... .,
k) on line p : x,=

Pass the lines p. : a®,=o0 through the points P;.

The polar line of P as to the k-line §{p;} is the line

=0

and ¢ intersects p in the point

afs _
Q Z a(z)
i=r
which is the equation of the polar poin} of P as to the k-ad {P;}.
§ 10. The MacLaurin generalized definition of harmonic mean.

Let OQ= y-——— represent the distance from some fixed point O taken

as origin on a given line to any point Q of the line
(2)
For the point P; : a¢?,=0 y= Z”: .

For the point P (xf, ;) OP==;

For a general point Q (x:, x.) OQ-—-& .

a?,

QP;=0Q—0P;= PPy

aly

PP=0P—OPi= 3%,
If Q is the polar point of P as to {Pi}, (i%1,2, . .. ., k),

aly
@ 0
Qs

which reduces to

_____o

PP;
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Whence
PP—PQ_
PP,
or
Z<L_L _
Po_PP;)=°
or
” I
PO~ D P

so that PQ is the harmonic mean of the segments PP; according to the
MacLaurin generalized definition.

§11. The polar plane of the k-hedron in space as to a given point.

Given point P° (xi, x;, 2, x;) and k-plane {P3} : a{,=o0, (i=1, 2,
e k).

For purposes of an inductive development we assume that the polar
plane of a point P° (31, ¥, s, ¥s) as to a (k—1)-plane {R3} : b, =0,

(#=1, 2, . . . ., k—1) is given by the equation:
k—1
b,
-0 =0

g,
=z r

Then the cogredient k-plane of the k-plane {P:} as to point P° is
k
a(?a:
o: Y, o
j=1 7"
i

Any plane through the line (P Q) is given by the equation:

: 2N @
’ 4) —
E go. ta:az=0

j:-x 7, &
J*i

where ¢; are arbitrary constants. These planes are all identical for

ai=;(IT , so that the polar plane of P° as to the k-plane {P3} is given
5, @

by the equation:

§12. The polar (n— 1)-space of a k-hedron in n-space as to a given point.
Given point P° (z}, %), . . . -, %4ts) and k-hedron {P?~} : o=
o, (i=I, 2y o 000y k).
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For purposes of an inductive development we assume that the polar
line of a point P° (¥, ¥z, - - . -, Yn41) as toa (k—1)-hedron in #-space
{R?~*} 1 by =0 is given by the equation
4 b}n:—x)
b}ﬂ;l) =

im1

Then the cogredient k-hedron of {P;~*} as to P°is
k
—1] o a}r:—l)_
;Qt } . z : 0}:':7')-0

j=1
J*i

Any (n—1)-space through the (n—2)-space (P?~* Q¢*) is given by

the equation ,

a}n;{-x) ()
E : s n41)
a‘-""’"+a" @i,z =0
J:-! T &
J¥i

where g; are arbitrary constants and these (#— 1)-spaces are all identical
for a.-=‘?,1+—, , so that the polar (z—1)-space of P° as to the k-hedron

{pr—} is'given by the equation
3

3 -
el

f=x



III. ALGEBRAIC LOCI

§ 13. From Section II we can prove “Cotes’s Theorem.”

THEOREM I: “Any transversal line through a point intersects its
polar line as to a curve of the »*® order in the polar point of the linear
point #-ad determined by the curve on the transversal”’;
and the generalization to #-space:

TaEOREM II: Any transversal line through a point intersects its
polar (n—1)-space as to an #n-space spread of the &t order in the polar
point of the linear point £-ad determined by the spread on the transversal.

From Theorem I we obtain the following method for constructing
the polar line? of a point P as to a curve of the n order Cy.

Through P pass any two transversals p, p, intersecting Cy in points
P, P;, (i=1,2,....n). Connect the points P;, and P;,
by the lines p; forming n-line {;}. (This can be done in #?* ways by
changing the notation for the points.) Then the polar line g of P as to
the n-line {p;} is the polar line of P as to the curve Cy, because g has
two points, one on each transversal common with the polar line of C,,
by Theorem 1. ‘

Likewise from Theorem II we obtain the general method of construct-
ing the polar (n— 1)-space of a point P° as to a spread Qj of the &t order
in n-space.

Through P° pass any # transversal lines P; (j=1, 2, . . . ., n) not
in the same (#— 1)-space, intersecting Q in points P% , (i=1, 2, . . . ., k).

Let the points P;,, (j=1,2, . . . .,n) determine (#— 1)-space P?~*,
whence for (i=1, 2, . ..., k) we get the m-space k-hedron {P?~'}.
(This can be done in %" ways by changing the notation for the points
P;,) Then the polar (n—1)-space Q" of P° as to the k-hedron
{Pr7*} is the polar (n—1)-space of P° as to the spread Q, since o
has » points, one on each transversal common with the polar (#—1)-
space of P° as to Qx, by Theorem II.

* MacLaurin, op. cit., § 28.

2 For the cubic see Salmon, Higher Plane Curves, 3d ed., p. 143; Durege, Curven
Dritten Ordnung, pp. 167, 168.

13



IV. CERTAIN CONFIGURATIONS WITH POLARITY
PROPERTIES

a) THE ASSOCIATED 4-POINT AND 4-LINE IN THE PLANE

§ 14. Let p; be the polar line of the point P; of a given 4-point figure
{P:;} in a plane taken with respect to the triangle formed by the other
three points (i=1, 2, 3, 4).

We then have associated with the 4-point {P;} the g-line §p;}.
The two figures form a complete quadrangle and complete quadrilateral
with a common diagonal triangle.

In homogeneous co-ordinates with the common diagonal triangle as
triangle of reference, if one of the four points P; is taken as unity point,
the corresponding points and lines of the two figures have the same
co-ordinates:

pr: =%t xta;=0 Pr:(—1,1,1)
Pr: T—%atxz=0 P: (1, —1,1)
P Ttxi—xy=o  Py:(1,1,—1I)
Ps: Ttxatx=o  Py:(1,1,1)

From the duality of these equations it is evident that the configura-
tion is self-reciprocal.

In supernumerary co-ordinates with 3x;=o0

pitxi=o P;: (x"=—31 xi=1): (i=1’ 2,34 j:‘:i)
for i=1, 2, 3, 4.

The group of collineations under which the configuration is invariant
is the permutation group G, and the 24 transformations are given by
the following equations in supernumerary co-ordinates

x:'=xr¢ ) (1’= 1,23, 4)
(rs, 73, 73, 7, distinct=1, 2, 3, 4)

b) THE ASSOCIATED (%+2)-POINT AND (#-2)-FLAT IN #~SPACE®

§ 15. The n-space configuration.

An l-space is incident with an m-space if, for I<m the l-space lies in
the m-space, for !>m the Il-space contains the m-space. An n-space

t The contents of Sections IVa and IV are in substance given in MacNeish,
A Self Dual Configuration in n-Space, Master’s Thesis, University of Chicago, 1904
(written in connection with Dr. Moore’s projective geometry course, 1902), deposited
in Library of the Department of Mathematics of the University of Chicago.

14
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configuration is a system of » sets of k-spaces (k=o, 1, . . . ., n—1);
@, points, @, lines, and in general a, n-spaces such that every g-space is
incident with the same number ag of k-spaces (g, k=0, 1,2, . .. .,
n—1; g=%h).

For k-spaces we use the notation:

(k=o0,1,....,n—1)
o Gi=1,2, . . . , @ for j=1,2,. ..., k;

‘ij:‘:’ij' for ] :‘:]')

The numbers a;, ag are written as a square matrix called the configura-
lion specification* as follows:
(0‘],), (g) h=o,1,....,n—1; a“=ax)

The elements of the main diagonal a,=a, specify the number of
g-spaces, and any element a,; specifies the number of g-spaces incident
with each k-space.

It can be proved that between the numbers of a configuration speci-
fication, the following relations hold:

a;j ajj=aji a;, (4,j=o0,1,... ., n—I)

The dual configuration to a given configuration in n-space is defined
by interchanging the words g-space and (n—g—1)-space (g=o,1, . . . .,
n—1) in the definition of the given configuration.

An n-space configuration dual to itself is called a self n-space dual
configuration.

GENERAL DEFINITION OF CIRCUMSCRIPTION IN #-SPACE

In n-space one configuration (a;;) circumscribes another (b;) index
n—k, (n—1zk=z1) if the a, r-spaces 47, .... ;. of the first for r=%,
k+1, . . . ., n—1 are in one-to-one correspondence with the b; r-spaces

B, ... S of the second for =r—k in such a way that corresponding

r-spaces and r-spaces are incident.

§ 16. The associated (n+2)-point and (n+2)-flat in n-space.

Given n+2 points 43, (=1, 2, . . . ., #+2) in n-space (no k+2 of
them in a k-space for k=1, 2, . . . .,#—1). Let A7~* be the polar
(n—r1)-space of A?, taken with respect to the (n-+1)-hedron {43},
(G=1, 2, . ..., nt+2; j¥Fi) whose vertices are the remaining given
points (see §35, Definition III;s—:). We then have associated with
the (n+2)-point an (rn+2)-flat.

: Cf. E. H. Moore, “Tactical Memoranda 1,” American Journal of Mathematics,
XVIII (1896), 264.

A
A%

yTge e -



16 LINEAR POLARS OF THE k-HEDRON IN #-SPACE

In the (n-2)-point figure {4:} any k-space is denoted 4% . ..., ‘en
and it contains every element of lower dimensions whose subscripts are
all of the set %y, %5y « « « - Tpt1.

In the (n+2)-flat figure { 47 } any k-space is denoted 4% ... wtys
and it lies in every element of higher dimensions whose subscnpts are
all of the set 45, 2,, . . . ., tu—p.

nt1
In supernumerary co-ordinates in #-space, where Zx;=o
=1
A =0 )
47 : (m=—m+1),zj=1), (G=1,2,....0t+2; j¥Fi)
for i=1,2, ... . nt2.

From the duality of the co-ordinates (i.e., point co-ordinates and

n+2

(n—1)-space co-ordinates) since Zx;=o, it follows that the configura-
i=1

tion is self-reciprocal.

The group® of (n-+1)-ary collineations under which the configuration
is invariant is simply isomorphic to the symmetric group on #n-}2 letters
and the equations of the collineations are of the form:

r:xi=x (G=1,2,....n+2)
where r=(r1, 72, . . . ., 7s+2) is a permutation of (1, 2, . . . ., n42).

§17. TeEOREM: The (n+-2)-flat is inscribed index #—1 in the
(n-2)-point.
A7 isrtepresented by x4 =%
x"n+t=°
Az iwinga 1S Tepresented by

%,,,=0

Therefore A77"..., of the (#-2)-gon contains A:‘”’_‘; iy, Of the
(n+2)-flat.
And in general
An—k

is represented by

< in_sys Of the (z+2)-gon
x",‘_k_‘_’=xﬂ."_k+3=o .. .=x"n_*'°

See E. H. Moore, “Concerning Klein’s Group of (z+1)! n-ary Collineations,”
American Journal of Mathematics, XXII (1900), 336.
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An—r—1 . .
and 47757 ... ... ..., of the (n+2)-flat is determined by the k+1
equations:

Figp42= 0
Xi_p +3 =0
Fipts °
sothatA;7 ..., _,  of the (n+2)-pointcontainsz;‘"‘_";;, fpkay e

of the (n+42)-flat, and the (#+2)-point circumscribes the (n+2)-flat
index n—1.

§ 18. The associated (n+2)-point and (n+4-2)-flat in z-space form a
configuration whose specification is the matrix:

(ags), (g, k=0, 1,....,0n—1)

where
_(n+2 n+t2
= (g+r>+<"—g>
and
a,,,=<n;_g_':l) for h>g
and

Agh= <§+h> for g>k

where (1:) denotes ,C,, the number of combinations of v things taken

from % things. %>w.

THEOREM: In the polar (n—1)-space A27* of the point 4}, as to
the (n+1)-point {47}, (i=1, 2, . ... n+2; i¥Fj) in n-space, the
section of the (#n+42)-point {47}, (=1, 2, . . . ., n+2) is the (n+41)-
point (n+1)-flat configuration in (»—1)-space.

In a supernumerary co-ordinate system
A is represented by (%= —(n+1), xj=1forj=1,2,...., n+2; j¥i)
and _

A?* is represented by x;=0

For simplicity consider the section of the configuration in (n—1)-
space A7~ : x;=o and in order to have a supernumerary system in this
(n—1)-space we will omit the variable x; and call x;=y;—,, (i=2, 3,

n41

. ., n+2) whence Zy.-=o.

fmy
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Line A}, intersects A7™" in point By~ (k=2,3,.... n+2)
with co-ordinates (y¢—:=—n, y;=1 for j=1, 2, . . . ., n+1; jFk—1)
A7 " k=2,3,.... nt2 intersects A7

-1

in B}Z: given by the pair
of equations x;=o0, %_;=o0 or simply by x—,=o0 (k=2,3,....,
n+2). B

Then (n+1)-point {B;_;} and (n+1)-flat {B:?} have precisely
the co-ordinates of the associated (#+1)-point (n+1)-flat configuration
in (n—1)-space (see § 17). The same can be proved of the sections in
the (n—1)-spaces A}, (r=2,3, . . . ., n+2).

¢) THE ASSOCIATED 7-POINT AND 7-FLAT IN #-SPACE

§19. (1) For r=n+2:

Given (n+2)-point {P7}, (i=1, 2, . . . ., n+2) in n-space. Call
P;~* the polar (n—1)-space of point P;, as to (n-+1)-point §P:},
(#'=1, 2, . ... nt+2; i’%i). An (n+1)-point in n-space is also an
(n+1)-flat. Then {P:~*} is the (n+42)-flat associated with the (n+2)-
point {P;}. The properties of this configuration are discussed in

§§ 16, 17, 18.

(2) For r=n+3:

Given (n+3)-point {P{}, (i=1, 2, . . . ., n+3) in n-space. With
(n+2)-point {P:}, ('=1,2, ... ,n+3; 9'=17) is associated (1+2)-
flat Pr7*} by §18 (1). Call Pi~* the polar (n—1)-flat of the point
P;, as to the (n+2)-flat {P;3*, (#'=1,2, . ..., 2+3; i=i). Then
{ P~} is the (n+3)-flat associated with the (#+3)-point {P7} (1=1, 2,

. o n+3).

(3) In general:

Given r-point {P?}, (i=1, 2, ... ., r) in n-space r=n+2. With
(r—1)-point §{P:}, (#'=1, 2, ... . r; 4'3i) is associated an (r—1)-
flat § P77} obtained by successive application of the method of § 19 (2)
above. Call P;~* the polar (n—1)-space of point P;, as to (r—1)-flat
{Pr7*}, ('=1,2,....r; i'%+i). Then {P:*} is the r-flat asso-
ciated with 7-point {P;}.

d) ASSOCIATED POINT SETS ON A LINE

Given 7-point { P}, (i=1,2,....,7) on a line P*. To any sub-
set of r—1 of these points {P3}, (j=1,2,... .7 j¥Fk) thereis a
cogredient set (see § 3, Theorem IV} ,) of r—1 points {P3}, (j=1, 2,

. ., 7; j¥k) as to the point P;. Call the polar point of P; as to the
(r—1)-point {P3}, Qi. The r-point {Q;} is the associated r-point to
{P}, (i=1,2,. .. .71).



V. THE RECIPROCITY OF CERTAIN ASSOCIATED LINEAR
SETS OF POINTS

§ 20. Let the linear equation @.=a,¥:+a.x.=0 represent the point
(a;,—a,) on some fundamental line. We use the co-ordinates (u,, u,) to
represent a point in a manner analogous to the method of writing point
and line co-ordinates in the plane. Then a,=a,4,+a.4,=0 represents
the point (a:;, @,) and the equations a;%;,+a.x,=0 and @, —am,=o
represent the same point. We will consider certain sets of points given
by their co-ordinates and write their equations in %, #,; while certain
sets of points associated with them will be given by equations in x;, ,.

Throughout Section V, the notation for the concomitants of Binary
Forms will be that of Clebsch, Theorie der bindren algebraischen Formen.

§ 21. Associated linear 3-points.

For a linear point triple represented by a binary cubic f,=o, we
designate as the associated point triple, the triple consisting of the har-
monic conjugate points of each point as to the remaining pair. The
associated point triple is represented by the cubic covariant of f,, i.e.,
Qu=o0 (cf. Clebsch, op. cit., pp. 115, 134), or by the contravariant Q,=o0
obtained by changing u; to —xa, %, to %; in Qu. Now Q4(Q:)=—R; £,
where R is the Discriminant of f, (cf. Clebsch, op. cit., p. 123); therefore
the two point triples are reciprocal. The two point triples form 3 pairs
of points belonging to a quadratic involution and the double points are

represented by the Hessian H, of f.

§ 22. Associated linear 4-points.
Let P’ be the linear polar point of P(y, ya) as to the point triple 4,,

B,, C, associated with the triple 4, B, C represented by a binary cubic
fu=o. A, By, Cy (cf. § 21) are represented by Qz=o. Then P’ is given

by the equation:

Vi QQx'l'zylyzgx 3xz+y’ 8’0: (1)
Given the four points
A :ay=o0
B:u=o0
C :u,=o0
D : w;4u,=o0

19



20 LINEAR POLARS OF THE k-HEDRON IN 7-SPACE

then f,= a4, (t0:+1,) = ayusiua+(e:+a.)uiu3+a.mmi=o represents the
four points A, B, C, D.

By formula (1) we can obtain the equation for point 4’, the polar
point of 4 as to the triple B,, C,, D, associated with B,C, D. Similarly
points B’, C’, D’ can be obtained. A4’, B’, C’, D’ form the 4-point asso-
ciated with 4-point 4, B, C, D.

A’ : x,(202— 20,0, —a}) — x,(a+ 2¢,0,—203) =0

B’ : z(a:+a.) (a:—2a,) (20:—a,) — a:2,(02 — 40,0, a2) =0
C': ax:(0i—40:0:+03) —x,(a:+as) (a:—2a,) (20:—az) =0
D' : a,%:(ai+20.:0,— 2a3) — a1x,(203 — 20,0,— a2) =0

Then if f; is the product of these four linear expressions f,=o represents
the four points 4, B’, C’, D'.
From f, we obtain:

Jfr=—a:x30,+ (a4 a,)xix; —axixi=o
H,.= —J¢ 3050t — 40, (0:+ a.) 232,42 (203 + 010+ 203) 2305 — 404 (0, a2) 2,03
+3a3x4]
where H, is the Hessian of f,.
 The two invariants I and J of f, are:

I=}(a2—a.0,+a3)
J=—2(a:4a.) (a:—24,) (2a:—a,)

Then f; is expressible as a function of fy, H,, I, J:
fe=8 - 64§ 24T (12J2— D3)H +I*(I3+42J°%)f} (2)

§ 23. The self-reciprocal 4-point.

If either J=o or 12J2—I*=0; f,=o0 represents the same 4 points as
fu=o0 and the 4-point is self-reciprocal.

For J =o, the 4 points are harmonic and each point goes into itself,
so that the 4-point is identically self-reciprocal.

For 12J2—I3=0, the 4 points are operated on by the substitutions
(4B) (CD); (AC) (DB); (AD) (BC).

Therefore the two cases in which the 4-point is self-reciprocal con-
stitute the substitutions of the subgroup G, of the symmetric group G,
on 4 letters.

It can be proved that 12J?—I3=o0 is the necessary and sufficient
condition that 4,4'; B,B’; C,C’; D,D’ are pairs of a quadratic involu-
tion.

12J2—I3=36Jx (Clebsch, 0p. cit., p. 141, note); therefore 12J2—I3=0
is the condition that the 4 points represented by the Hessian of f, are
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harmonic; therefore the necessary and sufficient condition that a 4-point
be self-reciprocal is that either f,=o or H,=o0 shall represent harmonic
points.

J=—:s(k+1) (k—2) (2k—1) where £ is the cross ratio of the four
roots of f,=o. If k is rationally expressible in the coefficients of f,,
then J is rationally factorable into factors linear in the coefficients of f,.

12J2—I3=Jg= —4(k+1) (h—~2) (2h—1) where & is the cross ratio
of the four roots of H,=o. If & is rationally expressible in terms of the
coefficients of H,, Je=o0 will be rationally factorable into three factors
linear in the coefficients of H, and therefore quadratic in the coefficients
of fy.

§ 24. Cubic covariant theory connected with the self-reciprocal 4-point.

We will consider what function of the concomitants of the cubic
representing three given distinct points, determines a set of points any
one of which taken with the original set of three points constitutes a
self-reciprocal 4-point.

Suppose g,=o0 is the cubic representing three given distinct points.
Qu=o represents the three 4** harmonic points to the triple represented
by g«=o0; this corresponds to J=o for the quartic fy=o0 (cf. §23).
Therefore there are precisely three points which may be taken with a
given point triple to form an identically self-reciprocal 4-point.

In § 23, ;i:=k is the cross ratio of the four points 4, B, C, D, there-

fore: .
12J2—D3=(2k2—2k—1) (BP+2k—2) (B*—4k+1)
Let three given points be P : #;=0; Q:#.=0; R: by=bu,+bu,
=0, then:
Zu =33+ 30045

For any 4% point X : (a1, #,) the cross ratio of the 4 points P, Q, R, X

isk= Zb— .

Then (2k*—2k—1) (k*+2k—2) (R*—4k+1) reduces to 2b%xi—
6b:b3x5x, — 15bibixta: + 40b3b3xini — 1 5b8b3xixd — 6bib,x.a5+ 2655, which in
terms of the concomitants of g, is equal to —17Rgz+1405—5A3.

Then the 6 points represented by

—17Rg+ 140 — 58 =0 ()
have the property that any one of them taken with the three points represented
by gu=o form a non-identically self-reciprocal four poini.
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If 4 points so obtained are represented by f,=o then if the cross ratio
of the 4 points represented by H,=o is rationally expressible in terms
of the coefficients of H,, the sextic equation (3) will be factorable into
rational quadratic factors (cf. § 23).

§ 25. The linear 4-point and its associated 4-point are reciprocal for
I=o.

Let f,=o represent 4, B, C, D.

Then f,=24J(12J*—3)H +1*(I3+42J%)f,=o0 represents A’, B,
C’, D’ (cf. § 22).

For I=o0, f,=o0 is equivalent to H,=o.

Since I of H,. is IE (cf. Clebsch, 0p. cit., p. 141),if I =0, I of H, is zero.

Therefore A", B, C", D’ will be represented by the Hessian of H,,
ie., fo =§f,—£H,=o (cf. Clebsch, op. cit., p. 139).

But since I=o0 fJ =o reduces to f=o and the sets 4, B, C, D and
A', B’, C’, D’ are reciprocal.

If gy=o0 is a cubic representing three distinct poinis, A,=o, its Hessian
represents the two points either of which taken with the original three given
points form a quartic for which I =o, i.e., form a reciprocal four-point.

§ 26. A 4-point and its associated 4-point are not in general reciprocal.
The 4-point 4 : ay=0; B : uy=0; C : u,=0; D : ux+u,=o is repre-

sented by:
f u =Wtz (“1"‘143) (axu:+a=u,) =0

and the associated 4-point 4’, B, C’, D' is represented by:
fo=I(I34427%)f:+24J (12J°—D3)H,=0
k=I*(I34-42J%)
l=24J(12J*—I3)
Then the 4-point 4”, B”, C", D"’ associated with 4’, B', C’, D' is repre-
sented by:

Let

f=kfit+lH,=o0
k' =I""(I"3442]")
V=124J'(12J"2-1'3)

where

and

H= <§kl+§l’)fu+ (k=-§l=>H, (cf. Clebsch, 0p. cit., p. 139).
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Therefore
fr= { PI(I'4-4207) (1344277

247/ (1275 =1) <§k’+§”> bt % 241" (I's4+-420") (12J°—I9)
+24J"(12]"—I’3)(k’-—§l’) }H.=o

If f/! =0 reduces to fy=0, the coefficient of H, must vanish identi-

cally, since I and J are independent.
We shall therefore consider the relation:

24l T (I's4 427" (12— I) +247 (12J 2= I") (k’—gl’)Eo
or
k'z+z'(k=-gz=)so
I ’=Ik'+2]kl+%’l’ (cf. Clebsch, op. cit., p. 141, note).

Then
I' =I*[I94-1321°]2— 1980I3J 4438016 ]

k’—gl’=I[I9—12[“]’+4o6813f‘—13824]°]

J'=J k3+§k’l+£}kl’+ (‘g—\g)ﬁ (cf. Clebsch, 0p. cit., p. 141, note).

Then in J’ the term of highest degree in I is —11I*J.
The term of (I’3+42J"%) of highest degree in I is I3,
The term of (12J'2—1'3) of highest degree in I is —1I%.

Then the term of KI-(k~F) of highest degree in I is xoI%J,

therefore the coefficient of Hy, in 2/ does not vanish identically and /=0
is not equivalent to f,=o, i.e., the 4-points 4, B,C,Dand 4',B,C', D’
are not in general reciprocal.



VI. CONCOMITANT THEORY OF THE ASSOCIATED 4-POINT
AND 4-LINE IN THE PLANE

Let

: Gy=at-a,u,+au,=0
L Ur=0

S U=0

tu;=o

vaw»

be four distinct coplanar points, then
Ju=aiusn; a0+ =0

represents the 4-point 4, B, C, D.
By taking the polar line of each point as to the triangle formed by
the remaining three points we obtain the associated 4-line o', ¥/, ¢/, d'.

a: xaat 100+ x00.=0
b i —33:0.0, %:0,0:4 %,0:8,=0
¢ 0.0, 3%0;0:F %;0:0,=0
d: 0.0+ %:0,0:—3%;0:0:=0

Then
‘ fo=—3 > wlalaits > wmaciaitia > aelaiol—
2on§x,x3a§a;a§=o

For the general ternary point quartic f,=o in symbolic notation, let:

fo=at=b=. . .
Invariant A4 = (abc)*
Contravariant I, =(abx)t=ai=axf= . ...
Covariant S,=(eBu)i=si=t= . ..
and Contravariant W,=(stx).
Then 81W,—18142 ;=2 35 . f.

For the ternary line quartic f,=o0 representmg 4-line a’, ¥, ¢, d’ let
the corresponding concomitants be denoted A T, W, K
A= =3%. 2% . giaia}

L=21 - 3atolo}] D atutt2 > clowtints >, claiuiu
-8 z Q10205UT U U f

24
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Sp=2%. 3a§a§a§; 9 E aladxi—12 E a:a3aixiv,+214 E aiaaixin;

—196 z aiaiaixixx, %
W.=2% . 30002 g 181 Z atui+362 Z aaiuui+543 z aiazuiu;
—680 Z aiaa Ui, s

Then
" =81 W, — 1814, = 24 - 3aa3'a} E aiuu,=2% « 35 . a¥aFalyf,

This verifies analytically the fact that the quadrangle quadrilateral
configuration is reciprocal.



