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THE SECOND DERIVATIVES OF THE EXTREMAL-INTEGRAL®

BY

ARNOLD DRESDEN

Introduction.

Suppose that an extremal has been found for the problem of minimizing the
integral {

1) I=fF(a:, Y, x,y')dt,

which passes through the points 4, (a,, b,) and 4,(a,, b,), along which 7, > 0,
and for which 4, and A, are not conjugate points. Then it may be shown as
in § 1 below that if P,(x,, y,) and P,(x,, y,) are taken in a sufficiently small
vicinity of 4, and A4, respectively, a unique extremal € can be constructed
passing through P, and P,,1 along which #,> 0 and for which P, and P,
are not conjugate points. The integral (1) taken along P, P, becomes a single-
valued function of «,, y,, «, and y,, uniquely defined for sufficiently small values
of |, —a,|, |y,—b,|, |2,— a,| and |y, — b,|, which we denote by

(2) S(xl’ Y1s Zps yz)'

This function, commonly called the « extremal-integral,” is identical with Hamil-
ton’s principal function. If the original extremal 4 A4, actually furnishes
a minimum for (1), then (2) must be a minimum in the ordinary sense for
2, =a,y =b,x,=a,y,=>. We are thus enabled to derive necessary
conditions for a minimum of (1) by a discussion of (2) and its derivatives with

respect to z,, y,, «, and y,. §
The first derivatives of the function § were given by HamiLToN in 1885. ||

* Presented to the Society September 11, 1908. Received for publication June 15, 4908.

1 The function F and the extremals are restricted by homogeneity and continuity conditions,
for an explicit statement of which we refer the reader to BoLzA, Vorlesungen tiber Variationsrech-
nung (Leipzig, Teubner, 1908), pp. 193, 194. For terms and notations current in the Calculus
of Variations and used here without explanation we refer to the same source.

t Compare BoLza, looc. cit., § 37a.

¢ This method of the Calculus of Variations, frequently called the ‘‘method of differentia-
tion,”” was suggested by DIENGER in 1867. For further bibliographical reference see BoLza,

loo. cit., § 38.
| Philosophical Transactions of the Royal Society of London, 1835, part I,

. 99,
P 467



468 A. DRESDEN: SECOND DERIVATIVES [October

The object of the present paper is to obtain explicit expressions for the
second derivatives of the extremal-integral* (§1-§4), by means of which a
simple determination of conjugate and focal points will be possible. In §5
we treat- by this method the problem of minimizing the integral (1) when one
end-point is movable along « fixed curve, and in §6 the same problem when
both end-points are movable. Thus new proofs are given of the theorems first
proved by BLiss.t In §7 the same method is applied to the discussion of con-
Jjugate points on discontinuous solutions, previously investigated by CARATHE-
oporY} and Borza.§ The results arrived at are in appearance in direct con-
tradiction with theirs. The discussion of this contradiction appears in §8,
where it is shown by means of a relation between the Weierstrass Z-function
and Caratheodory’s invariant (2, that the case in which the contradiction

occurred cannot arise.

§ 1. Construction of an extremal through two given points‘.ﬂ

We take Euler’s differential equation, written by BLissq] in the following
form:

dm dy . de Fxly - va’
3) Zg=cos€, 7, = din a0, ‘T’=Fl(l/:?—-|-_g72)3'
Denoting by

x=X(8— 385 % Ys» 6.),
Q) y=9(s— 83 T ¥;» 6,),
0=0(s—s; 2 Y 6,),
that particular solution of (8) which satisfies the initial conditions
=, y=y;, 0=06,
at s= s,, we solve the system
(6) z,=X(8,— 85 s ¥1» 6))> Y2=9(%— 55 2,9, 0,)

for 3, and 6, as functions of x,, y,, , and y,, the value s, being chosen arbi-
trarily. This is always possible, according to the well-known theory of implicit

*In the Sichsische Berichte, 1883-1884, part II, p. 99, A. MAYER has used a similar
method for the problem of variable end-points.

+See Transactions of the American Mathematical Society, vol. 3 (1902), p- 136,
and Mathematische Annalen, vol. 58 (1803), p. 70.

t Dissertation, Gottingen, 1904, p. 31, and Mathematische Annalen, vol. 62 (19086),
p. 449.

3 Vorlesungen, chap. VIII, and American Journal of Mathematics, vol. 30 (1908),
p. 209.

| Compare BoLza, Vorlesungen, § 37a). For notation, ibid., § 275).

f{Transactions of the American Mathematioal Socxety, vol. 7 (1908), p. 188.
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functions, if 4, and A4, are not conjugate.* When s, and 6, are so determined,

the functions
x=%(s—8; 2,y 0)=2(s),

(6) y=9(s—3; 2,4, 6)=y(s),
0= 8(3 — 815 Ty Yy 01)
represent the required extremal €, and we have }
0 (05 =, 9y, 0,) =2, 9(0; 2,9, 60)=y, 6(0;=2,y,0)=0,
X(8,— 8,52 Yy 0)=2,,  D(8,— 85 2 Y 0))=Vs> O(8,—3;5 2, 9,,0,)=0,.
Further, we get from (3) and (7) the following useful identities :

%,(0; »,y,0,)=cosd, 9,(0; 2,y,,0,)=sinb,

X,(s,— 8,5 ,, ¥, 0,) =cos 6,, 9,(s,— 83 %, y,,0,)=sinb,,
(8) %,(0; 2,y,6,)=1, 9.,(0; z,%,.,6,)=0,
%,(0; 2,y,6,)=0, 9,,(0; 2, ¥,6,)=1,
%, (05 2,9,,0,)=0, 9a(0;5 2,9, 6,)=0.

It follows from (4) that the extremal € may also be represented in the form
z=X(8—8,; %, ¥y, 0,) =2(8),
®) Yy=9(s— 83 2, ¥ 0,) =y(3),
0=0(s—3,; x,, Yy 0,)5
from which we can derive formulas analogous to (7) and (8) and obtainable
from them by interchange of the subscripts 1 and 2.§ It is evident that the
functions «(s) and y(s) as defined by (6) on the one hand, and by (9) on the
other hand, are identical in the variable s for the range s, = s = s,.
Whenever a distinction between these two forms of the extremal shall be
necessary in the sequel, we shall use the following abbreviated notations :
. X(s—8; 2, Y, 0,) =%i(s), (i=1,2).
(10) Y (s — 83 2, ¥ 0;) = D'(8),

cos 6, =p,, 8in 0, = ¢,.

*Compare C. JORDAN, Cours d’Analyse, vol. 1, 2d ed., §92. The theorem is applicable
because equations (5) are satisfied by the tangential angle of 4, 4, at 4, and by the parameter
value of 4, on 4, 4,, if we substitute for z,, y,, and z,, y, the coordinates of 4, and 4,, and
because furthermore the Jacobian does not vanish if 4, and A4, are not conjugate (see also § 2
and §4, and BoLza, loo. cit., p. 234).

t The last of these equations is to be considered as defining 0,.

1 It is to be observed that s, and 6;, used in (9), are not arbitrary, but are quantities defined by
(5) and (7) respectively, whereas s, and 6, following from them are identical with the quantities
defined by these same symbols in (5).

Trans. Am. Math. S8oc. 38
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§ 2. The extremal-integral.

Along this extremal € we compute now the integral (1), which furnishes us
the function (2) in two forms:

(g mv) = [ FLE (), 9'(2), 2 (9), D:(2)]ds

=fF[a€’<s>,2)’(s>,xf<s>,2)3<s>3ds-

We find then the first derivatives of the extremal-integral,

o3 o3

B;l—_ z’(wl’ Yis Pro %)’ 5;52=Fz’(w2992’p2’ q'z)’
(11)

R o3

'a;—_ ,/(ml’ ?/1’1’1’.%)’ 5§2=Fy’(mz’ Yzs Pso 92)’

which formulse correspond to Hamilton’s first derivatives of the principal
Jfunction.* TFor the determination of the second derivatives of (2) we have
first to determine 96,/0z, in which i =1, 2, and ¢z is any one of the 4 variables
®,, Y1» %, ¥,- Differentiating (5) with respect to x,, we obtain

08 oo
0= E:(sz)a;:"‘x;x(sz)"' xz;(sz)%l'l’

[
0= 9!(s) 3o+ D4 () + D () 5,

Similar equations are obtained by differentiating with respect to x,, y, and y,,
and four more by interchange of subscripts and superseripts 1 and 2.  All these
equations are uniquely solvable + for 06,/0z, so that we obtain the following

results :

?_0_1=_El("z) iﬂa=_ %
awl ul(sz)’ awl uﬂ(sl)’
Z_y_ox ’71(":) _2_0_2= P
Ty (s iy, %,(8,)°
(12) 1 u,(8,)’ 1 2(8,)
a_elg % ?&=_Ez(81)
G, 4, (s,)’ O, u,(8)"
ael V2 ?__‘9_2__"72(31)

a—i/:=u1("z), 8y, “2(31)’

* HAMILTOR, loo. cit.; compare also BoLzA, loo. oit., § 375).
1 Compare with the first footnote on page 469.
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where

Ei(8)=%i(8)Di(8) — X,(8)Di(s),
(13) 7,(8) = Xi(8)95.(8) — %,(8)Di(s), (i=1,2),
u,(8) =X:i(8)9s.(8) — X5,(8)Di(s).

§ 8. Particular solutions of Jacobi’s differential equation.

The functions .E'., 7, and », have the following properties:
1) They are particular solutions of Jacobi’s differential equation for the

extremal €,
d do
sz—a(Flag) —o0,
the arguments of #, and F, being x(8), y(s), #(8), ¥'(8). The proof of
this statement can be given in precisely the same way as is usually followed for

the proof of Jacobi’s theorem : *
2) They satisfy the following conditions :

E(s)=—q» 7,(8) =Pi> u,(8,)=0, (i=1,2),
E()=—9"(8)y mi(8)=2"(s), w(s)=1,

which follow from (13) by means of (3), (8) and interchange of subscripts 1

and 2.
For our further work we introduce now also those particular solutions v,(s)

of Jucobi’s equation which satisfy the conditions
15) v,(8)=1, v;(8;)=0.

It is clear that u, (), v, (s) and u,(8), v,(s) are linearly independent solutions
of that equatien,t so that we can express £ (), 7,(8) and §,(8), 7,(8) linearly
in terms of u,(s), v,(s) and %,(8), v,(8) respectively.] We find, using (14)
and (15), that '

(16) &(8)=—y"(s)u,(s)— 2,v,(8), 7,(8) = 2"(8,)w.(8) + p.v.(8)-

Using (16), we can now transform (12) and we obtain the following formule
which express the partial derivatives of the tangential angles of the extremal
€ at P, and P, in terms of two sets of two linearly independent integrals of
Jacobi’s differential equation for that extremal :

(14)

* Compare BoLzA, loo. cit., ¢ 12b.
t Compare C. JORDAN, Cours d’ Analyse, 2d ed., vol. 3, § 122.

1 Ibid., § 179,
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4 1 o 7,v,(8,) 8, %
o =V ) T ()
96, oy Pv(s) 96,  p
=— = =2 (8 A= ’

an Oy, (8)— 1(32) Oy,  u,(8,)
?ﬁ——-_ qz % ”( )+q2v (8)
oz, u,(s,)’ Oz, ? u,(8,) '
%.____p?_ 6_62=_x"(8 __ DY, 2(3)
%y, ul('gz)’ : oy, 2 U (")

§ 4. The second derivatives of the extremal-integral.

We can now at once determine the second derivatives of (2) with respect to
any two of the variables «,, y,, «,, y,. Differentiating (11) and remembering

that
op, 26, oq, 06,

2= Yo o TPy

we obtain the following
THEOREM. The second derivatives of the extremal integral are given by the

table

23 o3 3 | a3
o on oz, EN
3 —L(s) —M(s) . “p
= —F P F, A1z
| +RnEals) | g aonl) ) ) ) a(o)
5 —M(s) — N (%)
5 : F — Fy(s) 2B
a | REPEE) |+ Rw i o) (e O
5 e N L(s) H(s)
— 8 1142 — 192 2
o | BGG) | TG | REB®) | e, 2
3
s o n H(s) ¥(%)
— —_— 1F3 13 2
an | TGS | BWGG) R nesn) | g, 2l
3\ 1

in which the functions F,, L, M, N have the same meaning as in the Weier-
strass theory, and in which the functions u (8), v,(8), u,(8) and v,(8) are

defined by (14) and (15), and p,, ¢,, p,s g, by (10).
In order to show that these formule are independent of the order in which

the two differentiations are performed, it is sufficient to prove
Fi(s)  Fi(s)

ul(SZ) u2(81) =0.

(19)
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We know that u,(s,) =0, and since P, and P, are not conjugate, that
u,(8,) # 0. Accordingly w,(s) and u,(s) are linearly independent solutions
of Jacobi’s equation, which we now write in the form:

” F] ’ F2

Hence, by Abel’s theorem, ¢
, , C
ul(s)uz(s) - uz(s)ul(s) = 1;—11(*8_)

By applying (14) for < =1 and ¢ = 2, we obtain
C. 64
_'uz(sx)=fvl"(?l—)’ "1(32)=p—1(‘§2—)’
from which (19) follows immediately.
We conclude this paragraph by establishing a relation between the functions
u,(8), v;(8) and the Weierstrassian jfunction ® (s, s;) which is in current use

in the literature. If & (s8) and &,(s) are any two linearly independent solu-
tions of Jacobi’s equation, we have f

(s, 5,)=7,(8)F,(s,) — &1 () 5,(s)-

Hence
8.(8." 3.‘)= 0,
%G(S, 8;) ,=.‘= &, (8,)%,(s8,) — 01(3‘)0;(3‘),
(%@(8, s;) ‘=“= 3,(8,)3,(8;) — 1 (8,)8,(s;)»
53%6(8v %)| _ =H(8)8(s) = F{(8) 9 ()
Writing now
. D(s)=18,(8)8,(8) — 81(3)5,(s):%
0
=-0(s, s,)
8(s, 3s, :
o = -

we have
' u,(s)=0, v, (8)=1,

u;(s)=1, v;(s;)=0.
The functions () and v,(s) being uniquely determined by (14) and (15), it
follows that those defined in (20) are identical with them.

*Compare STURM, Cours d’ Analyse, 12th edition, vol. 2, § 609.
t+ Compare BoLza, loc. cit., p. 233.
1Ibid.
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§ 5. The case of one variable end-point.

We suppose that we have found an extremal € which actually furnishes a
minimum for (1) when the first end-point 2, is movable along the fixed curve

© defined by the equations

¢: w=5(a), y=37(a) (ag=a=a,),

FiG. 1.

the second end-point P, being fixed. If a point P is taken on € sufficiently
near P,, the construction of the unique extremal PP, can be carried out as
described in § 1 and the extremal-integral can be computed along PP,. This
extremal-integral becomes now a function of the parameter a of the point P,

J[#(a), ¥(a), %, 9,1 = J[e],

and must be a minimum for a = a,, if P, P, actually minimizes (1). Hence
the necessary conditions for a minimum of (1) are in this case

(21) ' [a,]=0
and
(22) ¥[e]Z0.
Making use of (11) and writing

~ '(a,) ~ y(a)
(23) : =—= !

Pr=""= = ’ 1 o ’
dnd * V“’z(al)"‘yz(an) z (al)+y2(al)
we nn

Y[a]l=—F (2, %205 1) B — Fy (25 %15 215 @) O .
this shows that (21) is nothing but the well-known ¢ransversality-condition. +

* BoLzA, loo. cit., § 38.
1 Ibid., § 36.
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Further, with the help of (18),
Yla]=pi[—L(8)+aF () Z(s)]+2P 0 [~ M(8)) =P, 0. Fi(8) Z:(5,)]
BL—N(s)+PIF () Z1(8)] — B F(8,) — ¥ Fy(8,)s

where _
B =3"(s), Yi=Y(s)
and
v.(s
(29) Z(s ugs; (i=1,2).

Introducing further the abbreviations
=PI L(8)+ 2.0 M(8) + G N (s)) +EF (8) + T Fy(s)
Bl =F\(8,)(n4 2@

both A, and B, being constants depending upon the curve € and the point P,,
we obtain the following formula : *

Sﬂ[al] =—4,+ B, Z,(s,).

(25)

A further necessary condition for a minimum i3 therefore
- Al + B1 Zx(sz); 0

or, since B, > 0,}

Z1(82 ;i‘l—l’
We have defined by equation (24), 1
v,(8)
L) = ute)
Hence ) ()
oy w(8)vi(s) — v, (s)ui(s
Z(s)= u*(3)

But %, () and v, () being linearly independent solutions of Jacobi’s equation, |
we have by Abel’s theorem, §

k
ux(s)”;(s)_”l(s)u{(s) = F‘lzs_)
By means of (14) and (15) we find
v, (8,)v;(8,) — v,(8)u;(8)=—1.

* Compare BoLzA, loc. cit., § 39; BLiss, Transactions of the American Mathemat-
iocal Society, vol. 3 (1902), p. 136.

+ Leaving aside the case that € and € are tangent at P, .

$8ee ¢ 3.

§ See the first footnote on p. 473
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Therefore
k= —F 8 ),
and l( l)
(26) 0 (8)91(8) =, (5)i () = — Feas.
Hence '
o F(s)
@) A== FouEm <"

Further, it is evident that
lim Z (8) = + oo,

8=8;+0
and hence by Sturm’s theorem, *

lim Z (8) = — oo,
8=8]—0

s \ s}\

o(8) u(8)

Fi1a. 2.

s being the parameter value of the conjugate poinf of P, on €. We conclude
that Z (s) is @ monotonic decreasing function, taking every real value once
and but once, as 8 increases from s, to 8;. Consequently there must be one
real value of s between s, and s; for which

A

Zl(s) =§i

Denoting this value by s;’, it follows from (27) that we must kave
(28) s, = s,

in order that condition (22) may be fulfilled.
Thus we have given a new proof for Bliss’s condition. BrLISst has investi-

gated the geometrical meaning of the point determined on & by s, The
properties of this so-called focal point have also been discussed by BoLza.

* See STURM, Cours d’ Analyse, 12th ed., vol. 2, no. 609.
tTransactions of the American Mathematical Society, vol. 3 (1902), p. 136.

1 Loe. cit., g 39¢c.
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§ 6. The case of two variable end-points.

In the same manner we treat now the case in which both end-points P, and
P, are movable along two fixed curves, € and € respectively. Let these curves
be represented by

@: w=-;5(a)9 3/=37(“) (gp=a=a,),
and -
€: =x=z(d), y=y(d) (h=b=b,),

and let us suppose that we had found an extremal € actually furnishing a min-
imum for (1). Then if P(a) and @Q(b) are taken sufficiently near P, and P,

F1a. 3.

on € and € respectively, the unique extremal P can be constructed and the
extremal-integral obtained now is a function of a and b,

J[#(a), y(a), £(b), ¥(b)] =J [a,B].
This function must be a minimum for ¢ = a,, b = b,, if P, P, actually min-

imizes (1).
The necessary conditions for J(a,, b,) to be a minimum are

(29) 23La.3]_,, 23La2]_,

63[(1 b *#3[e, 0],  J[a,b] ,_
]Ez 2—== aaab ‘E + abz—n -_—Os

(30)

Jor all real values of & and 7.*
*See C. JORDAN, Cours d’Analyse, 2d ed., vol. 1, ¢ 395-401.



478 A. DRESDEN: SECOND DERIVATIVES [October

As in § 5, equations (29) lead to the transversality-conditions
F (2 Y5 pro 1) Py + F:,’(xl’ Y20 )7, =0,
Fz'(mz’ Y39 P2> qz)i’z + 'Fy'<wz’ Y35 P2 Qz)iz =0,

P, and g, being defined by formula analogous to (23).
Further, proceeding as in § 5, we find

o? .
S 'A'l + 'BlZl (.82)’

o T T

o?
Ly = Az - B2Z2(81)’

ob?
31 .~ .-
( ) 623 —-F(s )(pl‘b—plql)(l’z%_pz%)
O0adb — T 1\72 u,(8,)
_ (P@x _51%)(1)252 _ﬁzﬁ)
——F’l(sl) "1(82) ’

where the last two expressions are equivalent on account of (19); where also
A,, B,, Z,(s) are defined by (25) and (24), and 4,, B,, Z,(s) by analogous
formul, obtained from them by a change of index.

Condition (30) will be fulfilled if *

62 &
(32) 73=0
and
aﬁ S az 3 62 S 2
(33) %TW—(aaab) =0,
from which follows ‘
oy _
(32“) —a? =0.
As in § 5, the relation (32) leads at once to the inequality
(28) =o.
In the same manner we could show that (32a) leads to the relation
=,
s, being defined by the equation
: A
(34) Zz(8)=Fz (8<8).
2

It can furthermore easily be shown that there is also a value of s beyond s,,
for which (34) is fulfilled. This value we denote by s;.

For the further discussion of (83) we introduce now s; and s; by means of
the relations

A1=B1Z1(3’1,)? A2=Bzzz(3’z’)‘

*8ee C. JORDAN, ibid.
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Then (31) becomes
az ”
=B (L (%)~ Z(5),

Oa?
(35) S B 2,(5)— Z,(s)},
azs 2 BlBﬂ
(338) == wte iy

We_ desire to express the functions of s with subscript 2 in terms of those with
subscript 1. For this purpose we write

u(s) = a, %, (8) + a,,v,(8 ) v,(8)=a,u (8) + 2,0, (8)-
Then using (14) and (15) we can determine a,, and we find by making use
of (26),

()= F 4 (9)0,(03) = o), (5)]
(36)

)
v,(8)= —ng ) {u,(8)v;(8;) —u(8,)v,(3)}.

Consequently
% (8)v;(8,) — u;(8,)2,(8)
u (2)v,(8,) — %,(8;)v,(8)’

u; 8,) ' v;(sz)"u{(sz)zl(";,)
Zi(s, “T(Tr Z(3) = =5 (o) =, (3,) 2, (5,

Z,(8)=—

and in particular

From (86) or from (19) it follows that

u2(31)= _%"—E:zg 1( z)

We can also write
623 = B 'F'l(sl) . .
b 1E (8y)u (8){v,(8;) —w(8,) Z,(s))}
Hence, since B,, B,, F,(s,), F,(s,) are all > 0, the relation (38) becomes
Zl(sz)—zl(ai') _ __1_
ul("z){”l(sz)—ul(sz)zl(sz )} uf( )
Zl("z) - Zl(sz )
Since s;" was by definition beyond s,, this leads, in view of the relation
(27), to the condition

lIV

or

’” "
8, <38,



480 A. DRESDEN: SECOND DERIVATIVES [October

a result which has previously been obtained by BLiss,* who also pointed out
its geometrical interpretation.

-§ 7. -Discontinuous solutions.

We propose next to investigate under what conditions a curve which has a
finite discontinuity in its slope, a so-called discontinuous solution, may minimize
the integral (1). We suppose that we have a broken curve P P P, actually
minimizing (1). We know then from the current theory that each one of its
branches must be an extremal along which Legendre’s and Jacobi’s condi-
tions for ordinary extremals must be satisfied.t Taking now a point P suffi-
ciently near P, we can construct uniquely the extremals P, P and PP,, the
first one by identifying P with the point P, of § 1, the second one by identifying

Fia. 4.

P with the point P, of §1. Computing (1) along each of these extremals, we
obtain the extremal-integral along the broken curve P, PP, as a function of
the coordinates «, y of P:

S(wn Yo % ?/)+ S(xs Yy Xy y2)=3{w, y}'

This function is to be a minimum for x = x,, y = y,, if P, P P, is actually to
furnish a minimum for (1).
We suppose that P, P, P, is represented in the form

x=1wx(8), y=y(s), 8, =8=38),

e=z(s), Y=9(8), 8=8=8,

*Mathematische Annalen, vol. 58 (1904), p. 74.
1 Compare BoLzA, loo. cit., ¢ 48a.
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and introduce the notation
$lx(s), y(s), #(8), ¥ (8)] = ¢(3), P[Z(3)s 7(5), T (3), T (s)]=(s),

¢ being any function of «, ¥, «’, ¥, subject to the ordinary continuity-restrictions.
In order to be able to apply the results of §§ 1-4, we must identify, through-
out the discussion, P, with P, of §1 when we consider 2 as a point of P, P,
and P, with P, of §1when we consider P, as a point of P P,. So, for
instance, u,(8) goes over into u,(s), whereas u, (s) becomes u,(s), ete.
With this agreement, we proceed to establish necessary conditions for a
minimum of J{x, y}. ZThese necessary conditions are derived jfrom the

well-known relations

o3{%0 %} _ . O3 %} _ g,

(37 oz Oy
and
(38) as{wo’yo}fz_i_ a{xg:;yo}s +6 S{a;z,yo} 2=0.

which must hold for all real values of & and 7.
We obtain, by using (11),

O3{ =, ‘ 93{ % Yo
Bt} g (4= Fois), PRl B (4) - Fa),
whence we conclude that (37) is identical with the Erdmann-Weierstrass

corner condition. *
Further, by using (18), the condition (38) becomes

- (Aogz + 2Bo£’7 + 00’72) + E(so)zo(sz)(e% - 771-7-0)2

— F\(8)) Z,(8) (&g — 10, ' =0,
where

A,=L(s)—L(s,), B,=DM(s)—M(s,), C,=N(s)—N(s,).
By means of the transformation

(39) E=p,& =Dy 1=¢E —qn,

the above homogeneous quadratic form goes over into

Py(8,)E" + 20,87 + RB(8,)1",
where
Py(s,) = -7, + F\(8,)Zy(3,) (2o — Do)’

By (s)= "'T:) — F\(8,) Z,(8,) (P, — D09’

* Compare BoLzA, loo. cit., ¢ 48b.
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(40) Q= A, p,Po + 2By (PoGs + Po%0) + Co0 Go*
T, = 4,p; + 2B, 9, + o5
T,= 4,7+ 2B, 5,3 + Co -
In passing, we notice the relation
(41) 02 = 7,7, — (4,6, — B)( pydo— P2,
Moreover the determinant p,g, — p, ¢, of the system (39) is not zero if
6,—0,%0 (mod2),
i. e., if there is a corner at P,. The conditions for a minimum may therefore

be stated as follows : 1
I. If Q, = 0, necessary conditions are

(42) P,s)=0,
(43) R)(s)Z0.
II. IF Q, % 0, we have as necessary conditions
(420) Py(s,)>0,
44) Py(s,)R,(8,)—Q; = 0.
Conditions (42a) and (44) have as a consequence
(43a) R (s)>0.

I. Since Zo( 8) is identical with Z,(2) of § 5, we conclude immediately that
there exists between 8, and 3, one and only one value 3* for which P (s) = 0,1

and that a necessary condition for a minimum is

(45) 5, =%,

The equation Py(8) = 0 satisfied by 3" can be written in the form
T,

== — 0 .
‘Fl (30) (poqo _po%)z
In the same manner, the relation (43) leads to the necessary condition

47) 8, =g,

* This function £, is the invariant, introduced by CARATHEODORY in a different form (see
Dissertation, p. 31 and Mathematische Annalen, vol. 62 (1906), p. 473), to which the pres-
ent one can be easily reduced by means of the relations between L, M, N and the derivatives of
F, as well as the homogeneity properties of . Compare BOLZA, loc. cit., 349, and American
Journal of Mathematics, vol. 30 (1908), pp. 212 and 214.

1 Compare footnote on page 477.

1 The symbol i:, denotes the parameter value conjugate to s, on Py P;, i. e., the root of
,( 8) = 0 which follows next after s,.

(46) Z,(%)
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8" being defined by the equation .

. - 7,
(48) Zy(s )=Fl(so)(poqo-—ﬁoqo)"

The parameter values s* and 3° define points P°and P*on P, P, and P, P,
respectively (see Fig. 4). Our result is, then, that the end-points of a minimizing
“ broken extremal” must lie on the arc bounded by these two critical points.*

IL In the first place, conditions (45) and (47) must be fulfilled in the

stronger forms

(450) 5<%,
and

(47a) 8 >s.

Secondly, from the properties of Z,(s) and Z,(s) it follows that if we con-
sider P, as fixed, a point P, is uniquely determined on P, P, ; or if we consider
P, as fixed, a point P, is uniquely determined on P, P,, by the relation

(49) P,(s,)R,(s,)— Q2 =0.
Furthermore, in order to have (44) fulfilled, we must have
(50) 8, =5 (ors =3,),

where 38,, and 3, are the parameter values of P, and P, respectively.t
Summarizing, we obtain for this case the following
THEOREM. If the inequality

Qy = 4,p5o + By(PoGo + Po %) + Cots 0 + 0
holds, then necessary conditions for a minimum of the integral (1) are
8 >4 and 8, =8,<38;;
i Q, =0, it is necessary that

s = and 8, =38".

The relation (49) connecting 8, with 5, (and s, with 3,) may be written in
explicit form by means of (40) and (41). We find that
A4,C,— B} + F\(8,)( 4,7 + 2B,p.g, + C,93) Zo(s,)
(492) — F,(%)(4,5; + 2B, 1,8, + C,83) Zo(3,)
= () Fi(8) (2o — P20 Zu(8) Z,(5,) = 0.
The relation occurs in this form in Bolza’s work.}

* For the geometrical interpretation of these points, see BoLZ4, loo. ¢it., § 494, and American
Journal of Mathematios, vol. 30 (1908), p. 217 ; also CARATHEODORY, Dissertation, p. 31.

1 For the geometrical interpretation of P, and Py, see ibid.

1 See the first footnote on p. 482.
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We see that the point P, plays the rdle in the theory of discontinuous
extremals which the conjugate point plays in the theory of continuous extremals.
For this reason P, is called the conjugate point of P, on P, P,.

In order to show that conditions (47¢) and (50) have (45a) as their con-
sequence, we must prove that

(51) 8, <8, <%, if 8>3 >4
Indicating the functional dependence of 3, on s, by means of the equation
5, =28(s),

which is implicitly contained in (49a), we can easily show by means of (46) and
(48) that
8,(8°) = 8, 8(8) =
and furthermore, by using (41) and (27T), that
L F()Z()0%
82 (81 ) - F Z! R2 -
(COZARACIIRACY,

from which the inequalities (61) follow immediately.

’

§8. Contradiction with previous results.

The theorem stated in the preceding paragraph is in direct contradiction
with results previously obtained by CARATHEODORY * and BoLza,} who give
sufficient conditions for a minimum, less restricting than the necessary condi-
tions arrived at here. We shall briefly state the contradiction.

According to BoLza any one of the combinations (Ale, B), (415, B),
(AIIL, B) from the following set are sufficient conditions for a minimum :

A4.1a: ,>0, ' P,<P, <P, P,<P,<P;
Ib: 0,>0, P <P, <P, P,<P,<P;
1I: 9,<0, P <P, <P, P,<P,<P.
E(x,y; «,y; %, Y)>0onC for s =s=s,, G+0,

except possibly for s = s, 6= 6,;

7)>0on G for s,=s=s,, £,

~y o~y

E(z,y; «,y; @
except possibly for s = s‘;, 6=9,.
On the other hand, we have found above the foﬂdwing necessary conditions :
Q,+0, P<P=P, P,<P,=P.

* Dissertation, pp. 31 and 32, where no explicit conditions are stated, but the implication is
made that P, need not always be the bound for minimizing extremals.
1 Vorlesungen, §50.
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It is evident that there is accord for Q, <0, but contradiction Jor Q,>0.
We investigate now the behavior of the Z-function in the neighborhood of

P,. We know that
E@y; «,y;38,§)=F(x,y&,§) —TF(x, @, y) — §F 2y, 2, y)*

Writing
Ex(s),y(s); «'(s),y'(8); cos 4, sin 5] = E(s; 0),

E[x(s),y(s); '(s),y (s); cos 8,sinf] = E(s; 8),
$[2(8), y(s): &, 7] = $(3),
A EORTOEASETIOR

- L~ o~ ., d ., d
E (s; €)=sz(s)+yFy(s)—m %Fr,-—y Z;'F!"’

T d = _d -
E(s; 0)=F, (s)+yF,(s)—% Zng'_y Zi}Fv"

we derive the equations

But 2(8), y(8) and 2(8), y(8) representing extremals, we have
d d d = = d - =
dsF'—F —d—sFy,=Fy’ 3}Ft,=Fg, %Fy1=Fy.
Hence,
E,(s;0)=2F () +yF, (s)—EFF (8)=FF,(s),
E(5:0) =5 F (s +¥F,(s) -7 F.(s) = § (o),
and therefore -
(62) E, (83 6,) = Q,, E(8;6,)=— Q. %
Further, CARATHEODORY } has shown that the Erdmann-Weierstrass corner
-conditions are equivalent to

E(s; 0,) =0, ( 03 6,) =0,
53 or
%) 0 E(3,;8,)=0, E(so, )=0.
We expand no& E(3; 8) by Taylor’s expansion at 8 = 8,y § =6,, and find

~ [ 0
E(s;0)=E(s; o)+ 1 O‘Q +— E5(8; o)+

(64) B 9._0
E(s; §)=E(so, 6,) — _—— Q,+ -—-—1—°E7,'(80; 0,) + - -+

* BoLZA, loo. cit., p. 243.
1 This is the second form of 2,, referred to in the first footnote on p. 482.

1 Dissertation, p. 8.
Trans. Am. Math, Soc. 32
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It follows that if the corner conditions are fulfilled and Q, > 0 at the point
8 =3, then E(s; 0~) takes the sign of 8 — s, while E(s; 9) takes the sign of
8, — 8, for small values of |8 — s, |.

Consequently, if O, > 0, we have £ < 0 in a vicinity of 2, on both P, P
and P P,. This shows that the sufficient conditions Ala and AIb are
incompatible with B. This removes the contradiction referred to above.

By means of (54) we can give furthermore a simple proof of a theorem pre-
viously proved by CARATHEODORY * :

«If one follows a strong emtremal € up to a point P, where it ceases to be
strong, and if at P, the invariant ), does not vanish ( for some value 6 = 6,),}
then there is anotker extremal € passing through P,, which begins to be strong
at P, and which forms with € a discontinuous solution of the problem.”

If G ceases to be strong at P,(s,), then we must have the two relations

E(s;0)>0 for s<sy, (0=F=e2r, 040),
E(s; §)<0 for 8> 8,

for at least one value of §, say 6,, different from 6. From the continuity of
E follows then

(55)

E(s,;6,)=0.

]

Hence by (54),
E(s;0)=""%q —:—O"E';(so; 6,) + -

Supposing for the moment Q, < 0, we see that if (55) is to be fulfilled, £ must
be of constant sign whenever s—s, keeps its sign.] But putting 6—6,=\(3—8,),
we find

B(538) = (s~ 2)[ D + 1 E; (33 8)] +
from which it is evident that after the sign of s — s, is once ﬁxed E can be
made positive as well as negative by a proper choice of A, unless Ej(s,; 8,) = 0.
Consequently, if all the hypotheses of the theorem are fulfilled, we may conclude
that

0 -
E(s); o)_O a—gE(so;ao)=0

This shows that the corner condition must be fulfilled at the point P, by the
direction §,. By repeating with respect to E the above argument the second
part of Caratheodory s theorem may easily be proved.

We shall defer to a later paper an example showing the application of the
results of the last two sections.

THE UNIVERSITY OF CHICAGO,
June, 1908.
*Mathematische Annalen, vol. 62 (1906), p. 473.

{ The statement in parenthesis is mine.
1 This discussion is valid only for a neighborhood of Py, a limitation which does not inter-

fere however with our argument.
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