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VECTOR INTERPRETATION OF SYMBOLIC DIFFERENTIAL
PARAMETERS*®

BY

LOUIS INGOLD

I. INTRODUCTION.

The purpose of this paper is to establish a relation between the symbolic
theory of invariants of differential forms, due to the late Professor MAsSCHKE,}
and the theory of extensive quantity (vectors), due to GRASSMANN. }

It will be shown that those symbolic expressions used by MaSCHKE which
lacked an interpretation in his theory, may be represented as vectors of the
GRASSMANN type, and that all of MASCHKE's expressions, including his actual
differential parameters, are expressible in the vector system. The theory of
such vectors will be extended, new formulas in the symbolic theory will be
obtained and applications to geometry will be made.

A preliminary section on space of two dimensions is given. in order that the
well known geometric representation of vectors in two dimensions may serve as
a basis for a compact treatment of the general theory.

The general theory is stated for three dimensions in concise form, proofs
being omitted when their details are simple extensions of the two dimensional
case; the obvious generalization to Euclidean space of n dimensions is then
indicated.

The less obvious extension to surfaces in three dimensions and, generally, to
arbitrary k-dimensional spaces imbedded in an Euclidean space of » dimensions
is treated in more detail. This involves an application of the GRASSMANN
theory to non-uniform spaces and furnishes an example of a vector system based
on variable units.

The paper closes with a section dealing with differential parameters which
involve second and higher derivatives of the symbols.

* Presented to the Society (Chicago), March 30, 1907, in somewhat different form, under the
title : Vector theory, in terms of symbolic differential parameters.

+ MASCHKE, A Symbolic Treatment of the Theory of Invariants of Quadratic Differential Quan-
tics of n Variables, Transactions of the American Mathematical Society, vol. 4
(1803), pp. 445-469.

t H. GRASSMANN, Ausdehnungslehre, 1862. References are to GRASSMANN's collected works
edited by F. ENGEL.
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2 L. INGOLD: VECTOR INTERPRETATION [October

II. THE Two-DIMENSIONAL CASE.

1. Comparison of the properties of vectors and symbols. Given any binary
quadratic differential form,

¢)) A= E@,y)dd + 2F (x, y)dedy + G(x, y)dy?,
Maschke replaces the form by a symbolic square
(2) A = [fo(= y)de + fi (=, y) dy ]**

and writes symbolically

(3) (?)(x’y)=E(w’y);.ﬁl)(w’y).ﬁm(wvy)=F(w’y); (2)(wsy)=0(x’y)'

In the special case £ = G' = 1, F' = 0, the differential form represents the
square of the element of length in a plane; we have then

@ A= a5t = & + Ay = (fyydo + fopdy )
where f;,, and £, are constant, and where
®) Jn=1, JoSo="0, Jo=1.

The formulas (5) suggest the properties of so-called inner multiplication of a
set of unit vectors in a plane. Thus if e, and e, are unit vectors along the -
and the y-axis respectively, and if a = @, e, + a,e, and b = b e, + b,e, are any
vectors, the inner product is
(6) i [alb] =a,b + a,b,.t
Then for inner multiplication
(M [ele]=e=1, [ele.]=e=1, [e.]e.] =[e.[e,] =0.

On account of this agreement, the Maschke symbols f,, and f, may be
% MASCHKE, loo. cit., p. 448.

The general quadratic differenstial form

n
2 aud:t;dzj
j=1

in n variables fr., Tz, *++, Zn 18 replaced by [ fo)dxi - fisydxs + -+ - + fin)dzn]?, 8o that symboli-
cally f« fi;h=ay ; for the special differential form

n
S dr
i=1
these equations become
e [0, iy
Jofip= 1, i=j.

t The inner product is also defined to be ab cos ab, where a meaus the length of a, i. e.,

to the one given in the text.



1910] OF SYMBOLIC DIFFERENTIAL PARAMETERS 3

thought of as a set of unit vectors e, and e,, the multiplications in (5) being
inner multiplications.

It will be shown later that this correspondence of properties persists between
the Maschke symbols and the vectors of Grassmann’s theory in space of » dimen-
sions, every essential property being identical in the two cases.

We proceed just now to show that many—in fact all—of the various sym-
bolic expressions used by Maschke for two dimensions have a meaning in the
vector theory, if we set f, = e, and f,, = e, as suggested above; and that the
relations existing between his symbolic expressions correspoud to geometric
relations.

2. Notations. It is found convenient in the symbolic theory to introduce
other symbols, ¢, ¢, equivalent to £, f,, in the sense that

4’(21) =Fk, ¢(1)¢(2)= F, ¢?2) =G,

according to equations (3). 'With theaid of two sets of symbols, f,)+ i3 ®)> Pe)s
expressions quadratic in the £, ', G may be represented symbolically; thus,

E* =f(21)¢(21)’ EF =ﬂl)¢(l)¢(2)" 2 (EG - Fz) = (ﬁ.)d’(g) _,f(.2)¢(|))2a etc--

When convenient, still other symbols are introduced, equivalent to f and ¢,
in the sense described above. It is agreed, however, that no more than two
symbols of the same kind shall occur in the same product, and that in every
product two symbols of like kind, i. e., two f’s or two ¢'’s, etc., occurring as
factors are to be interpreted according to equations (3) [or equations (5) in the
special case we are now considering]. Otherwise the symbols are subject to
the same laws as ordinary algebraic quantities. The discriminant £G — F™* of
the general quadratic form (1) is denoted by 1/8%* In general, 8 is a func-
tion of x and y; but 8 =1 for the special differential form (4).

The symbols f;,, f;, were regarded by Maschke as partial derivatives of a
symbolic function f(x, y), so that f;,, = 0f/0x. fi,, = 0f/dy.t

In the special case (4), since f;,, and f, are constant we may write

f=-f21)w +-ﬁ2)y'
The Jacobian

ﬁ(/v(l) V(l)
wU(Z) I7(2)

of any two functions & and V is of frequent occurrence and will be denoted
briefly by { U, V'}. Still more frequently occurs the expression 8{U, V},

*This notation is also used for the disoriminant of the quadtatic differential form in »
variables.

1 In general throughout this paper, subscripts in parentheses will denote partial differentia-
tion. Thus U(z, y) being any function of z and y, Uny=0U/[ox. Uay=20 U[/dy. This differs
slightly from the notation of MASCHKE, a8 he used subscripts without parentheses.
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B being defined as above; this expression is denoted by (U, V); for our
special case, since 8 =1, we have (U, V) = {U, V}.*

If U and V are invariants of the differential form then (U, V') is again an
invariant.}

3. Differential parameters involving linear functions. Consider the system
of straight lines

a(x,y)= ¢,y — a,x = const.
parallel to the vector
a=ae + ae,.

Since £, = e, and f, = e, we may write a = (f, a).}

Hence, if a is any linear function, the differential parameter (f, a) may be
interpreted as a vector parallel to the system of straight lines a = const.

In particular, (f,y)=1e, (f, —x)=e,.

Other differential parameters expressed in symbolic form are (f, a)(f, ),
(s @)(fra), (fs ¢)(Sf>a)($,b)=(a,b), where a and b are functions of
and y, and f and ¢ are symbolic functions of the differential form. We pro-
ceed to find their vector meaning when « and b are linear.

The product (f, a@)(f, b), when expanded, equals @, b, + @,b,, where as
above @ = a,y — a,x, and b = b,y — b,x.

Comparing with the definition, p. 450, we see that this result is the inner
product of the two vectors a = a,e, + ¢,e,and b=b e + b,e,. The product
(¢,.1)(¢, a), when expanded, equals — £ a, + fiy@,. Interpreting 1, 7, as
before, we see that this is a vector perpendicular to a@ = (f, @); with Grass-
mann we call this the complement§ of the vector @ and denote it by |a; thus

(6. /) f. ) = |a.

Finally the expression||
(@) fsa) (. b)=(a,b)=ab,— a,b,

is the so-called outer productq of a and b.

4. Differential parameters involving arbitrary functions. We investigate
now the meaning of these same differential parameters when the functions @ and b
are arbitrary functions of « and y.

The equation of the tangent to the curve ¢ = const. at a given point x,, y, on

* The same notation is used in the n-dimensional case ; {a,, - - -, an} represents the Jacobian
of the functions ay (x;, *+ -, Ta )y -, au(F, -+, Zn), and (ay, -+, an) =B{dy, -+, an}.
1 For definitions of ‘Invariant of a differential quantic,’” ** differential parameter,’’ etc., see

MASCHKE, loc. cit., p. 446.

t Notice that aqy = 0a/3r = — a2, and ap) = 0u[dy = ay.

§ For the general definition of complement see p. ¥

| Cf. MASCHKE, loe. cit., p. 453, equation (34).

1 The outer product [ a, b] of two vectors is usunally defined to be 4 - B -sin &, where 4 and
B are the lengths of @ and b. This is easily seen to be the same as-a, b, —a, b;.
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Ja Ja 3 ¢
@ 596)x=,0+y 79?),:,0_ = const.,

¥=Yo y=¥yo

the curve is

or
€x [a(l)]rfro +y [a(zJ] ff;o =k.
Let ¥=Vo y=¥o
L =2 [a(l)] r=rsq + Y [a(2)] 1:10;
. ¥=Yo Y=¥o
then

(fs L) = (f+ @) sz, =Sin[ 00 ] oz — Fo[ @0 Jr=r3
Y=Yo y=yo Y=¥o

but, by Art. 3, (f. L) is directed parallel to the straight lines Z = const., and
these straight lines are parallel to the tangent of that curve of the system
= const. which passes through the point 2, 7,; hence we have

TueoreM 1. If the symbols f,, [y of the differential form da* 4+ dy* are
interpreted as unit vectors along the x- and y-axes respectively, then the sym-
bolic differential parameter (f, a) may be interpreted as a vector function of
position, tangent at each point of the plane to the curve a = const. which
passes through that point.

As in the case where @ and b were linear, the product (f, @)(f, b) may be
regarded as the inner product of the two vectors represented by (f, @) and
(S5 0). The expression (¢, f)(¢,a) represents a vector perpendicular to
(fs @) and therefore normal to the curve @ = const.; and the expression
(/s ¢)(f, a)(¢, b) is the outer product of the vectors (f, a), (f, b).

The length * of the vector represented by (f, @) is

WSy a)y= Nay + ay-
The angle 6 between two curves, @ = const., b = const., is given by T

(f>a)(f+ ) - _"mbm + a4 b4
V(S a) V(¢,b) aiy + ai Voi, + b

cos 0 =

or by}
(e,b) by — @by

(F a¥ N($, b ar, + ag, VB, + b

5. Change of variables. We obtain greater generality for the plane by
changing to curvilinear codrdinates. Let us make the substitution

sin9=

u=u(xz,y), v=0v(2,y);
we have then
 du=ughdetugdy,  dv=vde+ vy,dy.
*CI. p. 2, second footnote.
tCt. p 2, second footnote.
1 Ct. p. 4, last footnote.
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Solving for dx and dy, we have

dis = Vg B — Uy WV dy = Uy G — v(l)dif
- (u,v) ’ (u,v) ’

Substituting these values in the expression for ds, we have

(—&B) du + (u,‘]:‘) dv.

(8) ds = fi,,dw +ﬁz)dy=(u,'v (u,v)

By Theorem I, the coefficients of du and dv represent vectors tangent at any
point u,, v, to the curves v = const., u = const., respectively.
Suppose that the vector function f(x, y) transforms into the vector function
t(u,v); we have
Jo=1tw%nt+ %  So=twtey + t%-
Solving for ¢, and ¢, we have

©) b= %”Z; T EZ:{—; .

The quantic giving length of arc

s’ = (fde + fipydy ' = do* + dy*
transforms into
(10) (twdu + t,,dv)* = Edu’ + 2Fdudv + Gdv*,

where ¢, = E, t,t,=F, t},= G, so that the function ¢(z, v) into which
f (=, y) transforms is a symbolic function of the transformed differential quantic;

hence

TaEOREM IL* If A = Edu® + 2Fdudv + Gdv’ is the differential form
giving length of arc in a plane. the parameters u and v being arbitrary, then the
derivatives ¢, ., of a symbolic function of the form A may be interpreted
as vector functions of position, of length NE, VG, respectively, tangent at
each point of the plane to the parameter curves which pass through that point.

This gives rise to a vector system based on two units,
e = t(u)’ e2 = t(v) ’

tangent to the parameter curves v = const., » = const., respectively; these units

are themselves variable from point to point, both in length and in direction.
Again, remembering the factor 8 = (£ G — F?)™}, we bave

(11) (f> a) = (¢, a), (f, a)(f, )= (¢, a)(t, b),t ete,

where the expressions on the right involve derivatives with respect to x and

*(Cf. Theorem V.
+8ince (f, a), (f, d), eto., are invariant expressions. See MASCHKE, loc. cit., p. 449.
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y, while the expressions on the left involve derivatives with respect to » and ».
These expressions, therefore, have always the same geometric interpretation,
even when the parameters u, v are changed. In particular, the expression
(t, 7)(t, a), where ¢ and 7 are equivalent symbols of the quantic

Edu? + 2Fdudy + Gdv?,

still represents the complement of the vector (¢, a), so that in this notation the
operation of taking the complement is invariant.*

III. Vectors IN THREE DIMENSIONS; AXIOMS.

6. Fundamental notions. In order to extend the preceding work to space of
three dimensions, we shall explain briefly a vector system in that space, following
in spirit Grassmann. ’

Let us start with three mutually perpendicular linear vectors, e,, e,, e,, which
are of unit length and lie along the three axes; equivalence of such linear vec-
tors, their addition and their multiplication follow the rules for two dimensions.
The expression ae, 4+ be, + ce,, where a, b, c are ordinary numbers, represents
a unique vector defined by these rules, namely, the vector from the origin to the
point @, b, ¢, or any parallel vector of equal length; conversely, any vector in
space is expressible in that form.

In order to multiply vectors, we may proceed as in ordinary algebra, provided
the fundamental products of e, e,, €, in pairs are defined ; we shall introduce
three of these products

(12) E1=[ez’es]’ Ez=[es’el]’ E3=[e1’ez]

as new units, and call them vectors of the second order. Each may be thought
of geometrically as a rectangle of which the factor vectors are sides, or as any
equivalent area on any parallel plane. The other products are defined to be

(18) [e;, e,]=—E = —[e,, ], [e,, e]=—E,, (e, ]=—E,.

The products used in (12) and (18) are called outer products. It is to be
noted that the area of the rectangles mentioned is equal to the product of the
lengths of the sides into the sine of the included angle,—a rule given in two
dimensions on p. 4, footnote. This rule applied to the remaining products gives

(14) [e, e ]=[e;, e,]=[e,, e]=0.

The outer product of any two vectors is obtained in terms of E,, E,, E; by

* The Grassmann definition of complement is given in terms of the units. In genersl (i. e.,
except for special transformations) the complement of a vector referred to a new system of units
differs from the complement referred to the original units.
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multiplying algebraically the expressions for the two vectors : thus if

a=ae +ae, + a,e, b=1"be + be,+ bye,,
then
(15) [a’ b]* = (axbz'—azbl)Es + (azba - asbz)El + (a3bl - alba)Ez'

It is usual to represent such a sum as occurs in (15) geometrically by a
rule for addition of vectors of the second order, similar to the familiar parallel-
ogram law for linear vectors ; the parallelogram being replaced by a parallelopiped
determined by the two addenda, and the sum being represented by a diagonal
parallelogram of the parallelopiped; thus the expression % E, + k,E, + k,E,
may be represented by a certain parallelogram, or by an equivalent area on any
parallel plane. It should be noted that the sign of this vector is reversed by
reversing the sense in which the perimeter is directed. It follows that the outer
product [a, b] of any two linear vectors may be represented by the parallelo-
gram which they determine, with its perimeter taken in the direction shown by a.

The outer product of all three units might be represented in a similar fashion,
as a vector of the third order ; geometrically, a parallelopiped of edges e, e,, e,;
it is more usual, however, to notice that all such vectors in space of three dimen-
sions are numerical multiples of one another. It is customary, therefore, to
characterize such a vector solely by the number which expresses its volume ; we

define, then,
(16) [erene;]=[e.e,e]=[e,e,e]=1,
[e3, € ?1] = [el’ €35 ez] = [ez’ € es] =—1.

The outer product of any three linear vectors can be obtained either by
algebraic multiplication and use of (16)t or by computing the volume of the
parallelopiped determined by the three vectors; thus if

a=aqe +ae +ae, b=be +be,+be, c=ce +ce+ce,
then

a, b ¢
17) [a,b,c]=1a2 b, cz!,
jas b 03‘

and, using parentheses as equivalent to brackets, we also write

(18) [a,b,c] =([a, b],c)=(a, [b,¢]).

On occasion, however, we shall distinguish temporarily 3-dimensional vectors
from ordinary numbers.

* Cf. definition for two dimensions, p. 4.
+ A product in which one of the units is repeated is zero, since the volume of the correspond-

ing parallelopiped is zero.
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7. Complements ; regressive and inner products. Let E be the outer
product of several of the unit vectors; we define the complement of E,
written |E to be the outer product of the unit vectors not used in forming E,
with a sign such that [E, |E] =

It follows * that |[E® = [E @ E (3“’] E@-9, where E #=9 is the outer product
of the unit vectors not used in formmg E®, taken in any order.

The complement of any linear function of several vectors is defined to be the
same linear function of their complements ; thus }

(18) |(A1E1+A2E2)=A1|E1+AzlE‘r

The outer product of two vectors A, B has been defined only for the case in
which the sum of the orders of A and B does not exceed three. In case this
sum is greater than three, the sum of the orders of |A and |B .is less than
three; hence in this case [|A, In terms of this product we
define [A, B].

Definition. If the sum of the orders of A and B exceeds three, then the
outer product [A, B] is a vector, C, such that [C=[|A, |B]; in this case
the product is called regressive; when the sum of the orders of the factors
is less than three, the product is called progressive; both are called outer

products.

Definition. The outer product [ A, |B] of a vector A and the complement
of another vector, B, is called the inner product of A and B.§

8. Vector formulas. The following formulas enable us to determine the
vector represented by a given regressive product. First we consider the regres-
sive product of two units of the second order ([e;. e;], [e;, e]). We have
by definition

|([eir €1, [&e])=([e € e]en [enene]e)
= - [ei’ 5 el-’]z[ek’ ej] = ':ej’ el.-]'
This by definition is the complement of [e;, e;, €, ]e;; hence
(19) ([ec” ej]’ [ei’ek])= [ei’ej'ek]ei'”

Next consider the product ([e;, a], [e;, €, ]) where.a = a,e, + a,e, + a,e,

* Capital letters in black face type will be used to dénote vectors of any order. If it is desired
to specify the order an upper index in parentheses will be employed ; thus E meaus a vector of
the i-th order. Small black face letters invariably represent linear vectors.

t From the definition of complement and formula (18) it follows that | (|A) = = A.

t It is customary to omit the comma and regard the complement sign | as the sign of inner
maultiplication.

§ This definition, and others of this section are in accord with the corresponding definitions
for two dimensions in Art. 2. The definitions as stated here are at once extensible to n
dimensions.

|| We have here assumed i, j, k all different, but the formula holds if any two, or if all three
are equal, for in that case both sides reduce to zero. .
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Substituting this expression for @ we have

©20) ([es als [ee])=a([e,e], [e.e])+a([e,e], [e,e])
+a,([e>e] [ere])=a([e.e], [e,e])=/[e,a,ele,.
Continuing we find, for any three vectors, a, b, c,

(21) ([a, b], [a,c])=[a,b,c]a.

Formulas (19) and (20) are special cases of (21).

We are now able to see the geometric meaning of a regressive product [ A, B]
in case A and B are vectors of the second order ; let the planes in which A and
B are supposed to lie be produced to meet, and let a be a vector in their line of
intersection ; then, by properly choosing b and ¢, we may write A= [a, b]
and B=[a,c]. By (21), then, we see that [A. B] is a vector of the first
order lying in (or parallel to) the line of intersection of the planes of A and B.*

The inner product of two vectors

a = Za‘.ei, b= Zbiei
i=1

may be found by applying the definition and multiplying out algebraically ; thus

3 3 3
22) [alb]= [Z a,e, > b'.le'.] =[e, e, ]2 ab=ad +ab,+ad,
i=1 i=l1 i=1

This is seen to be the extension to three dimensions of the definition of inner
product given on p. 2.
Again, the inner product ([a, b]|c) may be found similarly to be

(@b, — ab,)(c e,—c,e,) + (a,b— a,b, )( ce,—cse;) + (ah,— ab;)(ce,—c e).
If the inner product of this vector and a vector
3
d= Zd'.e'.

be formed, the result is =
{([a, &] le)|d} =(a,b,— a,b,)(c,d,— c,d,)

+ (azbs - asbz)(czds— cadz) + (aabl - bs)(csdl - ds)
and this same result is found for the inner product ([a, b]|[¢c, d]); hence
(23) ([a, b]|[c,d]) = {([a, b]|c)|d}.

We proceed to obtain certain other fundamental formulas: let @, b, ¢ be any
three independent linear vectors, and d any other linear vector. Then we may

*In n dimensions if the product [A, R] is progressive, it represents a vector in the least
space containing A and B ; if regressive, a veotor in the greatest space common to A and B.
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write
d = la + mb + nc,

where !, m, n are ordinary numbers. To obtain /, m, n, take the outer
product of d with [a, b], [b, ¢], [¢c, a], respectively. We thus obtain

(24) [a, b, d]=n[a, b, <], (b, ¢, d] =![a, b, c], [e, a, d] =mla, b, c];
hence

(25) l= [b,¢c,d] _[ca a,d] _ [a, b,d]

[a,6.¢]° ™ [a.b,¢]’ "T[a,b,¢]
Again, taking the outer product of d with ¢, we have
[e,d] =![c,a] —m[b,c];

hence :
(26) ([a, 8], [e,d])=—1I([a,b], [a,c])+m([b,a], [b,c])
=—![a,b,c]la—m[a,b,c]b*=[a,c,d]b—[b,c,d]a.
Similarly
[a, b]= = [a,d]— " [a, c];
hence
(27) ([a, ], [c,d])=[a, b,d]c—[a, b, c]d.

If we represent the two-dimensional vector [ ¢, d] in (26) as the complement
of a linear vector v, we have

(28) ([a, 8] [0)=[a|v]b—[b |0]a.

Taking the inner product of both sides of this equation by another vector w, and
using formula (28), we have
[aje], [a|w]

(29) ([a, 8] |[v,w])=[a|o][bjw] — [b|v][a|w] = [b]o], [blw]|

The vector formulas just given for three dimensions are readily extended to n
dimensions. The extensions of formulas (27), (28), and (29) are written down
here for reference. They may be proved by methods analogous to those just
indicated for three dimensions. ,

Let [@,,a,, ---,a,] and [&,, b,, ---, b ] be two vectors in a space of n
dimensions, of orders & and r respectively, and suppose & + r > n, so that the
product ([@,, @,, - -+, a,], [ b, b,. --+, b ]) is regressive. The extension of

(27) may then be written
@7) ([al,...,ak],[bl,...,br})
n =2;[a1, ceeyay b, oo b, J[b. s ey BT

*Cf. formula (21), p. 10.
t Ausdehnungslehre, p. 83, no. 113.
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where ¢, .-, c,_, stands for a combination of 7 —% of the subscripts
1,2,...,r,and ¢, ¢,, -« -, ¢, are taken in such order that [ b, , b,,, ---, b, ]
=[b,b, ---,b]. We havealso

(layy @ - -v @ 1[[b,, 8, ---5 5, ])
(25, N (CREIRT || R CHRERIT N By
(a,56,], [a,|b,] - [a]b,]
(29)  ([@ -+ @, ]|[bis - > b,]) = | [@]B:] [@[b]- - [a;]b,] ] +

[ak'l bl]‘ [aklb2] vt [ak.{ bk]

9. Awxioms. The essential properties} used in what precedes may be stated
in the following axioms, which will be seen to ensure the preceding facts for
three dimensions, and which also furnish a sufficient basis for an immediate
extension of all these ideas to space of » dimensions for a system of » mutually
orthogonal linear unit vectors. The notation explained in footnote, p. 9, will
be employed. Small letters in ordinary type denote ordinary numbers.

I. If A, B, C are vectors of the r-th order, » = n, then

(1) 1A= Al;

(2) I(mA)=1ImA;

(3) 0.A=0;

(4) 1A =0 implies /=0 orA=0;

(5) /A + mB is a uniquely determined vector of order 7 ;
(6) A+ (B+C)=(A+B)+C;
MIA+mA=(l+m)A;

8) I(A+B)=1IA+IB.§

II. There exist » vectors of the first order, e, e,, ---, e , such that any
linear relation, /e, + /,e, +---+ ! e =0, implies [, =0,7/,=0, ..., =0.

Definition. k vectors of any order 4, A,, ---, A, are said to be indepen-
dent if a linear velation, /A +0,A,+---+ 0, A, =0, implies !, =0,7,= 0,
ey =0,

1I1. If A® is a vector of the i-th order, and if B“ and C? are vectors of the
j-th ovder (i +j=mn), then

(1) [A9, BY] is a uniquely determined vector of the (i + j)-th order;

(2) [A?, (B 4+ CO)]=[AY, B} +[ A9, CY].

*Ibid., p. 133, no. 173.

1 Ibid., p. 135, no. 175.

1 This system of axioms is compiled from GRASSMANN ; all, however, are not given explicitly
by him. Some are given as theorems : others are implied in his definitions. The system, as
such, is new.

§ The property A + B=B+ A can be proved by showing that (A -} B)—(B+ A) =0,
by use of (6), (7), (8); hence by (5), the result follows.
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Definition. The expression [ A?, B ] is called the outer product of A®
and BV,
IV. If a and b are vectors of the first order

@) [la, mb]l=Im[a, b];
)] [a, b]+[b,a]=0.

V.Ifa,a, --,aand b, b,, ---, b, are vectors of the first order and if
i + j=mn, then

([al’ Q. -0y a..], [bn bz’ T bj])=[al’ a,, --- @, bn b;n L) bj]'

VI. n» independent vectors e, e,, ---, e of the first order exist, such that
[e. e, - -e]=1.

Definition. Let e, e,, ---, e be any n independent vectors of the first
order ; the products involving the different combinations of these vectors i at a
time are called the multiplicative combinations of the i-th order of these
vectors.

VII. If A® is any vector of the i-th order, then n independent vectors

e,e,, ---, e of the first order and 1
n!

Tl (n—1)!
numbers, /,, {, -+ -, Iy, exist suchthat AV =1 E + L,E, + ... + I, E,, where
the E’s are the multiplicative combinations of the i-th order of e, e,, ---, e, .
Complements, regressive and inner products are defined for » dimensions pre
cisely as on p. 9 for three dimensions. Applying the definition of inner mul-
tiplication to the units we h ve
0 (i%)*
[ele]= 1 (i=j),

where the units are the e, e,, -- -, e, of Axiom VL

IV. INTERPRETATION OF SYMBOLIC FOoRMS AND COMPARISON WITH THE
AXxI0MS.

10. Definitions. It will now be shown that symbolic differential parameters
of the special form

(0 da? + dy* + d2* = ([ de + fiy Ay +Sind2)*

may be regarded as vectors of a three-dimensional space by interpreting f;,,,
Siys gy @8 unit vectors along the -, y-, and z-axes respectively. This will be
done by showing that with suitable definition of outer product, etc., they satisfy
the Axioms I-VII for n = 3.

Linear functions of any number of symbolic parameters of the type (f, @, %),
where f is a symbolic function of the differential form (80), will be shown to be

* C&npare wi};h the formulas for f() f(5), footnote, p. 2.
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one-dimensional vectors; it should be noted that f), f,, f, are themselves of
this type, since f,, = (f, ¥, 2), fiy = (/> 2, %), fio = (> %, ¥)-

Also (f,¢,¥)($, ¥, a)is a linear function of parameters of this type since,
when it is expanded, ¢ and v disappear according to equations in the footnote,
p- 2.

Linear functions of parameters of the type (f, ¢, @) involving two symbolic
functions will be shown to be vectors of the second order.

For effecting transformations of certain symbolic expressions, the following
determinant theorem, stated for determinants of the third order, is found useful.

Denote

i a b ¢
1@y b, ¢
'\

i a b C

3

by |a, b, c|; then
|a,b,c|-|d,e,f|=|d,b,c|-|a,e,f|+]|e,b,c|-|d,a,f|+|f,b,c|-|d,e,a].*
Let us use the notation
a=1}(f, ¢, ¥)(é, ¥, a) = ayfy + s S + ag fin.
b=3(fs & ¥)(, ¥, 0) = by + bof + bwfo>
c=}(fs &, ¥)(, ¥ ¢) = e Sy + Co S + ConSians

where a, b, ¢ are functions of x, y, 2.
We define outer products as follows :

[a, 5] = (- . ¥)(f 2, B),
[a, b, c]=([a, B], €)= (a, [5, e]) = (a, b, ).t

We take Axioms III, and IV as definitions of the expressions
[A®, (BY +C7)] and [la, mb].
11. Comparison with the axioms. We proceed to show that with these
definitions Axioms I to VII are satisfied.

* For determinants of the n-th order
n
la@1, az, =+ -y @nl |1, bay -+ -, bal = El[b‘, az, -+, an|-|by, bay - oo, bi1, a1y bipr, ey bal .

See MASCHKE, Differential parameters of the first order, Transuotion's of the American
Mathematical Society, vol. 7 (1906), p. 70, equation (1). Ct. also E. PAscAL, Lincei
Rendiconti, 1888.

t This definition is given in order o conform to the customary definition of (@ , b, ¢] which
makes this product 8 number rather than a vector of the third order. A definition more in
aoocord with the other definitions given here would be

[G,b, c]=(f1 ?, 1p)(a,b,c)/l/i§—!.
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I, - - 14 are satisfied by the fundamental assumptions in regard to symbols.
To show that II is satisfied we show that f,,, f,, f; are linearly indepen-
dent. Assume then a linear relation

2hy + oy + 9 =03
multiplying through by f,,, we have

I)f(zl) + Qﬂl)f(z) + r-ﬂl) @ = 0.

But f2,=1, f,,fiy = 0, fioSiy = 0. Hence the relation reduces to p =0.
Similarly, multiplying in turn by f,, f, we find ¢ = 0, = 0. Hence f,),
fiys and f,) may be taken as the e,, e,, and e, of IL.

II1,, and IV, are satisfied by definition.

III,,, is satisfied by definition in case the two factors are of the first order;
also in case the factors are one of the second order and one of the first order in

the forms
1
V2!
and (f, ¢, ¥)(¢, ¥, a)/2 respectively. There remains the case in which
the factors are of the form (¢, ¥, a) and (f, ¢, ¥ )(¢, ¥, b). In this case,

since (2, y,2) =1, we may write
(s ¥ a)=(bs ¥, @), Y1 2)=(bs ¥ 2)(@s > 2) + (s ¥ ¥)(& 2, @) + (b5 ¥ 2)(@, 2, ¥)
by the determinant theorem. Now
(s 81 9= b W) 0 2) = (fs s ) )+ (0 @) 9 )+ (s 22 )1 . 2)
Hence
(fy & W) (35 2) = (fs > 2 (& ¥ ) + (fs 2 2)(s 95 2) (B ¥ 9)
+ (f 2 ) 9, 2) (s ¥ 2)
=f&(® ¥s ) + fir S (B ¥ ¥) +Sir Sy (B Y0 2) = (¢ ¥ 2)5
(fs s ¥)(fs 2o 2) = (&5 ¥, 9),
(fré ¥)(frmy)=($, ¥, 2).

(f’ ¢’ ‘P)(ﬂ a, b)

and similarly

Hence finally
(¢, ¥.a)=(a,y,2)-(f+ &, ¥)(fr¥.2) + (a2 =)-(fi & ¥)(fs % )
+ (a2 y)(hd¥)hoy).

Hence if

=,—}§(4’9 ¥» @) and B=1(f, 4 ¥)( ¥ D),

*8ee p. 3.
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then
[A, B] = (a,y,2)(b,y,2) + (a,2,2)(b, 2, %) + (2,2, y)(b, =, y).

IV, is satisfied by a property of determinants.

V is satisfied by definition.

V1 is satisfied by taking a, b, ¢, equal to x, y, 2, respectively.

We shall prove that Axiom VII is satisfied by showing that every symbolic
differential parameter of the type (f, @, b) can be expressed linearly in terms
of (f,y,2), (fs2,2), (f,,y)and that every symbolic differential parameter
of the type (f, ¢, @) can be expressed linearly in terms of the three parameters

(fv b, x), (fv ¢r?/)’ (f’ ¢,z)

Using the determinant theorem we have
(fs @)= (f @2 B)(@r 9, 2) = (2, 4, b) (fr 9, 2) + (95 @, B) (> 2 2)
+ (2, @, 0)(f 2, 9);
and also
(fré,a)=(fd,a)(x,y,2)=(a,y,2)([, ¢, )
+ (@, 2, 2)(f, b, y) + (a, 2, y)(f5 b, 2).
It is shown in the next article that (f, ¢, ac)/l/é, (fs o, y)/l/é, (f,d),z)/l/ﬁ

are the multiplicative combinations of the second order of e, =f,, €, =/,
e, =fy- Axiom V11 is, therefore, satisfied if we take

(> ¥>2)=Jo> (fr 2o ®) =f» (frzy) =S
asthee,e,, e,.
The statement made at the head of this section is therefore justified.
The similar work for » dimensions is an easy generalization ; hence we have
THEOREM III.  T'he symbols f), fi)s - + + s finy» Of the special differential form

> du?,
i=]

may be regarded as unit vectors along the cobrdinate axes ; linear functions of
parameters of the type (fy, fos ++ s frr @y @y + -, a,_,) involving k symbolic
Sunctions f, -+, [, may then be interpreted as k-dimensional vectors lying
in the space determined by f.,, fiys -+ fi

In n» dimensions we use the notation

1 n
a,=(n__f)‘y(¢p ) ¢n—l’f)(¢l’ sy B ai)=j§at'(j)-f.(j)’

1
b= e 1y (f b (B s B

and define outer products as follows :
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1
[al’ a, - ’a’-]=(_n_—~k_)_’_;]];'(¢n ) ¢n—kv.f17 . "fk)(d’v Tt ¢u—lr’ Q-+ "’ak)’
1
yoona ]y [by, - b])= e

X (¢p R | ¢n-k—j’-fl’ ° ."ﬂ.g+j)(¢l‘, Tty ¢n—k—j’ al’ MR ] alc’ bp M ) bj)
(k+j<m).

V. FORMULAS AND APPLICATIONS.

12. General formulas. The symbolic expressions for various combinations
of vectors will now be obtained and the formulas will then be applied to obtain
new relations connecting symbolic differential parameters. We first give dif-
ferent symbolic expressions for the units and their multiplicative combinations.

e = %(f’ b, ‘P\)(‘#’ v, w)= (f, Y, z)a
(31) e,=3(f, ¢, ¥)(b ¥, y)=([>2,2),

For e3=%(f, b, ‘l")(¢’ v, z)=(f,a:, 3/),-

(f’ ?, ‘l’)":(f’ b, ‘I’)(w’ yaz)
=(fiy.2) (P, ¥s2)+ (frz,2) (P ¥y y) + (faw) y)(é, ¥, 2)

and
. s 8, ¥) (80 ¥ 2) = H{2(F1 )} = (frye2),
since
(¢, ¥sx) (P, ¥, 2)=2
and

(¢ ¥ x)(bs ¥y y)=(d, ¥, x)(b,¥,2)= 0.

Similarly for the others.
By definition
e=3(fré,¥)(¢, ¥, 2).

For the units of the second order we have

1 1
[ez’ es] = ’el = ;/é(fﬁ ®. ‘I’)(fs Y 2) =E(¢" v, w)’

1
B2 [ep el =le= 5 (s és ¥)(Js 5 m) = 5 (8 42 0),

1 1
[el’ e:'] = ie.'i"_" _\/é (f’ ¢’ ‘k)(f‘ Z, y)= E(‘#s "P‘s z)-

For, by definition, |e, = [e,, e,], where e,=3(f, ¢, ¥)(¢, ¥, y) and
e,=31(f, ¢, ¥)(¢, ¥, 2) and by definition, p. 14,

1
[eZ’ es]=72'(f’ ¢7 \l')(f’ Y, z);
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that (f, ¢, ¥)(f> ¥, 2)= (¢, ¥, x) is proved by writing
(frd.¥)=(fr®¥) (2, Y, 2),

etc., as in the proof of formulas (31).
By this same method it may be shown that

(83) a=13(fs b, ¥) (P, ¥sa)=(a,y,z)e +(a,2, z)e,+(a,x, y)e;
for (¢, ¥, a)=(¢, ¥, a)(z, ¥, 2) = (¢, ¥, z)(a, y, z), etc, and
3(f, o, ¥)(9 ¥, x) = e, ete.

Other important formulas follow :

(34) ]d=\%(¢,\k,a);*‘
for by (33)
la=(a,y,z2)|e +'(a, z,x)|e,+ (a,x,y)|e
1
= 5 (@ v 2)( ¥ @)+ (a, 2, 2)($, ¥> y) + (@, 2, 9) (6, ¥ 2))

and

1 1 1
V_Q(d’, ‘,’.’ a) = ‘/é(¢’ ""a a)(wv Y, z) = "‘/_é(a/’ Y z)(¢9 ‘P'o m),

etc., as above.
[a]|b]=3(f,¢:a)(f,,0)=(a,¥,2)(8,9,2)+(a)%,2)(b,2, )

(39)
+ (@, 2, ¥)(b, 2, ¥) = a,by) + @) by + agde)-

Proof. By (33)
b=(b,y,2)e, + (b,z,x)e,+ (b, x,y)e;

hence
[alb]=(b,y,2)[a|e] + (b,2,x)[ale,] +(b,x,y)[aje,)
and by deﬁnition, p- 14,
[ale,]=(a,¥y,z),
etc., where
a=3(/ 4 V) (B ¥ a) and o= (fo b W)y 2);

hence

[a]b] = (a,y.2)(b,y,2) + (a,2,2)(b,2, %)+ (a, %, ¥)(b, 2, ¥)-

* Except for a numerical factor the complement of any veotor expressed in symbolic form is
obtained by maultiplying by a factor ( f, ¢, ¥ ) made up wholly of symbolic functions, includ-
ing the symbolic functions which occur only once in the expression for the vector, or by leaving
out such a factor in case it is present.
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Again

(fs s a)(fs b,8)={(a,y,2)(f, ¢, 2) + (a, 2, x)(fs éy)
+ (aa X, ?/)(f9 ¢, z)}{(ba Y, z)(fa ¢’ w)
+ (b, 2, 2)(fs by y) + (b2, 9)(fs b, 2)}
=2{(a,y,2)(b,y,2)+(a,z,2)(b,z,2)
+ (a,z,y)(d, 2, y)}

and this proves formula (35).
1

[a, b] = —=

(36) V2

= (w, a, b)[ e e] + (y,a,b)[e, €] + (2, a,b)[ ¢, &)]

(fs ¢, ¥)(/fs a,b)

The proof is similar to the proof of (83).

(87) I[a, 6]=[]|a[b]=(f, a,b);
for from (36)

[[a, b] =(x,a,d)e, + (y,a,b)e, + (2, a, ble,=(x,a,b)(f,y,2)
+ (9 & b)(fy 2 %) + (% a, 8)(f 2, y) = (f, a, b).
(38) ([a, b], [ d])=(f, 6, ¥)($, a, b) (¥ ¢, d).
Proof. By definition, .
([a, b7, [e, d1)=(I[a, b]|[e.d]) =[E (= @, b)e,, T(2, <, d)e,]

(w’ 2 b)’ (w’ C, d) ;(ya a, b)’(y’ C, d)
ARSI CITS KR A (AN HICAEN

(2, a,b), (2,¢,4d)
(2, a, b), (=, c,d)

(e €]

again,
(fs &s¥)(Psa,8)(¥sc,d)= (9, a, 5){(fs b 2) (V> ¥, z)(¥,c,d)
+(fa ¢’ y)(‘l” 2, w)(‘l” C, d) + (f’ ¢’ z)(‘ko x, y)("P\ C, d)}

=(¢,a,0){(fsb,x)(2,c,d) + (fs o, (y,c,d) +(f, 4’92)(2’0"1)}‘
Now

(fs dr2)(P, a, b)=(fry,x)(¢, 2, xz)(¢,a,d)
+(f9 %, w)(¢9 X, y)(¢‘ a, b) = (3/, a, b)(fa Y w) + (z, a, b)(f,zvm)s
with similar expressions for (f, ¢, y)(¢, @, b) and (f, ¢, 2)(¢, @, b). Sub-
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stituting, we have finally

(fs &, ¥)($; @ b) (¥ ¢, d)={(y, a, b)(/f, 9, %)
+ @, B)(f 5 @)} (2, ¢ d)+{( @ b fi 5 9)+(@ @ B)(f = )} (v <, d)
(2 @ 0)(fr @ 2) + (95 @, B)(fr ¥2 2)}(25 5 @)

|(x, @, b), (2, ¢, d) (y,a,b),(y,c,d)
=(f, =, y)I(y’ a, b), (3/, c, d)! +(fv Yy 2) (z, a, b)’ (z, ¢, d)

(2, @, b), (z,¢,d)
+ (f>2, ) (w,a,b),(w,c,d) :

The expression found above for |([a, b], [ ¢, d]) is clearly the complement of
this final expression for (f, ¢, ¥)(¢, @, b) (¥, ¢, d); hence the formula is
proved.

(39) ([a, b]|e)=(f,:c)(¢;a,b).
For by (33) or (34)

le=Z(c,y, z)[ e, €];
hence

([a, b]le)=(c,y,2)([a, b], [&, &]) + (¢, 2z, z)([@, B], [e, €])
+ (¢, y)([a, b]. [e; &])
= (¢, a,6)2(c,y,2)(fs ¢ ¥)(¥,y,2) by (38)
=($,a,b)2(f, $,x)(c,y,2)= (/s ¢, ¢)(, 4, b).

(40) ([a, 8] |[c,d])=(fsa,b)(fsc,d).*
For, by formula (37), |[e, d] = 2(x, ¢, d)e,; hence

([a,8]][e,d])
=(x,c,d)[a, b, e]+(y,c,d)[a, b,e,]+(z,c,d)[a,b,e,]
= (z,c,d)(x,a,b)+ (y,c,d)(y,a,b) + (z,¢,d)(z,a,b);
and (f, @, b)(f, ¢, d) expanded gives the same.

We give below the extensions of the formulas (81)—(40) to » dimensions; the
proofs are similar to the proofs given above for three dimensions.

1
e =——(fr b -y ¢ W,y -y ¢ x,)
1 1\J ?» Prn—y ’ » P10 &

(1) (n—1)! : "

= (2 s Ty o Ty 00y 2,)e

* Except for a numerical factor the inner product of two vectors in symbolic notation is ob-
tained by writing them both (or their complements) in terms of the same symbolic functions as
far as possible.
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1 1
(32,,) [ecl, . ec,,] =(—n—;_k)7_s/i1 F1F2= W(fl’

Fl = (fn . ‘9fk) ¢n Tty ¢n—k)’ F2= (d’ls ttty ¢n—k’wcl7 Ty wrk)7

where ¢, ..., ¢, stands for any combination of % of the subscripts
1,2,...,n,andc,,,, - -+, c, are the remaining subscripts in such order that
(wrl9wc27""wc.)=+1'

M ',fk’ Lepas * "% wc,)?

a=(_n_—l—15—!(f’ Py s b ) (P vy B, @)

2(“’1' Ty By Xy gyttt wﬂ)ei‘
=

1
(34,) la—'—(—T),(fn s S @)

(35,) [a|b] = (h’:"’I")‘j(ﬂa s fam @) (s s fuins B)-

(33.)

[a,, a,, - a]
B6) =iyt (B s Beowsdio -0 F (B s b e o0 )
ap MCHIRT AT SRR AR
[[a,, -~ a]=([a, - a]|[@- > a])

(37,) 1
= ,‘n_"*’* (fp ) fu—k’al’ ] ak)'

Ifk+j>n
1
(el Lo b D= g G iy W 5 =™
(38,) M=(¢n SRR - N ‘P‘n ) ‘l’n—j’fl’ ""fk+i—")’
M= Py -5 ot By =5 @) (Vs oo o5 Vs byy 03 b))

1
MR } b g b = —— A,‘_,,;,,,,A?M,
(39)([a1, ak+r]|[ 1 ,-]) (n—k_r)! -\lk! 3
2”3 = (‘fl’ .o "-f‘k’ ¢k+l’ .o "¢n—r’ bl’ oy br)(¢k+l’ ey ¢n—r’ al, ceey ak+r)’

([ay -+ a]|[bs -+ 5,])
(brs =9 Purs @y oo 5@ )(Dyy = o5 D, y» by -y b,).

29

(40,)

(n—r)'
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18. Application to the symbolic invariant theory. Results of the Grass-
mann theory may be employed to derive formulas in the symbolic theory.
Three examples of this application are given below.*

1. From formula (27 ) follows by use of formula (38))

(fl’ ""fn—l::’ ¢1’ ...,¢”_j, 1!,-1, . ‘\lrlrf-j—l)(‘fl’ ""-f;n—k' @y -y ak)
(n—&)! (n—j)!
X (Bis s bugo b s b)) = TN
X ;(ﬂ’ ooy S s s B Ve 11,’:“_"')

X (,fp .. "f;—k’ 4)‘, . "¢n—j’bf|’ cee, ch-")(al’ Ceey Oy bc]” .. "bc',,_,,)'T
2. From formula (28 ) follows by use of formula (39,)

(fv o "-f;c’ ¢k+17 R ¢n-—-r’ bv Tt br)(¢k+n T ¢n—r’ Ty c 0y ak+r)
~k—r)!
42 = S U s+ @)oo B 1 8)

c

X (P -y ¢>n_k, @y =+ vy a,ck,)(([)l, S L /A 2
3. From formula (29) follows by use of formulas (35,) and (40,)

(41)

(_n_ik_)!(f” s @yr o or @) (For s famr Bya w o ey B)

(G )i s (o @) (o B)s =2 (i @) o )

@ 1 (o @) 801 o 0) o B+ (o 0) s B0
S{n=Dp. . N
s @) o 525 i @) B+ (o 8) (for 80)

where (f;» @) = (fus S *+ *» fino1» @;) and f is a symbolic function equivalent

to f.

These formulas can be shown to hold for the general differential form.

14. Applications to geometry. As heretofore, we regard the variables
@, , %, + - 5 &, a8 cartesian codrdinates of a point in an n-dimensional space ; we
wish to determine how the %-dimensional vector (f,, ---, f;, @, - -+, @,_,) 18
related to the surfaces a, = const., @, = const., - - ., @,_, = const.

First we show that the (» — 1)-dimensional vector (f,, - -, f,_,» @) is, at

* Formulas (41) and (42) are new.

For formula (43) see MASCHKE, Differential parameters of the first order, loo. cit., p. 73.

te, vy Ckij—n Stands for any combination of k- j—n of the subscripts, 1, 2, -+, j;
¢, « -, ca—x are the remaining subscripts. In order to obtain the correct sign in each term, the

order of the subscripts must be such that ¢, - -, ciyj—n, ¢, ‘-, ¢h—t may be obtained from
1,2, -+, j, by an even number of transpositions.
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each point of space, tangent to one of the surfaces ¢ = const.; for when a is
linear, by formulas (33)) and (34,),

1 n
T\/?_;;i:f—):!_ (fl’ .. ‘,f;,_p a) =§ D)

is parallel to the planes @ = const.

When « is not linear, then the linear space of n — 1 dimensions, tangent at
a given point (Z,, &,, ---, #,) to the surface @ = const. which passes through
that point, is given by

n
L = ) (a,),_.; = const.,
i=1

and clearly
(fir oo Samis @z = (f15 -5 fomrs L)

The linear space tangent to the intersection of a, = const., @, = const. will be
the space common to the linear spaces tangent to the two hyper-sirfaces. A
vector lying in this space is found by taking the outer product of the vectors
(fis s Sy @) and (f), -+, f,_,, @,). By formula (87) this product may
be written, except for a numerical factor, (f,, ---, f,_,, a,, a,).

This argument can be repeated for three functions a,, a,, a,, and again, for
any number, a,, a,, ---, a__, ; hence we have:

TaEOREM 1IV. If the derivatives f,,, fi), - - -, [, of @ symbolic function of
the differential form

2 da}
i=1
are interpreted as unit vectors along the cosrdinate axes, then

(fl’fz’ : "’-f;c’ Ay Qyy * -y an—k)

may be interpreted as a k-dimensional vector, tangent to the k-dimensional
spread which is common to a, = const., a, = const., - - -, a,_, = const.

VI. THE GENERAL DIFFERENTIAL FORM.

15. Change of variables in three dimensions. So far we have been con-
sidering differential parameters of a special type of differential form : namely,
the differential form for length of arc in an Euclidean space; i. e., a form of

the type i
dax?,

or any form into which such a form can be transformed.

In this section it is shown that Theorem IV can be extended to apply to any
space which can be considered a part of an Euclidean space (of higher dimen-
sions) ; for example, to a surface lying in three dimensions.
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Let us consider in an ordinary space of three dimensions the transformation
u=u(2, ¥y, 2), =v(2,¥Y,2), w=w(x,y,2).

We can find dz, dy, dz, in terms of du, dv, dw, by solving the equations

du = u,de + vy, dy + U dz,

dv = v, dx + v, dy + v, dz,

dw = w,,dx + w,, dy + wy,dz.
If the resulting values are substituted in

ds = f,dx + f, dy + f;,dz

we obtain

d3=(-‘é~fv’w)d (—_—-_—u’f’w)d (qllf)dw

(u,v, w) (u,v, w) (v, v, w)

By Theorem IV the coefficients* of du, dv, dw may be regarded as linear
vectors tangent to the. intersections of v = const., w = const.; w = const.,
u = const.; and u = const., v = const., respectively. Let us denote these coeffi-
cients by ¢, ¢,), t;. It can be shown precisely as in the two-dimensional case
that ¢, ¢, t, are the derivatives with respect to u, v, w of the function into
which the symbolic function f transforms. Hence the transformed function
t(u, v, w) is a symbolic function of the differential quantic into which
dx* + dy* + d7* transforms and the derivatives ¢, ., &, (I €., &y, L &)
may be interpreted as vector functions of position, tangent at each point of
space to the parameter curves which pass through that point. The transformed
differential form is given by ds* = df* = dt’ = (¢,,du + t,dv + t,,dw)* where
ty=(frv,w)/(u,v, w), ete.

16. The general two-dimensional case. On the surface w = a (a definite
const.), dw = 0. In our formula for ds let us write @ for w to indicate that
only such values of z, y, 2z are to be used as will satisfy the equation w = a.

We have, then, on the surface

ds® = (¢, du + ty,dv)? = Edu* + 2Fdudv + Gdv*
where
thy=£, toty=F, t5H=0G.1
This gives rise to a vector system on a surface, having variable units t,,, ¢,
which are tangent to the parameter curves of the surface. The usual vector
expressions, as inner and outer products, and complements can be set up in terms

* Observe that the common denominator of these coefficients is an ordinary number, being
the Jacobian of the functions u, v, w with respect to z, ¥, 2.

t The fanction f= f(;) - * + fi2) ¥ +f3) - 2 represents the vector from the origin to the point
z, Yy, z; hence t( u, v) represents the vectur from the origin to any point on the surface w =a.
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of these variable units ; these expressions take the same form as the correspond-
ing expressions in the plane given on p. 5.

It should be noticed that here, since w = a is an arbitrary surface, we are
considering a perfeetly general binary quadratic differential form ; hence

TaEOREM V. If A = Edu* 4 2Fdudv + Gdv* is any binary quadratic
differential form, the partial derivatives dt|ou, 0t/dv of a symbolic function
of A may be interpreted as vectors, of length NE, NG respectively, tangent to
the parameter curves of the surface characterized by A . .

17. The general k-dimensional case. In the same way we consider in an
Euclidean space of » dimensions, the sub-space of k¥ dimensions determined by
@, = const., ---, a _, = const. For arc length in the sub-space we shall have
ds® = (2t du,)?, where

y =(“;9 Uy, ""ui_p fa u,'.Hs ""uks a_la --°,(l"_k)
@ (ul""’uk’al*""an—l.-)
and where ‘(2u,, .-+, u,) =f(x, ---, ).

Precisely as in the three-dimensional cases it can be shown that ¢, = dt/du;
hence we have

Tueorem VI. I
P
A=Y B, du,du;

€, j=1
is the differential form giving length of arc in any space of k dimensions
belonging to an Euclidean space of n dimensions, then the partial derivatives
Ot/ou, «--, 0t[Ou, of a symbolic function of A may be interpreted as vectors
tangent to the parameter curves of the sub-space characterized by A .

VII. SymMBoLIiC DIFFERENTIAL PARAMETERS INVOLVING DERIVATIVES OF
THE SECOND AND HIGHER ORDERS.

18. Interpretation of the higher derivatives of the symbols. Let the space
R whose arc element is determined by

n n 2
ds’ = Z £, du;du; = (Z-ﬂi)d“;>
1, J=1 =1
be supposed to lie in an Euclidean space S, of » dimensions. The f;) may then
be interpreted as vectors in S, tangent to &, along the parameter curves.
Since these tangent vectors lie in S, they may be expressed as linear functions
of » constant, mutually orthogonal unit vectors, e,, e,, ---, €,, in S,, the
soefficients being functions of w,, ..., u,. The derivatives of the f,, of any
srder, with respect to the variables u , u,, ..., u_, if they do not vanish, are
again linear functions of the unit vectors, e . e,, ..., e,. We have therefore
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Taeorem VII.  If the space B, whose arc element is determined by

n n 2
ds? = i;l E du;du; = (iz_;jg‘.)du..)
lies in an Euclidean space S, of r dimensions, then the derivatives of the
symbolic function f, of all orders, with respect to any of the variables u,, - - -, u,,
may be interpreted as vectors of the space S, .

Since symbolic differential parameters involving derivatives of the £, to any
order are expressible in terms of derivatives of the symbolic functions, it
follows that all such differential parameters may be interpreted as vectors or as
combinations of vectors of the space S, .

19. Second covariantive derivatives of the symbolic functions. The second
covariantive derivatives of the symbolic functions are given linearly in terms of
the ordinary second derivatives and of the first derivatives by the formula

. 1 2
SO=fo= oyt B WAV (o=50L)

It follows that f may be interpreted as a vector. But we have always
JawS® =01 which shows that each /¥ is orthogonal to all the vectors f,,.
Hence

TaeoreM VIIL  If the f,, are interpreted as vectors in S, tangent to R,
along the parameter curves, then the second covariantive derivatives f& may
be interpreted as normals to B, in S,.

* MASCHKE, A symbolic trentment, etc., loc. cit., p. 457, equation (75).
1+ MASCHKE, loc. cit., p. 459, equation (84).
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