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THE GROUP OF CLASSES OF CONGRUENT MATRICES WITH
APPLICATION TO THE GROUP OF ISOMORPHISMS
OF ANY ABELIAN GROUP*

BY
ARTHUR RANUM

Introduction.

AN ordinary linear congruence group, or JORDANt group, may be considered
as a group of matrices whose elements (coefficients) are all residues of the same
modulus 72, or in other words as a group of classes of congruent matrices,
mod 7. Among the writers on these groups, besides JORDAN, are CaUCHY,
MarrIEU, MOORE, DIcksoN (for the case where m is prime) and GIERSTER (for
the case where m is composite).

The subject of the first part of this paper is a generalization of the JORDAN
group, and is obtained by using different moduli for the different elements of
the matrices, so that each element is a residue of its own particular modulus.
In this way a more general group of classes of congruent matrices’ is obtained,
which includes the JORDAN group as a special case. For the sake of brevity it
will sometimes be designated by the shorter title “linear congruence group,”
although its operators are matrices and not linear substitutions.

The second part is devoted to the application of these more general linear
congruence groups to the group of isomorphisms of any abelian group. For the
purpose of this application it will be shown that there is no loss of generality in
restricting the moduli to being powers of the same prime p. Therefore that
case alone will be considered in the first part.

Since every group of finite order can be represented as a group of matrices,
the problem of finding the minimum degree of its representation is of consider-
able interest. In a large number of cases the degree can be made lower by
means of these general groups than is possible by means of JORDAN groups
alone. In other words, many of these groups cannot be represented as sub-
groups of JORDAN groups of the same degree; they are new groups of that
degree.

* Received for publication August 6, 1906. Presented to the Society at the New Haven
summer meeting September 3, 1906.
T JORDAN, Traité des Substitutions, 1870, pp. 91-110.
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PART 1.
THE GROUP OF CLASSES OF CONGRUENT MATRICES.

Clusses of congruent matrices.

1. Let (I,) represent an n-ary matrix, or square array, of n’ integers
l;(i,j=1,2,---,m), 1, being the element in the ith row and jth column.
We introduce once for all a fixed matrix

(p")

whose elements " are powers of the same prime p with exponents o, = 0, and
call two matrices (), (m, ) congruent with respect to the matrix (p“v) as a
modulus, in notation

(4;) = (my;) wod (p™),

I, =m; modp" (i,j=1,2,---,n).

in case

The elements pv of the modular matrix (pv) are referred to as the moduli.

All matrices congruent to () will be said to belong to the class * ((Z,))-
In this way all matrices are distributed among a finite number of mutually exclu-
sive classes.

Composition of classes.

2. Taking the usual law of composition or multiplication of matrices, viz.,

(1) (]lj)(l )_(l ) l;,k_z:llvl;k '(l',k=1,"~,n),
we proceed to prove

TreoREM 1. If (1.) and (1) are given matrices and if the matrices (my)
and (my) range over the classes ((1.)) and ((I;)) respectively, the product

(my)(my) = (my) will always belong to the class (1)), if, and only if, the
conditions

(2) pag+ajk =0 ’ liqujk = 0’ p"vl]’k =0 ’ 7nOdZ)aik ('1';jy k=1,---,n),

are satisfied.

When the conditions (2) are satisfied, there is defined a unigue law of com-
position of the classes (I )) and ((7;;)), in virtue of which their product, in
this order, is (({7;))-

*The explicit use of classes of matrices was suggested to me by Professor DICKSON.
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3. Proof. The general values of the elements of () and (m;;) are
my =1, + by p, m;j =1, + h;jp”if,
where % and A;; are any integers. Therefore (m], ) will always belong to the
class ((77,)), if and only if it is possible, whatever be the values of %, and 4,
to find values of the integers A7, (i,j=1, ---, n) to satisfy the equations

U+ R pmeo= 2 (L 4 Ry p o) (L + o p™) (i, k=1, -+, n).
J

All summations, unless otherwise specified, have the range 1, -- -, n.
By expansion and the subtraction of (1), these become

;h}kliipujk + ;kijl;k])aij + J‘Zkij]l.;'kpav-'-ajk = klilkzjaik (i, k=1, -, n),

which are to be identities in the indeterminates h;j and hj’.k and are therefore
equivalent to the series of congruences (2).

4. Corollary. The modular matriz ( p™) admits the possibility of the com-
position of certain classes, if, and only if,

(3) aij+a7'k;a'ik (irj1k=1y"'rn)'

Sets of classes.

5. Conditions (2) show that unless all the moduli are alike, the composition
of classes cannot apply to every * pair of classes. But it will be seen that if the
moduli satisfy (3), a certain limited set of classes can be found, to which com-
position applies.

Suppose that ((#(7)) (s=1,2, .-, V) are the classes of any such set .S,
not necessarily the largest set and not necessarily forming a group. Let
PP (B, = 0) be the highest power of p dividing ), ---, {’, and put

(4) [(tt/)-__pﬁ')x(z;) (i1j=1’"'7n;3=11"’yN)v

where the factors A} (s =1, .-, V) cannot all be divisible by ». Since I
is a residue of p®, A(?) is obviously a residue of p®~fs. Call pfva p-factor,
B,; a p-exponent, A a A-fuctor, and p“v=Bv a A-modulus, of the set S.

6. THEOREM 2. If the moduli p®s satisfy (3), the classes of a set S are
subject to the law of composition, if, and only if, its p-factors pPv satisfy the
conditions

a‘ik_ajk’ L.
(5) B;j (6,4, k=1,--,n).

a’kj —

IV

*E. g., if ait > ajk, 1;; must be a multiple of p&ix—a.
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The conditions (5) for i, j fixed will be designated as (5)
Proof. By means of (4) we see that conditions (2), apphed to every two equal
or distinct classes in S, take the form of the congruences

pliti =0
Mgphres =0 Lomod e (WIk=hony,
A pitBi = 0
which are equivalent to the inequalities
a; + a’k =a,
B + @, = a,, (i,5,k=1,---,n).
a; + _]k Qi

[f in the third inequality % is replaced by j, j by ¢, and ¢ by %, it becomes
a,; + B; = a,;, which, with the second inequality, gives the required conditions.

Sets closed under composition.

7. Let S; be the set obtained by giving to A{) in (4) all integral values,
mod p*—#v,

TaeoreM 3. The set S, of classes, whose p-exponents B, satisfy (5), is
closed under composition, if, and only if, they also satisfy the conditions

(6) '8"j+’8jk:/8ik (4,4, k=1, -+, n).

Proof. If §; is closed under composition, then the product

. ((EIN ) = (&3))
is in S,, when its factors are. If in the equations
1= I (Br=tmy
J = .
the p-factors are introduced by means of (4), they become
PPNY = 2L PPEANONGD (i k=1, ng s =1, W),
i

which must be satisfied for integral values of A{). This can happen only if (6)
is satisfied. Conversely, if (6) is satisfied, S, is closed.

The largest set S, closed under composition.
8. Denote by a, the smallest value of Bij which satisfies (5), 1. e. for
i,j=19 cery T,
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(7)..1 a,, = the greatest of the 2n+41 quantities 0, =y =@ (E=1, -, n).
Then the set S, of all classes (7)), in which

(8) 0 =10 < p, [5)=10, mod p= (i,j=1,---,n),
is the totality of all the classes to which composition applies, for given moduli

p°v satisfying (3).
By comparing (7) and (3), we see that

lIA

(9) aij aij (i’j_ly"'7n)'

THEOREM 4. The set S, is closed under composition.
Proof : From (7), and (7),, we have for r=1, .-, n,

=
aij = at'r - ajr’ ajk = ajr - akr’
so that
=
al:f + a'k = air - alsr'
Similarly
=
aij + ajk =0, — Gy
and obviously
=
a, +a, = 0.
Hence, by (7),,,
=
10) a;+a, = a,

that is, the p-exponents of S, satisfy (6).

The chief group.

9. The classes of S, clearly do not form a group.* We shall prove however

THEOREM b. If the moduli satisfy (3) and the p-exponents are defined by
(7) , the totality G, of classes of matrices (({7))) (s=1,.--, N,), of elements
1) satisfying (8) with determinants A = |I| prime to p,

Jorm a groupt G, of order IN,.

As @, is the largest group satisfying (11), we shall call it the chief group
of classes of congruent matrices modulo ( p®), or the chief linear congruence
group modulo ( p%).

*E. g., although ((l3)), where ;=0 (¢, j=1,---, n), is a class of S,, it cannot belong

to a group of order > 1.
1 We might also select classes, for which A is divisible by p, to form a group. E. g., with

moduli all 3, the classes L=((} })) and L*=((3 3)) =1I form a group of order 2.
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10. Proof.* (@) @, is closed under composition. For, 8, is closed, and if
the determinants of two matrices are prime to p, the determinant of their
product is prime to p.

(b) The identity class 7 for all groups satisfying (11) is clearly ((8,)), where

1,if ¢ =3,
‘J_{o, if 4.
This class occurs in G, because by (7) we see that a; =0 (i=1, ---, n),
i. e., every p factor in the axis is 1.
(¢) Finally if ((Z)) is any class of @,, its inverse ((/;;)) exists and is in G,.
For, let m, be the cofactor of /, in the expansion of A = |lij |. Then, in view
of (8), setting l'.j = p\,;, we write the identities

>l my;, = AS, (i, k=1, n)
J
in the form

(12) SN pme; = A8, (i, k=1, n).
J

Now, in view of (11), there exists precisely one class ((7;,)) satisfying the
conditions

(13) 0 = l)’k <.pajk’ Aljl'k = ”lkj’ mOdPajk (.71 k=1, .. y n)
From (13), in view of (7), we have

Apll, = p¥m mod p (i jy k=1, -, n),

{75l

where the modulus is independent of j. Therefore by substitution in (12) we

have
Azp%)\'ijl;’lcEAaik’ mod p% (i, k=1,--+,n).
J

Dividing this by A and restoring /., we have
Zlijlj"kE S mod p® (i, k=1, n),
J

which shows that ((7;;)) is the inverse of ((/)) and that A" = |7;| is prime
top.

Further ((7;,)) satisfies (8). Forlet (¢, 4,y 4555 3.)(J1» =5 ,)s o5 (- )
be any substitution on the integers 1, 2, ..., n expressed in terms of its inde-

*The main features of the argument used in leading up to this theorem and in proving it are
derived from a set of group-postulates given in lectures by MooORE in 1897. Compare also
MOORE, these Transactions, vol. 3 (1902), p. 485; vol. 6 (1905), p. 179 ; and DICKSON,
Ibid., vol. 6 (1905), p. 198.
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pendent cycles, and such that i, goes into ¢,. Then by the definition of determi-
nants

Ny, 0 = Zilt».is v lmtlH( jnde " ./a;]l) (iy =1,y n),

where the product sign extends over all the cycles after the first, and the sum-
mation covers all the substitutions which replace i, by ¢,. Introducing p-fac-
tors, we have

+ -t .. C
My, = Z ipa' it iy, it %in 11)\' uxbzzv iy " Xirv 1 H(ljl:jﬂ l]'.'yjl)

(4, ,=1,---,n).
But by the repeated application of (10) we see that 1
aim i3 + aia; iy + A ai,«, i = al':', i
and therefore that
my =0, mod p%iz i (i), ip=1, -, n).
From this, by means of (13) and (9), we see that
I, =0, mod p* (i,j=1,--,n),

and consequently that ((/;,)) satisfies (8). Hence ((/;,)) is in .S, and, since
(A", p)=1,itisalsoin G,.

Change of nomenclature.

11. Hereafter the only classes of matrices considered will be those of /9, ; and
it will be convenient to regard all congruent matrices as identicel, so that each
class reduces to a single matrix, which is usually chosen so that each element is
the least positive residue of its corresponding modulus. We have then in S, a
finite number of distinet matrices, one from each class, forming a closed set
under composition. The law of composition will read

(=7, 7, _ZIU o mod p® (i, k=1, -+ n).

Subgroups Gy of the chief group G,.

12. Every linear congruence group, whose matrices satisfy the condition
(A, p)=1, is obviously a subO‘roup of the chief group. This condition also
shows that its p-factors pfv (8, = a,) cannot all be >1; in partlculau since
it contains the matrix (J,), its axial p-factors are 1,i.e.,8, =0 (i=1,---,n).

Of particular interest are the subgroups whose A-factors A, include all inte-
gral values, mod p*—#v, that satisfy (11). In regard to them, by reference to
theorems 8 and 5, we immediately derive

TaEOREM 6. If the moduli satisfy (3) and the p-factors satisfy (5), the
totality G of the matrices whose elements, of the form (4), satisfy (11), form
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a group Gg, a subgroup of the chief group G,, if, and only if, the p-factors
also satisfy (6).
Equimodular properties.

13. If two or more rows are equimodular, i. e., have identically the same
moduli, and if the corresponding columns are also equimodular, the process of
interchanging rows and their corresponding columns may be employed, if neces-
sary, to juxtapose these rows and these columns. Hereafter it will be assumed,
therefore, that equimodular rows and their corresponding equimodular columns
are adjacent.

14. Under this arrangement every matrix will be divided into equimodular
rectangles, of which those in the axis are squares. If no two rows and the cor-
responding columns are equimodular, each rectangle reduces to a single element.
Throughout any rectangle the p-factors of the chief group are clearly equal to
one another by (7). Moreover it will be convenient hereafter to restrict the
application of the notation G/; to those subgroups which not only satisfy the
conditions of theorem 6, but also have their p-factors pfv equal to ane another
throughout every equimodular rectangle. Therefore (§ 12) the p-factors of G4
are 1 throughout every axial square.

15. TeEOREM T. The determinant A of any matrixz of the set S, is con-
gruent, modulo p, to the product of the separate determinants of its axial
squares. In particular, if no two rows and the corresponding columns are
equimodular, A is congruent, modulo p, to the product of its axial elements.

16. Proof. It will be sufficient to prove that if any term 7" of the expan-
sion of A is prime to p, it is the product of elements taken entirely from’ the
axial squares. Let 7’= =1, ;0, , ---1,, , where ¢, ¢,, .- -, 4 represent some

permutation of the integers 1, 2, ..., n. Denote any one of the cycles of this
permutation by (j,,4,, --+»j,). Then

ljh.izlj-.', Js’ J'mJ'l)’

where the product covers all the different cycles. Now if 7" is prime to p,
equation (8) shows that o;; =-.-=a;; = 0. From this and (7) we derive
the rn relations

= - = —
0=a; — a4 »O—Gj,,k @ ke

But these are all equations (and not inequalities), because of the identities
(40— @)+ -+ (a0 — ;) =0 (k=1,---, a).

Therefore the (j,)th, (j,)th, --- and (j,)th rows are equimodular. Similarly
the corresponding columns are also equimodular. Consequently the elements
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jnjes s U; ;, are all contained in the same axial square; and all the factors

of 7' are contained in axial squares.

17. Corollary. In the matrices of the chief group every axial square deter-
minant must be prime to p, and in particular, if no two rows and the corre-
sponding columns are equimodular, every axial element must be prime to p.

Change of notation.

18. In order to take account of equimodular properties, it will be best to use
a more explicit notation. Let the number of sets of equimodular rows and
corresponding columns be 7, and the number of rows in the first ¢ sets be
n,(¢=1, ..., r), so that the total number is = n and the number in the ith
set is », — n,_,, provided we define n, to be 0. Let (/, ,)be a matrix and

l.. ,; an element in the (ij )th equimodular rectangle, taken mod p®, where

{ n,_, <y =n, 1= =7,
n,_, <V énj, 1=/=r.
For any group G, (as defined in § 14) let
(14) lm,v,=p3iixui.v_, (piy =1, +-,n).

Finally, let the equimodular sets be arranged so that

Uy = Qi (¢=1,--+,r—1).
Hereafter, unless otherwise stated, this notation will be used.
19. THEOREM 8. The p-exponents of any group G, or G, expressed in the
modified notation satisfy the conditions

(15) B+ B,;>0 (i,j=1,-,n;i%j),

i. e., if two equimodular rectangles are symmetrically situated with respect to
the axis, all the elements of at least one are divisible by p in every matrix of
the group.

Proof. From (5) we see that

=
B, = a, — Wi a,.

(k=1, -, r;i,j=1,--, 7).
B.=a, —a. a,.
J ik ik

Since for any given ¢ and j (¢ & j) at least one of the above 47 differences is
& 0, the theorem follows.
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The order of a group G .

20. TEEOREM 9. The order N, of a linear congruence group Gg is given
by the formula

é (M—niXn—n g XaG—By) [T MR-l 1
(16) Ny =pii= 1 II I1 (1—1?).

i=1 k=1

Proof. The number of matrices in the set S, is obviously equal to the prod-
uct of the A-moduli ps—#s. The order of G, is obtained from this by the
insertion of the proper factors as given by JORDAN’s* formula, since each axial
square forms a JORDAN matrix.

Factors of compqsition.

21. In G, consider the totality A}, of matrices (,,, ) which are = 1,
mod ( p%), i. e., in which

(17) l,,, =98

iy V5

modpsii (pi,v;=1,:-+,n).

Miy v ?

This means that in the matrices of &, the elements in the axis are =1, mod p,
the other elements in the axial squares are = 0, mod p, and all the remaining
elements are = 0, mod 1, 1. e., are unrestricted.

Now it is easy to see that A is an invariant subgroup of G';. Moreover
its order is a power of p, because the number of values of each element is a
power of p and the different elements are independent of each other. It is
therefore soluble.

The quotient-group G /K, is evidently the direct product of r axial square
Jordan groups, each taken mod p. Since the composition-factors of JORDAN
groups are well known,} those of G, and therefore of G,, are thus determined.

22. TreoRrEM 10. K, is the largest invariant subgroup of Gz whose order
is @ power of p.

Proof. If there were a larger subgroup of that kind, A, and if X~ con-
tained A, it would correspond to an invariant subgroup of Gz/ A, of order a
power of p, which would contradict the known properties of JORDAN groups;
if A’ did not contain A, it would clearly lead to a similar contradiction.

Soluble groups.

23. THEOREM 11. The necessary and sufficient condition that a linear con-
gruence group G, (or G,) be soluble is

(@) if p >3, that no two rows and the corresponding columns are equi-
modular,

*J ORDANEaiié des Substitutions, 1870, pp. 95-97.
t JORDAN, Traité, pp. 99-110.
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(0) if p=2or 3, that no three rows and the corresponding columns are
equimodular.

Proof. This follows from the fact that an n-ary JORDAN group, mod p, is
soluble, if » = 1, and insoluble, if n > 1, except when n = 2 and p = 2 or 3.

Invariant matrices.

24. THEOREM 12. If p> 2, the invariant matrices (1, , ) of any group Gy
are characterized by the congruences

18) by =0 (b+v,
j) } (Iuiy "J"—“lx"'v n)y

(19) l =/ mod p*—Ay

Miy Mi vy, vy )

and therefore form an axial (abelian invariant) subgroup H of order p"(p — 1),
where a = a, — 1.

Proof. The proof will be simplified by using the original notation of § 1.
Let (I;) be an invariant matrix and (m ;) be any matrix whatever of G, so
that (1) (m,) = (m;)({;). Then the congruences

n n
zllijmjk = 2;77zﬁljk, mod )" (i, k=1, n)
Jj= Jj=

must be satisfied by every matrix (m, ) of the group. These congruences may
be written

(20) (I, =1, ym,+1,(m,—m,)+ Z(],ymﬂ.-_7n.-j[ﬂ.~)50’ mod p% (i, k=1,---,n),
J
where the ' on the summation sign is to indicate that j & i, j & &.

(a) First put m.=0 (idj; i j=1, -y n); then () is axial,
m,(i=1, .--, n) is prime to p, and (20) becomes I, (m,, —m;) = 0,
mod p%(i, k=1, ..., n). Moreover, since p>>2, it is possible to make
m,, — m,, prime to p,if ¢ % &, and therefore to derive the congruences [, = 0,
mod p™(i 4 k; i, k=1, ..., n), which are equivalent to the equations

(21) =10 (i%k; i, k=1, n).

By means of these equations, (20) reduces to the form (7,—{,, )m,=0, mod p"*,
which may be written (I, — 7, ) pf*p, = 0, mod p* (i, k=1, ---, n).

(b) Now choose (m,) so that u,, is prime to p; thus we derive the congruences
(22) l.=1

i i~ ln0(1 ])"ik—ﬂik (@y k:l, e, n ) .

Moreover (21) and (22) are evidently sufficient as well as necessary conditions.
By change of notation they become (18) and (19).

Trans. Am. Math. Soc. 6
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Corollary. Since (by §14) 8, =0 (i=1, ..., n), therefore in the invariant
matrices the axial elements of any axial square are equal. Moreover, those
of the ith axial square are congruent to the others, mod p“#v and mod
pPi(j=1, ..., n). If we denote the greatest of the integers a, — B,
a;—B;(j=1,---,n) by a, then by (6) @, = a,. H is the direct product
of a cyclic group of order p — 1 and an abelian group of order p” and type
(e,—1, ap—a,,---,a —a) Ifa=0a,(i= 2,.--,n), all the axial
elements are equal and H s cyclic of order p™~'(p —1).

Examples.
25. Example 1. Let the modular matrix be (22*). Then the p-factors

1»
of S, and of @, are (! ?), the matrices of S, are of the form (* %), and
they belong to G, if A, and X,, are prime to p. The composition of matrices
gives
(7\11 p)"lz) (7\;1 ]’7“;2) _ (7\117\';1 P(M Ay + )‘127\;2))
O X22 0 >\';2 O x'ZZX';Z

For the p-factors ( pfv) = (1 #°), the matrices of S; and of G, are of the form
(% 2,). The A-moduli of G, are (22) and its order is p(p —1)*. K, is of
order p and its matrices are of the form (} ?4). If ¢ is a primitive root of p,
G, is generated by the matrices S= (¢ ) of order p —1, T'= (] ?) of order

€

p—1,and U= (}?) of order p, where 7-'UT = U< and § is invariant.
Therefore, if p > 2, @, is the direct product of the cyeclic group { .S} and the
metacyclic group { 7', U}.

Example 2. Let the modular exponents a, be

3

3 3 3
1 2 2
1 2 2

The last two rows and the last two columns are equimodular. The matrices of
G, are of the form

A PPA, PR
Ny Ay N ]
Ay A

where the axial square determinants A, and |}z )| are prime to p. It is of
order p'"(p —1)*(p*—1) and is insoluble if p > 3. Its invariant matrices
are of the form
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A 0 0
0 XN+ pu 0 ,
0 0 X+pu

if p > 2, and form a group generated by matrices of orders p?(p — 1) and p.
Example 3. Let the modular exponents be

6 6

3 5

0 2
Then the p-exponents are

0 4 6

0

0 0
and @, is of order p™ (p — 1)°.

PART 1II.

APPLICATION TO THE GROUP OF ISOMORPHISMS OF ANY
ABELIAN GROUP.

26. The great importance of the isomorphisms of a given group is largely due to
the fact that they enable us to construct new groups of which the given group is
an invariant sub-group. Howéver, very little is known about isomorphisms in
general, and even when the given group belongs to the simplest and most funda-
mental class, viz. of abelian (commutative) groups, the group of isomorphisms
has not been thoroughly studied except in a few extremely special cases.

For instance, the i-group (group of isomorphisms) of the cyclic group has
been discussed by BURNSIDE * and MILLERT. It is itself abelian. The i-group
of the abelian group of order p™ and type (1,1, 1, ...) was considered by
MooRre{, and was shown by him to be abstractly identical with the JORDAN
linear congruence group, mod p.

The type (%4, 1) was studied by MiLLER.§ The type (2, 2) was treated

* BURNSIDE, Theory of Groups of a Finite Order (1897), pp. 239-242.

t MILLER, these Transactions, vol. 4 (1903), pp. 153-160.

1 MOORE, Bulletin of the American Mathematical Society, ser. 2, vol. 2 (1895),
pp. 33-43.

% MILLER, these Transactions, vol. 2 (1901), pp. 259-264.
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erroneously by O. E. GLENN.* The general type has been barely touched upon.
Some general theorems have been proved by MILLER. }

In the present paper the general case of any abelian group of order p™ is
considered. There is no loss of generality in this restriction on the order,
because the i-group of an abelian group of any other order is the direct product
of the i-groups of its SYLOW subgroups, whose orders are powers of primes.

The method used is a generalization of that used by Moore for the type
(1,1,1,...). The i-group is represented as a chief group of classes of con-
gruent matrices (linear congruence group), whose moduli, are the invariants of
the abelian group. By means of this concrete representation of the group, some
of its properties are easily found.

The abelian group A.
27. Let A be any abelian group of order p™ and of type

(23) (a],...,al, Qoo vy Uyy * oy ar’...,ar),
N PN —_—
71 Ny—m Rp—"Np_1

Its invariants, n = n_ in number, are divided into » sets of equal invariants,
those of the ith set, n, — »,_, in number, being p%(i=1,.--,r; n,=0).
Suppose them arranged in decreasing order of magnitude, so that

(24) a,>a,,, (i=1,--,r—1).

The order of A is equal to the product of its invariants, 1. e.,

”»
2 (n—ni1)a;.

(25) pro=pi=t
Let A,,---, A bea system of independent generators of 4, those of order
plbeing A, iy cen Ay, ooy Ay (i=1-0, 7).

®

The group G of isomorphisms of A.
28. Let G be the i-group of A and let L be any isomorphism of 4 into itself.
Then L must effect a correspondence between the above system of independent

generators and another system A4, ..., 4’,each of which is a product of powers
of the original generators. In symbols, we have '

L:4A,~A ,4 =11 II (A, Yuon (/tfzni_1+1, --‘,m),

J=1 vt 1= 1’ ceey T

*GLENN, American Mathematical Monthly, vol. 12, no. 11 (1905), pp. 205-207 ;
GLENN’s condition A = 0, mod p?, is too broad, and his result for the order of the i-group is too
large.

t MILLER, Annals of Mathematics, ser. 2, vol. 3 (1902), pp. 183-184.
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or, more briefly,

(26) L. Au.‘ ~ A;i’ A;l. = fI(Avj)l,u. vy (mi=1, - -, n).
v,:l

Representation as a linear congruence group.

29. The exponents I, , (#;,v,=1,---,n) in (26) may be considered as
forming a matrix ([, ), taken modd p¥ (j=1,---,r).* Moreover if L’is
another isomorphism defined as follows :

Lidy ~ 4y, 4, =T(4,orn  (a=1m),

wi=1

then the product L'Z becomes

LL:A,~4,, 4, =1](4, )uzz TR ),
v;=1

That is, the composition of the isomorphisms Z and L’ takes place under exactly
the same law as the composition of the matrices (7., , ) and (/, , ). Therefore
since the isomorphisms form a group G, the matrices representing them form a
linear congruence group, modd p%, which is abstractly identical with G. We
shall call it G'.

30. Since in this case a; = @, the moduli satisfy (3). By (7) we see that a;
is the greater of the quantities 0 and ¢, — «,, i. e., by (24),

(27)

a4, —a, if i>7, o
= (i,j=1,---,r).

0,if i=j

Therefore the elements of the matrices of G' are of the form

(/‘liy vj=1a T n)'

wman, L, if i >,
(28) = {p o

I

Miy

Kis Vj

This is also easily verified by means of the fact that in the isomorphism (26),
A, is of order at most p*.

81. TrEorREM 13. If an abelian group A has nimvariants p%(j=1,--.,7),
as defined in § 21, its i-group G is abstractly identical with the chief n-ary
linear congruence group G, modulis p».t That is, in (28) the A-factors can
have any integral values satisfying (11).

32. Proof. (a) If (26) is an isomorphism, (11) is satisfied. For, since the
identical isomorphism [/ makes every generator A4, correspond to itself, it is
represented by the matrix (38,, , ), whose determinant is = 1, mod p. If the

* This_makes the moduli the same throughout every column.
T This is not the only representation of G as a chief linear congruence group, but it is the most
convenient one.
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inverse isomorphism L~' is represented by the matrix (7, »;)» it follows from
LL~'=1TIthat|l,  [-|l, ,|=1,mod p,and therefore that |, , |is prime
to p.

(b) If (26) is not an isomorphism, (11) is not satisfied, i. e., A is divisible by
p. For,in that case, either the generators 4, (u, =1, -.-, n) are not indepen-
dent, or for some value of w,, A’ is of order < p*. In either case there is a
relation of the form

29) I1 (4.)p%h,, =1,

mi=l1

where A, % 0, mod p (u,=1, ..., 7), and
(30) a; < a, for some value of 7.

From (26), by substitution in (29), we derive

n § Pa'{hmlm, v;
I (4, =1,
v;=1
and therefore also
> pih,l,., =0, modp% (%=1, n),

mi=1

which may be expanded, by (28), into the form

;1 ’ n; P n, ,
(31) Z paih#ixm, vt Z p“;]),“)\,u j» vt Z pa]—(a‘_a)k#ixw, V~EO ’ mOdpaj'

mi=l T wEmatt T s ’
Among the differences @, — a; (i =1, ---, ) there is just one, @, — a’, which
is greater than every succeeding and less than no preceding difference. That
s,

, >ai_a£’ if i=j+1’ Ty Ty
(32) @ —a; i _ Lo .
=aq,—a;, ifi=1,...,j.

Then by (30),

(33) 4 —a;>0,
and by (24) and (32),
6y G = >0, i =1, 1.

Therefore in (31) every term, as well as the modulus, is divisible by p%. Divid-
ing out this factor, we obtain

;1

n; N,
a'—a’ (a;—al)—(a;—a’) — —a
Z p ; "hmxm. Vj+ Z k#jxﬂj' Vi + Z pe ' hﬂoix#iv ")'_0" mOd paj “ ’

ni=1 my=n_1+1 pi=n;+1
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where, by (32), (33), and (34), the modulus and all the terms except those of
the middle summation are divisible by . Therefore, by reducing the modulus
to p, we obtain

ZJ kN, = 0, mod p (vi=na+1, -, ),
my=n_1+1
which shows that the jth axial square determinant !kuﬁ v,-i is = 0, mod p, and,
by theorem T, that the entire determinant is = 0, mod p.

33. Evidently the following converse of theorem 13 holds:

THEOREM 14. Elery chief linear congruence group, whose moduli are the
same throughout every column represents the i-group of some abelian group of
order a power of p.

Symmetry.

34. From (28) it follows that A, , is taken mod p®, where £ is ¢ or j, the
greater if 7 4= j. Hence if two equimodular rectangles are symmetrically sit-
uated with respect to the axis, the A-factors A, , and A, . of their elements are
residues of the same modulus, viz., p*.

The order of the i-group.

35. TrEOREM 16. The order N of the i-group G of an abelian group A
defined as in § 27 is given by the formula

r

z(n;v‘—n"e‘_l)a‘- T N—miq 1
(35) P S ()]

%
i=1 k=) Y4

Proof. This is easily derived from (16) by means of theorem 13 and § 34.
Take the square common to the first i sets of rows and the first ¢ sets of columns
and subtract from it the square common to the first i — 1 sets of rows and col-
umns ; the region remaining will contain precisely those elements, nZ — n?_| in

number, whose A-factors are taken mod p*:.

FExtreme cases.

36. The two opposite extremes among abelian groups 4 having n invariants
are, () that in which the invariants are all distinet, (b) that in which they are
all equal (= p*).

(a) In this case the i-group G'is soluble, because no two columns of its
matrices are equimodular (although the rows are all equimodular). Its order
takes the form

g(n—l)ai 1\»
(36) N=p= (1 _5) :
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(d) In this case the matrices of  reduce to a single axial square, G becomes
a JORDAN group, and its order takes the form

1
(37) N= p’“‘H(l——)
1 P
Since the order of 4 is p"*, it follows that, if p is large, the order of G is
approximately equal to the nth power of the order of 4.

L-groups as related to Jordan groups of the same degree.

37. As stated in the introduction to Part I, most linear congruence groups
are abstractly distinet from JORDAN groups of the same degree. This will now
be shown to be true of all i-groups.

THEOREM 16. An i-group G of an abelian group of order p™ having n in-
variants, i. e., a chief n-ary linear congruence group modulis p% (j =1, ---,7),
is abstractly distinct from any chief n-ary Jordan group G’ modulo p®* or
subgroup thereof, if p >n+1.

Proof. A glance at the formulas for the orders of the groups shows that &
cannot be abstractly identical with G’ itself. If it were possible for G to be
abstractly identical with a subgroup of G", its order would have to be a divisor
of the order of G'; and this clearly could not happen, unless a were at least
a,+1. In G consider the two matrices

1 0 0 ... 1
010 ... 0
R = 00 1 ... 0 of period p®,
0 0 0 1]
and
1 0 0 e 0
0 1 0 0
S=1, 0 1 o | of period p.
p"l_l 0 0 Ce 1
Then we have
[ 1—pn1 0 0 01
1 0
1 —
RSR = | Q 0 1 ’
|L p’“‘l 0 0 1}

* The trivial case r =1, a; = a, G = G, is left out of account.
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which is different from S; hence 2 and S are non-commutative matrices, the
product of whose periods is p“t'. But in (/' it has been shown* that for
p>n+1 every matrix of period »” is commutative with every matrix of
period 7, if b 4+ ¢ = a. That is, if the product of the periods of two matrices
in G is p"++!, they must be commutative. Therefore (' does not contain two
non-commutative matrices of the same periods as /2 and S in G/, and does not
contain a sub-group abstractly identical with G'.

If G is itself a JORDAN group, similar reasoning leads to the

Corollary. A chief n-ary JORDAN group, mod p?, does not contain a sub-
group abstractly identical with any other chief n-ary JORDAN group, mod p*,
if p>n+1.

38. Since the prime factors of the order of an i-group, besides p, are factors
of p—1, p* — 1, ete., there results immediately

TaEOREM 17. (@) Every abelian group has isomorphisms of even ovder.
(b) If the invariants of’ an abelian group of order 2" are all distinct, all its
isomorphisms are of order a power of 2. (c) If an abelian group of order
p" has at least two equal invariants, it has isomorphisms whose order is

divisible by 3.

The largest invariant subgroup of order a power of p.

39. The results of Part I, §§21-24 can be applied immediately to i-groups
and translated into the language of isomorphisms. Thus from §§ 21, 22 we
derive

THEOREM 18.  In the i-group of an abelian group A the largest invariant
subgroup A of order a power of p consists of the isomorphisms which trans-
Sorm every independent generator of A into itself multiplied by the product
of any operator of lower order and any operator of the same order which is
the p-th power of an operator of higher order ; or, more generally, K consists
of the isomorphisms which transform every operator into itself multiplied by
the product of any operator of lower order and any operator of the same order
which could not be used as an independent generator. Its order is equal to

(38) _Eli(n%—rzzl)f'.'—tr:i—1:;-1)e]
pl: .
Soluble i-groups.
40. From § 23 we derive
THEOREM 19. The necessary and sufficient condition that the i-group of A
be soluble is

(a) if p > 8, that all the invariants of A are distinct,
() if p = 2 or 3, that no three of the invariants of A are equal.
¥ RANUM, Bulletin of the American Mathematical Society, vol. 13 (1906-7).
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Invariant isomorphisms.

41. Finally, from § 24, by identifying the @, (i =2, ---, r) of that article
with the «, of this section, we derive :

TuEOREM 20. In the i-group of A the invariant isomorphisms are those
which transform every operator of A into the same power of itself.* They
Jorm a cyclic invariant subgroup of order p“~'(p —1).

Examples.

42. Example 1. Let 4 be an abelian group of order p* and type (2, 1).
Then any isomorphism Z of A into itself may be written

’Al ~ A; ) ;l; = A)l\ll A;m,
. {AZNA:’,’ A;:AP/;ﬂAggg;

and thus the i-group of 4 may be represented as a chief group G, mod (Z; %),
whose matrices are of the form (21 22), where A, and A,, are prime to p. Its

orderis p*(p —1)%. K is of order p* and its matrices are of the form (f2* 42).
if p> 2 and € is a primitive root of p*, we may take as generators 2 = (} ),
of order p, S= (1), of order p, T'=(§?),of order p(p—1),and U=(;?),
of order p —1. If eis chosen so that e?~' =1 + p, mod p?, and if ¢ 'is a
root of the congruence ex = 1, mod p?, then the additional generational rela-
tions are ST BS= RT*', U'RU=R¢, U'SU=S8<',and T is
invariant.

Since & and § are non-commutative matrices of order p, G is not abstractly
identical with a subgroup of any binary JORDAN group, but, as might be
expected, it is abstractly identical with the subgroup of the ternary JorpawN

group modulo p, whose matrices are of the form

a v &
0 B e
0 0 «

Example 2. Let A be of order p® and of type (9,9,6,4). Then the
modular exponents of G are

(9 9 6 4) -
9964‘|
9964"
9 9 6 4

* This theorem was proved abstractly by MILLER, these Transactions, vol. 2 (1901), p. 260.
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the p exponents are

l’ 0 0 0 O]
0 0 0 0 I
l3 3.0 0’
5 5 2

and the exponents of p in the A-moduli are
r9 9 6 4,
l 9 9 6 4
6 6 6 4 | ’
IL4 4 4 4

which are clearly symmetrically situated with respect to the axis. The order
G is p*(p — 1)*(p* — 1) and the order of K is p*.
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