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A COMPARISON OF DIFFERENT LINE-GEOMETRIC REP-
RESENTATIONS FOR FUNCTIONS OF A COMPLEX
VARIABLE

INTRODUCTION

Wilczynski! has recently given two methods for constructing a
congruence of lines determined by a functional relation between
two complex variables, which enable one to visualize the properties
of the function by studying the properties of the resulting congruence.
In the first method, the two complex variables are represented upon
two distinct planes, parallel to each other and a unit apart, the
corresponding coordinate axes for the two planes being chosen
parallel to each other in such a way that the two origins lie upon a
line perpendicular to the two planes. If the points of the first
plane are joined to the points of the second plane which correspond to
them by means of a given functional relation w= F(z), a two-parame-
ter family, or a congruence, of straight lines is obtained. These
congruences have certain characteristic properties which hold for the
totality of analytic functions, and in addition, of course, special
properties which depend upon the choice of the particular function
F(z). The developables and focal sheets of such congruences are
always imaginary, except in a trivial special case, but some interest-
ing real surfaces are closely associated with them.

The second method of representation makes use of a Riemann
sphere. The two complex variables are projected upon the same
sphere, and points of the sphere corresponding to each other by means
of the function w=F(z) are joined by lines. The congruences
obtained in this way always have real focal sheets and developables,
and are therefore more interesting than those obtained by the first
method.

It can be seen at once that thereare other methods of constructing
congruences of lines in connection with a relation w= F(z), these other

{
1E. J. Wirczynski: “Line-geometric representations for functions of a complex
variable,” Transactions of the American Mathematical Society, Vol. XX (1919),
pp. 271-298.



2 Line-Geometric Representations

methods imposing less drastic restrictions upon the planes or spheres
upon which the variables are represented. It is the purpose of the
present paper to consider properties of congruences which are ob-
tained from such generalizations of the above methods. In section
I we shall study the congruences resulting when the planes of refer-
ence are kept parallel, but when the coordinate axes in the two
planes are given arbitrary positions. We shall find, as might be
expected, that these congruences are not essentially distinct from
those corresponding to the special case. In fact, if a congruence is
constructed by considering one of the complex variables as a given
function of the other, then a projectively equivalent congruence may
be obtained by keeping the coordinate axes parallel, and considering
in place of the given function one closely related to it, a rotated
function, the angle of rotation being the angle between corresponding
axes.

In section II we shall consider the general properties of those
congruences obtained by the general conformal correspondence
between two planes, the relative positions of the two planes in space
being left arbitrary. It will be found that this general theory is
included essentially in that special case in which the two planes are
perpendicular to each other, and the axes occupy certain special
positions. Such a method of representation has a serious disadvan-
tage. For an arbitrary function, it is impossible to predict whether
the developables and focal sheets of the congruence are real or
imaginary. Therefore from the point of view of the general theory
of functions, such a method is far less useful than the method of
parallel planes, though it may be of value in special instances.

Section III deals with an extension of the method of the Riemann
sphere. The two complex variables will be projected upon two
distinct but concentric spheres. As in section II, the simpler method
furnishes the more valuable results. The method of concentric
spheres does not permit us to make a general statement as to the
reality of the developables and focal sheets for all possible functions
w=F(z), as in the case when we use a single sphere. In the more
general case, the properties of the individual function play an essen-
tial r6le in answering such questions.

The author wishes to express her gratitude to Professor Wilczynski
for his constant interest and helpful suggestions to her in the writing
of this thesis.



I. EXTENSION OF THE METHOD OF PARALLEL PLANES

Let us denote by

{z=x+iy, Zo=x—1y
1 w=u+19, Wo=U—17
the two complex variables and their conjugates, and assume the
functional relation
w=F(2)
which implies that
wo=Fo(20),
where F, is the function conjugate to F.

Let us represent the point P, upon the &y-plane of a system of
£n z-axes in ordinary cartesian space, letting the x- and y-axes coincide
with the £- and n-axes respectively. Then the space coordinates of
P,are
(2) L=zx  m=y, 51=0.

Now let us represent the variable w upon a plane parallel to the
&én-plane, a unit above it, but allow the real and imaginary axes in
this plane to be in an arbitrary position. If the angle between the
¢-and u-axes is 6, and if the coordinates of the origin of the complex

numbers #+v are (g, b, 1), then the point P, will have the coordi-
nates

3) £2=u cos 0—v sin 0+a, na=u sin 0+v cos 6+5, g2=1.

"Let R be a region of the z-plane in which the function w=F(2) is
analytic, and let us join each point of this region to the corresponding
points P,. If the function is n-valued, where n is finite, there will be
n lines of the congruence through each point of R. The projective
properties of the congruence defined in this way will be studied by
means of a system of differential equations of the type?

2E. J. WiLczynskI: “One parameter families and nets of ruled surfaces and a new
theory of congruences,” Transactions of the American Mathematical Society, Vol.
XXIT (1920), pp. 157-206. This paper will hereafter be referred to as “Ruled surfaces
and congruences.”
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Clearly the relation which we have assumed between the space
coordinate system and the real and imaginary axes of the z-plane
involves no loss of generality. We may also assume that a=b=0,
so that the origin of coordinates for the variable w is on the z-axis,
without changing the projective properties of the congruence. For
make the projective transformation of space

©) E=t—az,n=1—bz =3
then the coordinates of P, and P,,
(6) {El=x s m=y ;51=0
E3=u cos 0—v sin 6+a; no=u sin 8-+v cos 0+Db; z2=
will become
(7 {El=x y M=y §1=0
£2=wu cos §—v sin 6, na=wu sin 6+v cos 0, z2=1

which makes a=5b=0.

By means of (1), we can introduce into (7) the variables z, z,, w,
wy. We find the following homogeneous cartesian coordinates for
P,and P,:

A= %(Z+Zo), m+ %cos 0(w+wo) — ;—isin 0(w —wy),

®) A= 1—.(z—zo), g = -l-sin 0 (w+wo)+1 cos 0(w—wy),
2 2 2;

As=0, us=1
)\4=1, u4=1.
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If we write

9 {a =cos 8+ sin 0
ag=cos §—1 sin 0,

(8) can be written in the form

P,: P,
1 1
A= §(Z+Zo), = f(aw+ o),
(10) A= ;—i(Z—zo)y p2= %(aw — aoWo),
k3=0, M3= 1
=1, ma=1.

If in particular, 6=0° so that the #- and x- axes are parallel, (10)
reduces to the special case considered by Wilczynski,

P,: P,
1 1
)\1=§ (z+20), m=3 (w+wo),
(11) M:%i(z—Zo), p2=%(w—wo),
k3-_-07 /“3=1;
k4=1, ;l,4='1.

A comparison of (10) and (11) will show that the two situations
are equivalent. For in studying the totality of analytic functions
w=F(z), in (11), among them will be included those derived from
a particular one by multiplying it by the rotating factor a=e®,
giving the function which appears in (10). Thus the projective
properties of the class of congruences which is defined by the totality of
all analytic functions w="F(z) by the method of parallel planes, are
independent of the relative position of the origins, of the angle between
the real axes of the two complex variables, and, of course, of the distance
between the two planes. The congruence which corresponds to an indi-
vidual function F(z) in any particular representation of this sort cor-
responds not to the same function but to the function ew=F(z), if the
angle between the real axes of the two planes be changed by 6.



II. THE METHOD OF NON-PARALLEL PLANES

Let us consider now the case in which the planes upon which
the two complex variables are represented are not parallel. Then
the line of intersection of the two planes will be a proper line, which
we may choose as the £-axis. We may identify the £é7- and z-planes,
and choose as the n-axis a line which passes through the origin of the
xy-system. Let us use the following notations:

¢ =the angle between the two planes.

6,=the angle between the {- and x-axes.

6:=the angle between the {- and u-axes.

(0, b1) = the coordinates of the origin O, of the xy-system,

(12) 1 with respect to the £g-axes.

(a2,b2) =the coordinates of the origin O; of the uv-system,
with respect to a system composed of the £-axis
and the line of intersection of the 5 z-plane with

the w-plane.
Then the cartesian coordinates of P, and P, are
Ps: P,,,.'
£1=2x cos 6,—y sin 6, £2=wu cos 03— sin 02+ a,,
(13) {m=x sin 61+7y cos 61+b1, 7m2=cos ¢[u sin @3+ cos 62+ by},
21=0 z2=sin ¢[u sin 62+ cos O+ by):

We change to a projectively equivalent, but simpler form by
means of the transformation
- _Cos ¢

£=¢, n= Z=L

. b .
sin ¢ sin ¢

3

which is admissible since the z- and w- planes are assumed to be non-
parallel. The new coordinates, expressed in homogeneous cartesian
form, are

P,: pP,:
M =2x cos 61—y sin 6, p1=1u% cOS Os—v sin O+ as,
(14) A=z sin 6;+y cos 6,4 by, uz=0,
As=0, pus=u sin 03+4v cos 62+ be,

M= 1, M4=1.
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But the values of A, u;, as given by (13), would reduce to these
same values for ¢=90°. We have shown therefore, that if the planes
of reference are non-parallel, a congruence of this sort is projectively
equivalent to one obtained from it by rotating the w-plane around the
line of intersection of the two planes uniil the z- end w-planes are
perpendicular to each other.

If we use the notation

(15) { a=cos 6,4+ sin 6y, B =cos 641 sin 6,
ap=COS 01—1 sin 91, Bo‘= [of01) 02—1 sin 02,

and introduce into (14) the complex variables given by (1), we have
the following coordinates for P, and P,:

Pz-' P.,,.‘
1 1
A= Q(az-f' a0%0), = E(ﬂw+ﬂowo+202),
(16) >\2=;_i(az— agzo+-2iby), "2:?’
Ae=0, 3= E(ﬁw—ﬂow()'i‘ 24by),
k4= 1, M4 = 1.

By an argument similar to that used in section I, we see that it is
not necessary to consider this general situation. Equations (16)
should also have been obtained if, in the two perpendicular planes
of reference, the x- and u- axes had been taken parallel to the line of
intersection of the planes, while the variables from which the congru-
ence was constructed were

Z =uaz,
W =pw.

This amounts to a transformation of both independent and dependent
variables, rotating them through angles corresponding to the angles
between the individual real axes, and the line of intersection of their
planes. Since our point of view is the study of the totality of all
such functional relations, the more special case will suffice. We
may assume therefore, without loss of generality,

a=ay=F=F=1
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and (16) may be written

Pz-' P,
1
)\1=%(z+zo), M1=§(w+w0+2‘12)’
_1 . /‘2=0’
an +)\2—2—1:(z—zo+21,b1)
A=0, Ha= ;_i(w—wo-l-Zibz),
)\4=1, Ma= L.

If we follow the line zo= const. in the z-plane, we obtain a ruled
surface of the congruence. If this ruled surface is a developable,?
the pairs (A\;p;,2=1, . . .4) of (17) must satisfy the relation
(18) ’(?A't a_'ui) s l‘il =0 ('L= 1’ 2,3, 4)'

0z 9z
Similarly, if the family of ruled surfaces z=const. consists of devel-
opables the relation

' N O
(18 ) 620’ aZO,
must hold. These reduce to a single conditicn

wo'(z—w—az+i(b1—b2)) =0.
If wy’=0, or w=const., the congruence reduces to a bundle of lines
through a point on the w-plane. If the second factor vanishes, then
w+az+ibz=z+ib1,
which is a special linear function, and represents a bundle of parallel
lines, perpendicular to the line of intersection of the two planes, and
cutting them at equal distances from this line. For all other func-
tions, the two families of ruled surfaces z=const., zo=const. are not
developables.

Let us now derive the system of differential equations (4) which
the coordinates (17) are to satisfy. Since the coordinates are linear
in the variables, the second order equations can be found at once.
They are

= % _
(19) , P 0.
If we introduce z as independent variable in the latter equation it
becomes

Ny, wi=0 (5=1,2,3,4)

2 “Ruled surfaces and congruences,” p. 158.
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The coefficients of the first order equations may be found by the
method of undetermined coefficients. The complete system is

M Pu_w
o 922 w 9z
8_)\=wo-z +as—1(b1+b2) Q_i_l_ w—wo+ 22bs @
aZo Zo"'lf)o—az—i(lh—bz) 0z w' Zo—‘wO'—az—i«)l—bz) 02
(20) i
Zo—w°—az—t(b1—bz)
1 aM_Zo—Z—Z'I:bl ﬂ L.w—20+dz+i(bl+b2)
1707—3_2;)—20—'100—02—1.(171—'62) 0z w' Zo-'ll)o—az—i:(bl—bz)
—u\
Zo—'IDo—az‘—i(bl—bﬁ)

where w' and w,o’ indicate the derivatives of these functions with
respect to z and 2o respectively.

The first step in the reduction of system (20) to the canonical form
shows the disadvantage of this method of constructing a congruence.
Instead of the two given planes of reference, the two focal sheets of
the congruence could be introduced as new surfaces of reference.
This involves a change of dependent variables, the new ones being
obtained from the linear factors of the quadratic covariant?

(21) @91 N2— (@11— @22) Nu— @122

In the parallel plane representation, these two points on the lines
of the congruence were always imaginary, for all non-trivial functional
relations, and therefore the focal loci were always imaginary surfaces.
A single example will suffice to show that in the present representa-
tion, for this function, the focal points are real on some lines of the
congruence, and imaginary on others. Hence no general statement
can be made about the reality of the focal surfaces for an arbitrary
functional relation. In our case the covariant (21) has the value

[w'wq' (z— 20+ 2ib1)N+ { ' [wo— 24 a3 — (b1 4-bs)]
\ —wo'[w—z0+as+7i(b1+bs)] } A+ (w —wo+ 23b2) 2.

This is a quadratic form with imaginary coefficients. Then the

(22)

¢ “Ruled surfaces and congruences,” p. 183.
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character of its factors will be determined by the sign of its discrimi-
nant

(23) {A = {w'[wo—2+as—i(b1+b2)] —w?'[w—zo+az+i(bl+bz)l }2
—4w'wy'[z3— 20+ 2ib1][w — wo+ 24b3].
Now let us consider the function
w=¢"
and set ¢;=5,=0,=0. Then A becomes
A=[zoe™ — 262 — 4e* T (z—12,) (€ — €™).
Let 2z vary over pure imaginary values, z=4y. Then we have
A= —4y[y cos? y—4 sin y]
which has the special values

A=8r for y=g
A= —4x? for y=m.

Since the sign of A changes from positive to negative, the factors of
(21) are sometimes real and sometimes imaginary. Therefore some
lines of the congruence have real focal points while others have
imaginary focal points.

A further disadvantage of this method appears when we try to
introduce as new independent parameters those which correspond
to the developables of the congruence. This involves the integration
of the partial differential equation?®

2 0 2
(24) (?i) - (011+022)(?— 2-0‘ + (@11822— a12a3) (8—0) =0
020 0z 02¢ 02
which in the present case assumes the form
, a0 \? .
w'[zo“wo—dz—'b(bl—bz)](g) — {w'[wo—2z+a2—i(b1+b5)]
0

@5){ g~ sz0+ o ibr+b2)]} 2 20 4wy 5 —w— aa-t (61— bo)]

0z 020
(5)-
620

which does not seem to admit of any simple method of integration.

From the point of view of obtaining geometric properties common
to all analytic functions, the method of parallel planes seems to be

§ “‘Ruled surfaces and congruences,” p. 187.
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more powerful, though the present more general method may be
advantageous for special functions. In fact when as=0,=05=0,
for such simple functions as w=2z" with #» real; w=cz where ¢ is a
az+b
cz+d

’<0, the focal points are always

complex constant; and for the class of linear functions® w=

a, b

when a, b, ¢, d are real with . d
’

real, while in the parallel plane representation they are always im-
aginary.

¢ Compare A. Emch: “On the rectilinear congruence realizing the circular trans-
formation of one plane into another,” Annals of Mathematics, 2nd series, Vol. M 13,
(1911-12), pp. 155-160.



ITII. A GENERALIZATION OF THE METHOD OF THE
RIEMANN SPHERE

Let us choose the fn-plane as the common plane of the two
complex variables. Project the variables

z=x+1y

upon a sphere S of radius r; with its center at the origin, using as
center of projection the point (0, 0, 71). Also project the second
variable

w=u+17v

upon a concentric sphere S» with radius 7, from the point (o, o, 73).
If the radii r, and 7, are equal, the spheres will coincide and the
situation will reduce to that considered by Wilczynski. A line of the
congruence is obtained by joining a point P, of S; to the points P,
on Sz which correspond to it by means of

w="F(z).

The correspondence between the two spheres is of course conformal
since the null lines on the two spheres correspond to each other.
While this is not the most general extension which can be made of
Wilczynski’s method, it puts into evidence very clearly the difficul-
ties which arise from any such generalization.

The coordinates of P, and P, can be found at once. The line
joining the points (x, ¥, 0) and (o, 0, 71) will cut the sphere

S1 E4n?4-g2=r?
in a point whose coordinates are

2r’x m= 2r1%y _ri(x?4y2—r?)
, = 1= .
x4y 41y a2 +y2+ ,lz’ 224y

(26) &=
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Similarly, the coordinates of P,, the intersection of Sz with the line
joining (%, v, 0) and (o, 0, r2) are

2ra%u 2r2 _ro(ul4v2—rs?)

27 = , M= , g2=
@ & wtvi+r? " ul+12+rsd = s R

The homogeneous cartesian coordinates of the points may therefore
be written in the form

P,: P,:
)\1= 2r12x, M1= 27’22u,
Xz = 2712}’, M2 = 27’22'0,
(28) N=r1(x?+y2—71), uz=ra(u?+v*—rs),
A= (22492 +1n?), pa=ut 024l

or after introducing the complex variables of (1)

P,: Py
M=72(z+20), m=r(w+wo),
(29) A= —1.1'12(2—20), M= —irzz(w—wo),
X3=71(220—712), M3= 1’2(10100—1'22),
Na=12z0+71, pa=wwo+rs.

The conditions (18) and (18") that the two families of ruled surfaces
z=const., zo= const. shall be developables, reduces to

w'(riw—re) =0

which can be interpreted immediately. If w’=0, or w=const.,
the congruence becomes a bundle of lines through a point of Sz If
rw—re2=0 or
w="2
71
the congruence reduces to the bundle of lines through the common
center of the spheres.

For all other functions, the coordinates (29) will satisfy a system
of differential equations of the form (4). In fact, the second order
equations are identical with those obtained in section II. The
coefficients of the first order equations have the following values:
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= (1’1 - 7'2) (7’11’2+ Z'wo)2

an )
(r1+72) (r1wo—ra30)*
G13= it
12=— .
w'rq?

(r1472) (r1wo—ra30) (r1w — rez) + (r1—72) (1172 +3w0) (1172 + Zow) ’
(r1472) (r1wo—r220)®

ra(r1472) (riwo—r220) +wo(r1—72) (rirat+2wo) }

bll= -

(r1+72) (r1iwo—r120)?
b= 7,2 1'1(71+7’2) (fﬂvo— rgzo) +ZO("1—‘ r2) (7172+z:w0)
(30) o (r1+72) (r1wo—r230)?

)

(r1472) (r1wo—1320) (11w —122) — (r1—72) (1179 +2Ww0) (71724-200) },
(7'1+72) (7'1'100 - 7’220)2
an=— w_"'[("l—'ﬁ) (rarat20w)? }
W' | (r1+72) (rwo—r220)? |

wo 79’ {rz(r1+r2) (r1wo—r220) +wo(r1—1r2) (r1re+20w) }

bar=—

72 (r1472) (r1wo—7220)?
boa= —wy’ lrl(fl‘l'fz) (r1wo—7220) +20(r1—72) (r172+20w) } )

(r1472) (r1wo—r220)?

\

The covariant (21) which determines the coordinates of the focal
points of the lines of the congruence, becomes

w'wlrst { (r172) (riwo—razo) (11w —r92) — (r1—r2) (r172+3w0)
(riratzow) A2
(31) § +712722(r1—72) { W' (r179+ 2w0) 2+ wo' (r179+ 20w)? } A
—r? { (r1+72) (riwo—1r220) (11w —72,) + (r1—72) (7172 +2w0)
(r1re+20w) } u2

whose coefficients are real and its discriminant is equal to

(32)—?;1= (r1—179)*[w' (r1r2+2w0) 2 — wo' (r1ra+20w) 2P+ 4w'wy’ (r1+-72)?

7172
(riwo—r220)2(r1w —792)2

If we exclude the case r;=r;, for which the preceding results all
become simple, we see that the first term in A is always negative,
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while the second is always positive. The following example shows
that for a given function, A can be changed in sign as z varies. Let

w=az,
where a is a complex constant. Then (32) gives the value

A
r1%rot
+2(aaezz)[2(r1+72)2(r1@0—r2)2(r1a — 79)2 —ri®ret (@ — ao)2(r1—72)?]
+7147‘24(7‘1 - 72)2(0 —_ (Io)2

which is a quadratic form
A(aagz220%)?+2B(aaez%¢®) +C
with real coefficients 4 <0, B>0, C <0 and with

Bt—AC= (”1+72)4(7100—1’2)4(710—”2)4
— (r2—r2)X(r1ao—r2)%(r1a—r3)*(a—ao)?

= (ry—7r3)2(a—ao)(aaoz?so?)?

which is always positive. Then there are two positive real values of
aaoz’2¢? for which A will vanish. If we indicate them by p; and po,

Plé(aa 08%20%) _ﬁ_Pz

represents the closed region for which the lines of the congruence
have real focal points.

The situation here, then, is similar to that in section II. The
reality of the focal sheets and developables of the congruence
depends upon the special function under consideration. In the par-
ticular cases studied by Wilczynski, the reality conditions are inde-
pendent of the particular functional relation. From the point of
view of a general theory, then, there seem to be serious disadvan-
tages connected with any attempt to generalize these two methods
for representing a functional relation by means of a congruence.
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