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DETERMINATION OF ALL GENERAL HOMOGENEOUS POLYNOMIALS
EXPRESSIBLE AS DETERMINANTS WHOSE ELEMENTS
ARE HOMOGENEOUS POLYNOMIALS *

BY

H. 8. EVERETT

1. Introduction. Dicksont has shown that every binary and every ternary
form, every quaternary quadratic, and a sufficiently general quaternary cubic
form can be expressed as a determinant with linear elements, and that this
property does not hold for any other form which is the general one of its degree
and number of variables. The present paper is a generalization from the case
of determinants with linear elements to that of determinants with elements of
higher degrees.

In the first part it is proved that if the number of variables is greater than
three, no general form of degree rs is expressible determinantally, that is, as a
determinant of order r with homogeneous elements of degree s, s = 2. The
case of quadratic elements is considered in § 2. The second part treats the
determinantal expression of binary and ternary forms. In § 5 binary forms
are expressed rationally as determinants. In § 6 a general procedure is set
up for ternary forms and the remaining sections show that this procedure is
successful for ternary quartic and sextic forms.

I. Forms WITH 7 > 3 ARE NOT EXPRESSIBLE DETERMINANTALLY

2. THEOREM 1. When the number of terms in the general form of degree 2r
tn n variables (n = 2) exceeds [3n(n+1) — 212+ 2, the form is not ex-
pressible as a determinant whose elements are quadratic forms.

Let D be any r-rowed determinant with quadratic elements homogeneous
in the n variables x;, - -+, x,, which represents the general form of degree 2r.
Its matrix M may be written in the form

M=$§M11+$1$2M12+ °°°+x1ng1n+x§M22+ +3312aM7m,

where each M;; is a matrix whose r* elements are constants. We proceed to
simplify the matrix M by the method of matrix multiplication employed by
Dickson.}

* Presented to the Society, December 28, 1921.
tThese Transactions, vol. 22 (1921), p. 167, hereinafter referred to as D.

1D, p. 168.
185



186 H. S. EVERETT [October

Since D represents the general form, 21" is present, whence the determinant
of My is not zero. Thus My, has an inverse Mt such that My, My is the
identity matrix I. The new matrix

N=MMi =ail+zia N+ - + 25 Nw (Nyy= My Miy
has as its determinant D/| M1| and has unity as the coefficient of 2}”. "Next

we choose a matrix B such that B~! Ny, B shall have a canonical form Pj,.
Then our matrix reduces to

P=B'NB=2}I+ 1% P2+ -+ + 2f Pna (Py; = B'N;B).

In contrast with the case of linear elements, we cannot show in our case of
quadratic elements that the roots A1, -- -, A of the characteristic equation of
Nj, are all distinct. Hence we permit Pjp to have the most general form*
with ¢ distinct X’s, = r. Further normalization of P is effected by the matrix
K commutative with P, as defined by Dickson.t In K™! P;3 K we can
specialize r — 1 elements.

In case t = r no further specialization is possible. We have then, if we
count the factor removed from D and the r distinet N’s of Pis,

l1+r+[3n(n+1)—2]7—(r—1)

or[in(n+ 1) — 2]72 + 2 parameters in the modified matrix of D. In case
t < r the true number of parameters is less than that given above because we
then have ¢ < r distinct N’s, and because further normalization is possible
since the matrix K is not the most general matrix commutative with Pi,.
Therefore, the number of parameters given above is the true maximum and our
theorem follows.

3. THEOREM 2. When the number of terms in the general form of degree rs
in n variables (n = 2) exceeds

S=[n(n+l)---(n+s—1)_2]rz+2’

s!

1t 18 not expressible as a determinant whose elements are s-ic forms.

The argument in § 2 applies when D is a determinant of order r whose
elements are forms of degree s = 2 in n variables, except as to the number of
terms in the matrix M. This numberis[n(n+1)--- (n+s—1)]/sl.

4. THEOREM 3. Ifin > 3,8 =2, the general n-ary rs-ic form cannot
be expressed as a determinant of order r whose elements are n-ary s-ic forms.
~ The number of terms in the general form of degree rs in n variables is

(rs+n— 1\ _(rs4+1):--- (rs+n—1)
rs ) B (n—1)! '
* D, p. 178; Dickson, Linear Groups, 1901, p. 223; Bécher, Higher Algebra, p. 293.

D, p. 179.
' tFors = 1see D, Theorem II, p. 171.
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Then by § 3 the general form of degree rs in n variables (n = 2) cannot be
expressed as a determinant with s-ic elements if

(r¢s+1) - (rs+n—1)
m=1) > 8.

For n = 2 and n = 3, respectively, (1) becomes 0 > (r — 1)[(s — 1)r — 1]
and 0 > (r — 1)[(3s — 2)r — 2], which hold for no value of r when s = 2.
Now (1) holds if

(rs+1)(rs+2)(2s+3) --- (2s+n—1)
(n—1)!

holds, where the left member of (2) has been obtained from that of (1) by
replacing r by 2 everywhere except in the first two factors. We consider this
relation first for s = 2. If n = 7, r = 2, we can cancel from the numerator
and denominator of the left member the factors 7, -+, (n — 1) (which are
absent if n = 7), and then (2) holds if

(2r+1)(2r+2)n(n+1)(n+2)(n+3)
6!

¢Y)

2 > S

_1fn(n+1)
?E[——2 2](2r+1)(2r+2),

since the right member exceeds the value [3n(n+ 1) — 2]7*+ 2 of S for
¢ = 2. The last inequality holds if

n(n+1)(n+2)(n+3)/180=3n(n+1) — 2; ;

that is, if n(n — 7)(n+ 1) (n+ 12) 4 360 = 0, which is obviously true
forn=7. Forn=4,n=>5,n= 6, respectively, (2) becomes

(2r—1)(2r—2)(2r—3) >0, (r—1)(4r*+ 24" —19r46) > 0,
(r—1) (84 68r3 + 2382 — 107r+ 30) > 0,

each of which evidently holdsfor r =2. So (2) holdsfors=2,r=2,n = 4.
We proceed now to show by induction on ¢ that (2) and hence (1) holds for
s=2,r=2,n=4. We assume that (2) holds for r = 2, n = 4, and any
given value of s. We wish to show that (2) implies the corresponding in-
equality with s replaced by s 4 1, viz.,
[(s+1)r+1][(s+1)r+2](2s+5)---(2s+n+1)
(n—1)1

n(nt1) - (nds) ,
>[ GF D! 2]’”2:

®3)
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To derive (3) from (2) we must add to the right member of (2)

[n(n-l—l) e (n+s) n(n+1)--- (n—l—s—l)]r2

(s+ 1)! sl
_(i=Da+D) - (nts—1),
(s+ 1)! ’

and to the left member

(2s+5) - (2S+n_1)(ar2+br—|—c),
(n—1)!

where

a=4(n—1)+ (P+Mm—4)?+2(n*+3n+1)s+n(n+1),
b=12(n—-2)*+3(n*+ 52— 10)s+ 3n(n+ 1),
c=8(n—3)s+2(n*+n—12).

To establish the induction we need

@) (2s4+5) - (2s+n—1)(ar*+ br+c¢)/(n—1)
=(s+2)---(s+n—1)r.

Since the s-factors on the left are each greater than the corresponding s-factors
on the right, and since br 4+ ¢ > 0 for n = 3, (4) is implied by

(5) a/(n—1);(s+2)(8+3)(8+4)-

Now (5) holds for n = 4 if it holds for n = 4 since the coefficients of s are all
positive for these values of n. But for n = 4, (5) becomes

9s% 4+ 2182 — 20s — 52 = 0,

which obviously holds for s = 2. Our induction is therefore complete and
Theorem 3 follows.

II. BINARY AND TERNARY FORMS EXPRESSED DETERMINANTALLY

5. Binary forms. Since the binary form of degree rs can be factored into
rs linear factors, it is expressible as an r-rowed determinant each of whose
diagonal elements is a product of s linear factors, and whose elements outside
the main diagonal are zero. Dickson has expressed the binary form rationally
as a determinant with linear elements.* Every binary form of degree rs can
be expressed rationally as a determinant of order r with s-ic elements:

*D, p. 175. This determinant can be reduced by elementary transformations to the
present one.
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G2” + a2ty + ot a2y ey =

[apat + a1ty + -4 ey 2y t+ay] 0O .-+ 0
[— a2ty — e — Gge1 XY — eyt 2 Y O -0
[+ a1y + -t agaxy Tt +a,y] 0 2ty - 0
[— asrr2ly — e — a2y —a,y] 0 0 2* - 0

[((—Draseopnay + -+ (—1)aeny] 000 --- 9
[((—D*Maepprty+ -+ (= 1)*asy'] 000 --- 2

6. Ternary quartic form. The general ternary quartic may be given the
form

@+ A+ & f2 — 2abed — 2abef — 2cdef ,

where a and b, ¢ and d, ¢ and f, are three pairs of bitangents of a Steiner set.*
This function equals the determinant

(ab — cd — ef) 2cd )
2¢f (ab — cd — ef)

The determination of the bitangents depends, however, upon the solution of
equations of high order. In the case of the general ternary quartic form with
no repeated factor Dickson’s determinant { of order » = 4 with linear elements
can be reduced to a determinant of order r = 2 with elements of degree s = 2
by the following elementary transformations. Multiply the third row and
divide the fourth column by X, ¢4 2; multiply the second column and
divide the first row by X; + c¢11 2; multiply the first column by — z and add
to the second column; multiply the fourth row by — z and add to the third
row; multiply the second row and divide the second column by z. The
resulting determinant is

lll2—02122 2.’2 ',
l1 (ese Iy — Ca23) — 2(ca1ls — C412) Isly — c452°

where I; = X;+ c;;z2. No elementary transformations have been found
which accomplish a similar reduction of Dickson’s determinant of order rs > 4.

7. General ternary form. The remainder of this paper is concerned with
a method of expressing a sufficiently general ternary form f of degree rs as a
determinant of order r whose elements are s-ic forms. We may assume that
f is irreducible. For, if f = f, f» where f; and f. are of degree r, s and ry s
respectively and expressible as determinants of order 7, and r, whose matrices
are M; and M,, then f equals the determinant of the matrix

(M 1 0
b
0 M,
* Miller, Blichfeldt, and Dickson, Finite Groups, 1916, p. 355.
i D, p. 174.
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where O is a matrix all of whose elements are zero. With Dickson* we choose
a triangle of reference such that, forz = 0,f(z,y,0) = X, X; - - - X;., where
X;=2z+Nyand )y, ---, N, are all distinct. Then

f= X1 Xy Xoo+ k;szk(y: z),

where F}, is a binary form of degree rs — k. We shall attempt to express f
as a determinant of the following special type:

(X1 X+ 2¢n 2012 2¢1-
D= 2021 Xopr oo Xoa+ 202 - -+ 22, ,
z¢r1 Z¢r2 e -er—s+1 tee er + z¢rr

where each ¢;;is a ternary form of degrees — 1. Thereare (rs+ 1) (rs+ 2)
coefficients in f. In identifying f(z, y, 0) with X1, -+, X,s, 78 + 1 of these
coefficients have been fixed. So the identification of D with f involves
2rs(rs + 1) conditions on as many coefficients of the ¢;;. We therefore
assign simple values to the remaining 7s (r — 1) coefficients of the ¢;;; in
each ¢; (7 > ©) we set the first s coefficients equal to zero with the exception
of the first coefficient of each ¢;; (j = 7 4 1) which we set equal to one.

We then expand D axially and consider the identification of the terms of
this expansion, arranged in ascending powers of z, with the corresponding
terms of any given form f. First, the terms linear in z will be identical with
2F1 (y, ) of f, where F; is any given binary form of order rs — 1, if they are
equal for the rs values x = — N,y (¢ =1, .-+, rs). The resulting 8 con-
ditions involve the coefficients of the ¢;; of D. As a matter of fact, it will be
seen in the following sections that they uniquely determine rs coefficients of
the ¢;;. Next, the terms quadratic in z will be identical with 22 F, (y, ) of f,
where Fy is of order rs — 2, if they are equal fort 2 = — \;y (¢ =1,

.+, rs — 1). The resulting rs — 1 equations involve coefficients of D.
Proceeding in this manner to identify terms in 2* (k = 1, ---, rs) we obtain
a system of rs 4+ (rs — 1)+ -+ 4+ 24 1= 3rs(rs+ 1) equations in as
many unknown coefficients of D. Since these equations involve arbitrary
parameters Fy, - -, F,,, and since by the implicit function theoremj solutions
exist in the neighborhood of a point for which the jacobian of the equations
does not vanish, the method outlined above effects the identification of D
with f if the jacobian of these equations is not identically zero.

*D, p. 172.

t Or for any other choice of rs — 1 of the N’s.

1 Bliss, Princeton Colloguium Lectures, 1913, p. 7. Attention is called in this connection to
MacMillan’s method of solution involving the introduction of a parameter and the expression

of all solutions in power series of this parameter. See MacMillan, Mathematische
Annalen, vol. 72, p. 180.
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8. Ternary quartic form. A sufficiently general irreducible ternary quartic
4
f=X1VX2X3X4+ 'le"Fi(y,x), Xi=x+>\ry,

with distinct N’s can be expressed as the determinant
XiXo+ (buz+kuny+luz)z (x4 lip2)z )
(horx4kary =+ liz)z Xs Xo4 (st kooy+ baz)z

The ten equations which arise in the identification of D with f follow. For
brevity we write the frequently recurring expression A, — N\, as (uv), and

kuy — Mo By as (uvw) .
(3¢) (44) (112) = F, (1, — \;) (¢=1,2),
{(lj)(2j)(22j)=F1(1,—>\j) (j=3,4);
{ (32) (40) bl + (112) (22¢) + N (218) = Fo (1, — M) (2=1,2),
(13)(23) L2 + (113) (223) + N3 (213) = F2 (1, — A3);
(112) log + (222) ly — (212) o+ N loy = Fa (1, — \;) (t=1,2);
lll l22 - l12 l21 = F4'

The first four equations are linear and determine uniquely ki1, Ay, ko2, hos,
since their determinant is

My = mymy = (31)*(41)*(32)*(42)*(21) (43),

D=

where

1 =\
1 —N\
and is different from zero in view of the fact that the N’s are distinct. Since
this system falls naturally into groups of 4, 3, 2, and 1 equations each, the
Laplacian expansion of the jacobian of the system by minors of the last row,
of the eighth and ninth rows, of the fifth, sixth, and seventh rows, and of the
first four rows yields most readily the complete coeficient of the various terms.
If the jacobian has its columns in the order ki1, ki1, ka2, A2z, ko1, hox, los, li1,
lo1, li2, we find on the main diagonal the only term of the expansion actually
involving lp; k2s. Its coefficient is

M4 M3 Mz M1 = (21)3(31)3(32)3(41)2(42)2(43))\1)\2,

o me=(13)(23)(14) (24) s

m=(31) (41) (32) (1) |} T

where
1 N Mo — A 0
M1=—1, M2='1 }\2’ M3=)\2 —)\§ 0 .
As — N (13)(23)

We may assume that A\ Nz 5 0, since if one of the four distinct N’s is zero it
may be taken initially to be \s. Then since the N’s are distinct, the coefficient
of Iy ks is different from zero and the jacobian does not vanish identically.

9. Ternary sextic form, s = 3. A sufficiently general irreducible ternary
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sextic .
(6) f=X1X2"'Xs+ZZka(Z/,x), X,=z+ Ny,
k=1

with \’s distinct can be expressed as the determinant D with cubic elements

_ X1X2X3+Z¢11 2P12 s
2Pa1 Xy X5 X+ 222
where ¢y = ai; 2% + bijay + i v* + dij 22 + e;; yz + fi; 2%, and where in
particular a;2 = 1, bis = c12 = 0. The identification of D with f involves
the following 21 equations. We use the abbreviated notations (uv) = A — Mo,
(uvw) = €ur — A duo, and [UDW] = Guy N — buo M + Cuo -
{(4i)(5i)(6i)[11i]= Fi(1,—Ni) (1=1,2,3),
(1) (25) (3j)[22j] = F1(1, — N;) (j =4,5,6);
{ (43) (5) (62) (113) + [115][226] — N} [21i] = Fo (1, — N) (2 =1,2,3),
(17)(2) (35) (22)) + [115]1[22j] — Nj[215] = Fo (1, — %) (G = 4,5);
(40) (54) (62) fus + [112](22¢) + [224] (112)
— N (21%) — [21i](12) = F5(1, — N) (¢=1,2,3),
(14) (24) (34)for + [114](224) + [224](114)
—N(214) — [214](124) = F5(1, — \g);
[112]foe + [220]fu + (112) (220) — N for — [21¢]fre
— (120) (213) = Fo(1, — N) (¢ =1,2,3);
(lli)fzz"l- (22’1,)f11 - (122)f21 - (21’&)f12 = F5(1, - )\;) (’L = 1,2);
f11f22 _f12f21 = FG'
With the columns of the jacobian arranged in the order a;1, b1, €11, G2z, a2,
Caz, G21, Doy, Co1, doo, €22, dai, €21, du1, 311,f11,f22,f21, dis, 812,f12, we find on
the main diagonal the complete term of the expansion involving f3; b1 c3;.
Its coefficient is
Me Ms My My My My = NASN3(12)%(13)%(14)%(15)3(16)2(23)*
X (24)(25)°(26)7(34)*(35)%(36)%(45)%(46) (65),

D

where
Mi=—1, M= | Mi=|1 =N —M|
P 1 —N\ — A2
3 3
)\:i; _)\¥ —)\1 1 4 3 2
M o—M —n 1 NN N
M4= )‘3 __)\2 -2 1 ’ M5= _)‘; )\g _)\g . ¢ ’
8 3 3 _)\4 )\3 _)\2 —')\5 1
)\2 —>\i '—)\4 1 3 3 3
INEEED VIR NPV R Yo |
M6= )\5 — X 1] )\§ - N 1
No—N 1] N = 1
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We may assume that \; \s \; % 0, since if one of the six distinct N’s is zero, it
may be taken initially to be \s. Then since the N’s are distinct this coefficient
is different from zero and the jacobian does not vanish identically.

10. Ternary sextic form, s = 2. A sufficiently general ternary sextic (6)
can also be expressed as the determinant D with quadratic elements

X1 Xe + 261 P12 2P13
D= 2021 Xz X4 + Zdo2 323 4
2Ps1 2Ps2 X5 X+ 2¢3s

where ¢i; = hijx + kijy + lijz and by = hog = 1, hig = kip = iz = kag = 0.
Let A be the determinant |I;;| of third order, and let L;; be the minor of ;;
in this determinant. In the following 21 equations which arise in the identi-
fication* of D with (6) we use the abbreviations

(uv) = N — Ny, (wow) = kuo — Mo hu?

(32) (42) (5¢) (6¢) (114) = F1 (1, — Ni) (1=1,2),
{(1j)(2j)(5j)(6j)(22j)=F1(1,—)\,~) (j=3,4),
(1k) (2k) (3k) (4k) (33k) = F1(1, — Ni) (k=5,6);

((3¢) (42) (5¢) (62) lu + (34) (4¢) (117) (337)
+ (51) (62) (112) (226) + (5¢) (66)N\: (218) = Fa (1, — \;) (i =1,2),
.(13)(23) (53) (63) la + (13) (23) (223) (333)

+ (13) (23)X5(323) + (53) (63) (113) (223)

+ (53) (63) (213)As = F5 (1, — s),

(1k) (2k) (3k) (4k) lss + (1k) (2k) (22k) (33 )

+ (1) (2k)Me (32k) + (3k) (4k) (11k) (33k)

=F(1,—N\) (k=5,6);

[ (32) (42) [(112) lss — (313) iz + (332) lu]
+ (5¢) (62) [(112) b — (21%) s + (220) iy + N lan ]
+ (112) (22¢) (332) + (112) (322) N\,
+ (212) (33i)\ + (310)N = F5(1, — N) (¢ =1,2),
(1k) (2k)[(22k ) Iss — (32k ) los + (33k) Loz + Ni ls2]
+ (3k) (4k)[(11k) 133 — (31k) i+ (33k ) L]
+ (11k) (22k) (33k) 4 (11k) (32k )N
+ (21k) (33k)Ne + (31k)Ni = F3(1, — M) (kb =5,6);
* See second footnote, § 7. Here it was found advantageous to select the N\’s in the order
A1, Az, As, As, Az, A4, since this selection gives the minimum number of terms in certain equa-

tions. Thus, the tenth and eleventh equations contain fewer terms than does the ninth
equation.

-
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((51) (66) Lag + (31) (48) Las + hs[(212)-(32¢) — (22¢) (314)]
— L[ (114) (32¢) + N (312)]

+ 15[ (112) (220) + N (212) ]

2l 4+ N[ (118) lag— (318) lia + (322) ly + Nilaa]

+ (330)[(118) log— (21%) lha + (220) i + il ]

= F(1, —N) (¢
[ Similarly for ¢ = 6 with first term replaced by (16) (26) Lu;

(112) Lyy — (213) Ly + (312) Lay + N Lig + (221) Las
— (320) Lgs + N Las + (330) Lgs = F5 (1, — \i) (¢

1,2);

1,2);

A = Fs.

With the columns of the jacobian arranged in the order ki1, ki, ko2, hoa,
kas, has, ka1, hoa, las, ksz, haz, ka, hayy lss, lsa, lix,y o, laa, la, ls, Lz, we find
on the main diagonal the complete term of the expansion involving
12, 12, by k22 k35, Its coefficient is

Mg My My Ms My My = N N3Ns N (12)° (13)°(14)%(15)°(16)°
X (23)%(24)%(25)°(26)°(34) (35)(36)° (45)? (46)*(56)°,

where
1 1 A A
M1=1’ M2=—\1 )\l; .l‘13= 1 N\ )\g,
: 1 N N
No=\ 0 0
M, = No—A 0 0

A=A (15)(25) (15)(25)Ns|’
N — A3 (16)(26) (16)(26)N

My = (13)(23)(53) (63) (51)* (61)*(52)* (62)* M Az Xs N

I =M |1 =N
X‘l =N -’1 =N’
Mg = (31)2(41)% (51)2(61)2(32)2 (42)% (52)%(62)% (53 )2
2 2 2|1 —M 11 =) 11 —
X (63 (47 (64| T ‘1 Y ‘1 — Nl

We may assume that A A2 As s # 0 since if one of the six distinct N’s is zero
it may be taken initially to beXs. Then since the \’s are distinct the coefficient
of this term is different from zero and the jacobian does not vanish identically.

No attempt has been made to prove that for ternary forms higher than the
sextic the corresponding jacobian is not identically zero.

BuckneLL UNIVERSITY,
LeEwisBURG, Pa.
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