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THE TRANSMISSION OF WAVES THROUGH A SYMMETRIC
OPTICAL INSTRUMENT.

By IRWIN ROMAN.

SYNOPSIS.

Gaussian Parameter Method of Studying the Transmission of a Wave Surface
through a Centered System of Symmelric Lenses.—Since for each point of an incident
wave surface there is a corresponding point on the refracting surface, the parameter
B of the refracting surface may be expressed in terms of the parameter « of the wave
surface, thus allowing the elimination of the parameter B. After expressing all
quantities in terms of «, certain invariant combinations are found among the
coefficients of the wave and lens surfaces, these furnishing the determination of the
refracted surface. This gives a point by point correspondence between all surfaces
of the system. As an application, the focal distance and longitudinal aberration
are calculated and a numerical case given. The method is applicable to aspherical
surfaces as simply as to spherical ones, and it is hoped that many problems in
practical optics may be simplified by the present method, combined with proper
choices of the parameter.

ParT I. INTRODUCTION.

HE literature on the aberrations in an opfical system contains a
number of different methods of attack on thé problems involved.
Nearly all of these may be grouped into two classes, according as the chief
emphasis is placed on the wave surface or the ray congruence. As a
combination of the two points of view may be mentioned the methods
using the characteristic function of Hamilton, which, in the hands of
Bruns? and of Schwarzschild,® have yielded some valuable results. The
characteristic function is essentially a relation between the codrdinates
of the points at the opposite ends of a particular ray segment, the results
being studied without expressly finding the coérdinates of one end in
terms of those of the other end. The method is an implicit function
method, and leads to fairly complicated analyses.

It was pointed out by Gullstrand* that the aberrations of an optical
system could be studied more simply from the point of view of the wave
surface than from that of the ray. He selected the equation of a par-
ticular wave in the form z = f(x, y). So far as the present writer has
been able to learn, Gullstrand has made no attempt to study the trans-

1 Presented to The University of Chicago, in partial fulfillment of the requirements for
the degree of Doctor of Philosophy.

2 Abh. d. math.-phys. Kl. d. Kgl. Sichs. Ges., Bd. 21, s325 (1895).

3 Abh, d. Kgl. Ges. d. Wiss. zu Géttingen, math.-phys. Kl. Neue Folge, 1V (1905-1906).

4 Ann. d. Phys. (4), Bd. 18, S. 941-973; also K. Svenska Vetenskapsakad. Handl., 41.

No. 3 (1906-7).
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formation of a wave surface, but restricts himself to the analysis of a
particular surface, the aberrations being referred to that surface.

The purpose of the present investiéation has been to replace the
rectangular representation of the surface by a representation in terms
of two Gaussian parameters such as are used in differential geometry.
Let us consider a particular wave of a family incident on the surface of
separation between two homogeneous and isotropic media. Suppose
that the initial wave and the lens surface are determined in terms of
separate parameters. At each regular point of the wave surface there is
a unique normal, commonly called the ray. This ray, if effective in
image formation, must pass through the lens surface, and the point of
ntersection determines a correspondence between the two sets of
parameters. By means of this correspondence, either set of parameters
may be expressed in terms of the other set, thus allowing the elimination
of all but a single set. The use of this single set of parameters throughout
the system, makes it possible to determine corresponding points on all
surfaces of the system, since all points on a particular ray are given by
the same values of the parameters throughout the entire system. It
should be noted, however, that if the parameters have a simple geometric
significance for one surface, they will, usually, not have a simple signifi-
cance for another surface. Having determined the various parameters
in terms of a common parameter, we may proceed to the study of corre-
sponding surfaces and to the study of the transformation of the surface
as the wave is transmitted through the system. Knowing the initial
and the final wave of the system, we may proceed to the study of the
aberrations in accordance with any desired classification or analysis.

Besides the advantage of directness in the method, there are several
other advantages. Since we have a single set of parameters, we have a
definite interpretation for the ‘‘order” of a quantity. While a few
attempts have been made to retain powers of small quantities beyond
the second, such terms are usually neglected, probably because of the
complexity involved in their retention, and possibly also because there
is usually a certain vagueness in the analysis. While a quantity may be
of one order in terms of one parameter, it may be of a different order in
terms of another parameter. A second advantage lies in the facility
with which questions involving aspherical surfaces may be treated. In
the usual treatments, the surfaces are assumed to be spheres or to depart
only slightly from spheres.

In the preceding paragraphs, the method has been sketched for a
general system. Because of the complexity which arises in carrying out
the method, the investigation in this paper has been restricted to the
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case in which all the surfaces are symmetrical with respect to a common
axis of revolution. This allows the selection of one of the two Gaussian
parameters as the azimuth around the common axis, reducing the
problem to a plane problem. Besides assuming that each surface is a
surface of revolution around a common axis, we shall assume that each
surface and its representation is non-singular in the portions to be studied.
This means that for the axis and for a certain region around the axis,
there shall be no singular points of the surface or in its representation.
The parameters will be selected so as to reduce to zero for the axial point.
This choice of parameters is a restriction of small importance, since
practically all discussions of the symmetrical system are made in terms
of the optical height or.of the paraxial angle. The restrictions here
imposed still allow a considerable freedom in the choice of parameters
to suit particular needs. |

In following out the methods here discussed, we shall use power series
expansion in the parameter selected, retaining all terms by means of
recursion formulas. Except for the application to the first four orders,
no attempt will be made to reduce these to explicit forms. The complex-
ity increases rapidly with the order of the term, and in numerical
calculations, the recursion formulas may even be more convenient than
the explicit forms. ‘

The method also makes use of invariants of two classes, parametric
and optical. A parametric invariant is a quantity whose value is inde-
pendent of the choice of parameter. An optical invariant is a quantity
whose value is independent of which particular wave of the family is
selected. The parametric invariants are geometric and are incidental
rather than fundamental in the optical problem. The optical invariants,
however, are fundamental, as they furnish the new surface in terms of the
old surface and the interface. Unless specified to the contrary, we shall
understand the single word ““invariant” to refer to optical invariant.

In order to avoid possible confusion, we shall define several terms ordi-
narily used with varying meanings. By a refraction, we shall understand
the transformation from a wave surface in one medium to that in the
other, the two surfaces coinciding with the interface at the axis. By a
propagation, we shall understand a transformation from one wave
surface to another in the same medium. By a transmission, we shall
understand a refraction between two propagations. Thus a trans-
mission carries an arbitrary wave surface in one medium to a wave surface
in the other medium at an arbitrary distance. When convenient, and
where no confusion is likely to arise, the term transmission may be used
for any combination of propagations and refractions, or either alone.
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PArT II. THE CORRESPONDENCE OF PARAMETERS.

As'was pointed out in the introduction; there corresponds to each
point on the initial wave a point on the lens surface uniquely determined
as the point where a normal to the wave at the point in question cuts the
lens surface. Since the system is one of revolution about a single axis,
we may select that axis as the x-axis, and study the system by means of
a typical meridian plane, which we may take as 2 = 0. Then the y-axis
will be in the plane under consideration and normal to the axis of revolu-
tion. The symmetry assumed may be expressed in the equations of the
wave surface by:

) 0
x = ZAziaz" y= ZBziﬂaﬁ'ﬂ- (1)
i=0 i=0
The assumption that the representation is regular at the axis is equivalent
to the condition B; # 0. The other coefficients may be assumed to be
all finite. Thus, y = o for & = 0. Likewise, we may assume the lens
surface to be given by

£ =2, Coif?, n = ;Dzmﬁ“ﬂ, (2

i=0

where D; # o and all the coefficients are finite.

™=
Fig. 1.

Let the normal to the lens surface make an angle ¥ with the x-axis,
measured as shown in the figure, positive angles being counterclockwise,
asusual. Let the ray make an angle 6 with the x-axis and an angle p with
the lens surface normal. Then; since the ray is normal to the wave, it
follows that '

dx |d ' '
tane=——’5/—y ¢_—Z—z g%. @)

1f the point (& ) of the lens surface corresponds to the pomt (%, 9) of
the wave surface, then it follows that

_ dx dy
(n =9/ —2x) =tan b=~~~/
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w—w 2+ - w——é L@

Equation (4) represents the corresponidence between « and § and enables
us to determine E; where : .

B = E]'Eiai. | : . (5)
From equation (1), we havg
e Ex-; c_Zo (21 + 2)Asip00?H,
)

Z (21 + I)Bza+1a2’

=0
For a =0,y = dx/da = 0 and dy/da = B; 5% 0, so that equation (4)
requires that 7 = o for & = 0 or that the solution we want is the one for
which E, = o, giving
‘ B = X Ei. )

t=1

To express £ and 9 in terms of «a, we need the various powers of 8 in
terms of . For this purpose, let
Bk = jZOIka:H ' (8)
Inspettion of equations (7) and (8) shows that I" has the following
.deﬁnmg properties:

(@) I} is the sum of termseach involving & of the E;, one from each
of the factors g.

() Since the order, or subseript, of each E; denotes the power of «
that it accompanies from B, the sum of the subscripts in each term of
I is (j + k).

. (¢) The numerical coefficient of each term in I} is the number of
dlstmct permutations possible among the subscripts of that term. If
E; occurs n; times in a particular term, this number is

k! " . )
m'—) where ;n,ﬂ =k and Ei:m,- =j+k

Hence, we have o
k! ‘
It = ;mne@i), (9)
where X n; = B and X in; = j + k while X, extends over all possible
i i . . . .

partitions of (j + k) things into k parts.
In particular, I;* has the following useful properties:
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(A) The highest order E; among all the terms of I;* is in E*'Ejy,.

(B) If j is odd, each term of I;* must have at least one E; of even
order. This follows fromthe fact that if each E; were of odd order, the
sum would be even or odd with %, while (j + k) is the opposxte

(C) I® =1, I°=ofor_7>o,Il—E,+1

Inserting equations (8) in equations (2), we get

L] L
= 2 Caulfar, q= 3 Dunlpadi+it, (10)

$,j=0 1,j=0
By means of equations (1), (6) and (10), equation (4) becomes
Col 2i(2k + 2)Agpyoadititeit

3 = (2 + 2)42j424 5ia? ¥t
2, ; " =o0. (11)
4 J, k=0 + Doiy i I2#1(2k + 1)Bgpyralditit2itl

—_ (2]' + I)Bz,-+1.Bz,-+1a2""’2f+1

The coefficient of a?™ is

m—1 m—k—1

lg E [(2k + 2)Asi42Coilim—2i—2i1
+ (2k + 1)Barp1Daia It s i 1] = 0. (12)

Since j = 2m — 2k — 21 — 1 is odd, each term in equation (12) contains
an E; of even order. Since I3,_; = o, the highest order E; occurs for
k=14 =0 and is Esn, the term being ByD1Im—y = BiD1E;m. Hence
by (12), Esm is the sum of terms each of which involves a factor E; of _
even order below 2m. In particular, for m = 1, we have, by equation
(12), k=42 =0s0

2A2C0I1° -+ .31D1L} = .B]DlEz = 0. (13)

Since B; and D, were selected different from zero, it follows that E, = o.
Further, we have

Eyw=0 and I%y, =o. (14)
As a consequence of equations (14), we may write equations (8) and (9)

as follows:
3

]
gk = EI';ja”*"‘, where

=0
Lk = ; ’(n‘ |)HE¥¢+11
Y=t ((15)

;(m' + )n; =k +2j

and where X extends over all partitions of (¢ + 2j) into % parts.
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By means of equations (14), equation (11) becomes

[(2k + 2)Azk+2C2ij2;2‘

) + (2k + 1)Bary1Dyiyr Lz a?iH2it2k+1
= 0.
4,4, k=0 — [(2] + 2)A2:A 242
+ (2] + 1)Baiy1Bajia ]ttt
The coefficient of a2t is
m m—k
,;, é [(2k + 2)Asi+2Cailin—21—2:
+ (2k + 1)Bait1Daiy1 w2 1—2i] =o.
- g[(% + 2)Asip2d sm—si + (24 + 1)Bsiy1Bom—sitr’
Since k i
22 o0, k) = ¢(0,0) + 2 (i, 0) + 2 2 (i, k),
k=0 ¢=0 =1 k=1 i=0
equation (17) becomes
[ [245CoIom® + BiD1Iom!] . ]
+ ‘_Zl [242C5:I%,_2; + BiDsiyr I3]
m m—k
9 + 20 2 [(2k + 2)AsiiaCoilBh g s r = o.
k=1 i=0

+ (2% + 1)Bars1Daipr1 o2 i—2i]

- § [(22 + 2)A2i424 9m—2:i + (24 + 1)B2iy1Bam—2it1]

Since Iom! = Eamy1, this gives the recursion formula:

§ [(26 + 2)A2i4942m—2: + (26 + 1)Baiy1Bam—sit1]

1 — 24:Col2n® — Z [2442026135"-2{

i=1

E mtl= T <
17 BiDy + BiDgiy1lonai]

m m—k

- ,; ¢E—o [(2k + 2)A2r42Cailim—2i—2
+ (2% + 1)Bart1Dairr o on—a:]

68

(16)

(17)

(18)

(19)

Equation (19) furnishes Esmy1, after which equations (15) furnish In;*

so that substitution in equation (10) gives:
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00 . m ‘ .
£= 2, Fapo?m Fom = D CoilB i
m=0 =0
" where - . (20)
n = Zo Gomyr02mHt Gomi1 = ZD25+1I§H'—12:‘
m=f . \ =0

While equations (20) give the value of Gymys, it may be expressed in a
more convenient form as follows. By equations (1), (4), (6), and (20),
we have . ‘

¢;o[(2i + 1)(Bej+1 — Gai41)Baiv1 + (21 + 2)(42; — in)Amz]a“*”*f

=o0. (21)
The coefficient of o?™*! is

JZ;,[(?-’m = 2j + 1)(B2i+1 — Gaj41) Bom—2is1
+ (2m — 2j + 2)(As; — Fa)Asmsisa] = 0. (22)

m m—1 . . .
Since Y~ ¢(j) = ¢(m) + > ¢(j), we have from equation (22)
=0 J=0
m—1

I . '
Gimi1 = Boms +E g (2m — 2§ 4 1)(Baiy1 — Gai+1)Bam—z2jt1
J=
" oo (23)
1 .
+35 2 (2m — 2j + 2)(Aej — Faj)Aomsite

1j=0

We have thus expressed in 8 terms of «, and are able to eliminate the
parameter 8 from the problem, expressing everything in terms of the
parameter o. We have also found explicit values for the codrdinates of
each point of the lens surface in terms of the value of the parameter
specifying the corresponding point on the incident wave surface. Since
the coefficients Fan and Gamy: are for the lens surface in terms of ¢, it
follows that they are independent of the choice of 8. Thus, when Fo,
and Gamy1 are expressed in terms of A em, Bami1, Com and Damyy, the coeffi-
cients of Asn and Byny1 will be combinations of the Cam and Dgmyy which
will be the same for all parameters B. Hence these give parametric
invariants of the curve which describes the lens surface and hence of all
curves with the assumed type of symmetry. The details of this will
appear more clearly in the special cases treated in Part IV.

PART III. TRANSFORMATION OF THE WAVE SURFACE.

Having expressed the coérdinates of the lens surface in terms of the
parameter of the incident wave, we may now proceed at once to the study
of how the wave is transformed in its passage through the system.  We
shall assume that the incident wave s
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LJ 0
5 = ZA’Z'.azi y = ZB;H.Ia““ (1Y)
i=0

=0

is propagated to the lens surface

00 o0
£E= Z Fya?t n = ;;GZi+1a2‘+l, (20)

=0

is there refracted in the usual way and is finally propagated into the wave

0 L

af =2 Ayol y" = 2 Bliyia, (1)
=0 1=0

We shall thus want to determine Ay and By, in terms of A3, Biiyi,

Fy;, Gaip1 and A", the latter quantity specifying which wave of the

refracted family we are considering. The same value of a specifies

corresponding points (x', 9"), (£ 1) and (x”, 3"'). .

The law of refraction is equivalent to the optical invariance of u sin p
where u is the index of refraction of the medium and p is the angle between
the normals to the lens surface and the wave surface, respectively. If
we use primes to refer to the first medium and double primes to refer to
the second medium, this may be stated in the form u’ sin p’ = p’’ sin p"’.
From the figure, we have

sin p = sin (§ — ¢) = sin 6 cos ¥ — cos O sin ¢. (24)

By means of equations (3) and (24) and setting

psin p = 2 Laiyia?it (25)
=0
we find that ’ .
° u E Myip102i+
D Loppaditl = ———— where
= > Hyjo?i 3 Japalt
J=0 k=0
= ; dtdy dxdy . ‘ s
§M26+1a2 1= do da _ da da L (26)
] ) dx \? dy \?
jgoH,ziaz’ = \/((‘i;) + (da)
& dE\? dn\?
B o= ¢s. an
Z Tt = \/(da) +(da) J

By means of equations (1), (20) and (26), after a few simple reductions,
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we find
Ho = Bl, Jo = Gl, Ml = 2(F2-Bl - A2G1)J

2
Ll = TBTZ; (FzBI - AzGl)
while for m > o, we get

m—1

H,, = 2LBl { ‘Zﬂ (24 + 2)(2m — 24)Aom—2:A2i12

+ ;} (2 + 1)(2m — 2i + 1)Bair1Bem—sit1

m-—1
—Zm@HJ

mo1 = L (27)
Jom = 2IG E (24 + 2)(2m — 24) Fam—2:F2iys

+ Z (2 + 1)(2m — 24 + 1)G2i41Gem—2i11

i=0

m—1
— 2 Joimni }

=1
Momyy = ‘_z; (23 4+ 2)(2m — 24 + 1)(Fair2Bom—sin
— A3i12Gom—2it1)
I m—1 m—§
Lomy1 = 5~ { pMomyy — 2 Loy 2 HaiJ, am—zs—zi}
B.G, =0 =0
If we define

4

m—1

I m
Semyr = _G—Zo L2iy1Jam—2i = Lampa + E Loiv1T om—2i, (28)
we get

1 m—1 m—<§
Som1 = B.G { rMopyy — é Laita j;leiJ 2'n—2i-21‘} . (29)

The quantities Fom, Gemt1, J2m, Loms1 and Samyy are optical invariants
and have the same value in the two sets of primed symbols, s.e., in the
two media. The invariants Gamy1 and Semyy involve Bomyy and Agmys
along with terms of lower order and Fi, and Gam41, which are invariant.
Hence the equations

G'Zm+l = G,;m+1 and S’;m-l-l = S;m+1) (30)

which are linear in Bany; and Asmys if m > 0, may be solved for Bimia

and A'mys. In the case m = o, the equations are not linear, but, as

shown in Part IV., the solution may be effected without difficulty. The

invariant Lamy: might be used instead of Sgmy1, but the latter is simpler.

While Szm+1 involves Gemys, this may be eliminated by means of equation
23).
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The solution for A%m4s and Bj,; completes -the problem of finding
the new wave in terms of the old wave and the refracting sufface. The
solution of equations (30) becomes increasingly complex as m increases.

PArT IV. TERMS OF THE FIrRsT FOUR ORDERS.

To illustrate the use of the preceding formulas, we shall calculate the
results for the cases m = 0 and m = 1. The case m = o is the ele-
mentary Gaussian theory, while the case m = 1 is essentially the theory
of first order aberrations, so far as these aberrations have a direct inter-
pretation in the case of a system of revolution. For the case of m = o,
we shall calculate the case of a general transmission, but for the case
of m = 1, we shall calculate the cases of propagation and refraction
separately, because of the complexity of the formulas. As a matter of
notation, let

V=Fy—A, I"=Fy—Ag", and 1=V —1" = A4, — 4. (31)

Case I. Gaussian Theory. m = 0.—By substitution in the various
formulas (23), (27), (29) and (30) ,we get

G/ = B, — 21'(442'/31') =G, = B, —2l" (A II/BIII)

F, Ay F, AdJ'\r- (32
Sl = Ll = 2# (G: B:,) Sl’, = 2””(62 B:,,)

B]_" — 2l”(A2”/Bl’I) —_ Bl’ — 2lI(A2I/B1I)
4, ) R =) (3)
”n "
B =45 (55 ) + B
Solving for B,” and (4.”/B,"), we get
Alllll_llll 2" F. n _ N
Bl"=Bl'—'2 2( _— I‘)_I_ z(M" )
Bl o (34)
& 34
A [ﬂ Ay n Fy(u" — u')]B "
2 ”B ’ G;m" 1 ]

For refraction, ! = I’ = o so that A
B/ =B/=G and A = WA + P’ — )", (347)
For propagation, u’ = p”” = 1 so that
BY' = By —2l(4,/[BY)  A." = Ay — 2l(4/B)): (34p)

Case II. First Order Aberrations. m = 1.—In this case, we have,
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by equatlons (23), (27) and (29),

Gs = B; + [3(B:,— Gl)Bs + 4(40 - Fo)A4 + 2(A2 - Fz)Azl/Bl
H2 = 3B3 + (2A22/Bl)

ol (35)
M; = 6(F,B; — AzGa) + 4(FsB, — A.Gy)
= WMy/B\GY) — (LHyBY)
For refraction'Ao” = Ao’ = F,, B/ = B, = G{,'so tha’t
G:; Bs + 2A2’(A2 - Fz)/Bl = Bs" + 2A2"(A2” - Fz)/B1" ]
L, = 2/.¢(F2 - ,42)/131 ‘
M; =.( - A2)(6Bl-33 + 1249%)/B; + 431(F4 - A4)
A, (361’)
Ss =B—li'[(F4 A4) +ZB =7 (F —Az')] |
A "2
2” [(F4 -4 + B 3;: (F2 — Az")]
" = By +2(AzB_.—F"’)(A2 __A2n)
1 .
‘ : (377)

. 4 2 i .
AL = Fot B (A0 = F) + 58 (4 — R4S — 407
I3 B, M

A," is known by equations (347). For propagation, we méy select the
initial wave as coinciding with the refracting surface, so that 4,;’ = Fay
and Bii41 = Gargr.  Then, by equations (34p),

B, — B =G, — B1" — 2lA2'/B1',' "Azl _ 1242". = ‘zlAle/Bllz’
Ay"/B)" = A,/By.

Hence

64,'l " il " - A2
(I —BIIBIH)Ba +BlllA = B3 + l Bl ’
A, A"
Lo =2 (55 -5%) = o
Ms" = 6(A ’Bs" _ Az”Ba') + 4(A4'Bl" — A4HBII)’ - (36P)

/
B IB //{
3A2'B3" — 231’A4" — 3A2N331 —- 2A4'Bl".

Ssll — 6(A 2,33" _Alele) +4(A IBIII _AA,’BII)}
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Solving the first and last of equations (36p), we .get
64.’By 44/ 4.\3
Ba”=Ba'+l[ B~ By T4 ( j)]
A\ B3\ [ A4.\? 4, A()]
”n = ’ . — R —_—
avr = accilof )+ m(57)(52) - +(52)(57) )

The calculations for F,, F; and F, are made without special difficulty
and the results are as follows:

(370)

= Gl = G Fy = Col® 4 CoI? = CLEL,
F4 = CoI 0 + C2I22 + C4Io4 = 2C2E1E3 + C4-E141 *
B  2A45(A0 — Co)
Ei=—/7+4+—""—7—"
17D, T B.D, ’ " (38)
E. = 21422 +4B3 2A2€2E12 _ D3E13 4A4(A0 - Co)
*=BD, " D, BiD; D, T BD:
_ 3BsE1
B,
For pure refraction, Cy = A4, so that equations (38) become
_ ﬁ _ 24 52 B; 24.C.B; D3B3
Ex=p, B=3p.tD, " Ds ~ Dy
, . .
Fo=ds,  Fi=S2F,
C, - (387)
F, = (D 2)(4A2 + 2B1B;) — 44.B? (D 2)
2C2D3 ot C4D1
- (22 CB) |

As was noted above (see end of part II1.), the coefficients of the wave
surface symbols are combinations of the lens surface coefficients which
are invariant under a transformation of the parameter 8 of the type
assumed. Hence we have two parametric invariants P, = Co/D;? and

= (CsD, — 2C:D;)/D5. That these are actually parametric invar-
iants may be verified by direct calculation, assuming that 8 = a1y + as7%.
While it may appear that the assumption of pure refraction is a loss of
generality, such is not the case. The values for F, and F, using the
general values in equations (38) are quite complicated and lead to the
same values of P; and P, as given above.

ParT V. CONCLUDING REMARKS.

While no exhaustive analysis of the preceding results has been made,
several conclusions may be mentioned.
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The invariant S:z4, may be considered as a generalization of the so-
called ‘““zero invariant.” Since the axial curvature of the wave is
K = 24,/By? and of the lens is £ = 2F,/Gy?, the invariant S is

: F, 24

For pure refraction, G; = By, so that we get the usual zero invariant
Q=S5/G=uk—K). (39)

While the assumption that the entire system is one of revolution makes
a full analysis of the image formation unsatisfactory, we may nevertheless
calculate the longitudinal aberration. Let the normal to the wave at the
point (x, ¥) cut the axis at the point (X, 0). Then X will vary with «,
unless the surface is spherical. If we set

X = 22 Mma?™, (40)

m=0
A2m Will be the longitudinal aberration of order 2m. It may be shown
without difficulty, by the preceding methods, that

m

1|1 . LN
Aom = 7 ['2" 2 (26 + 1)Bocr1Bam—sirs + Z (5 4 1)Asired om—2i
2 i=0 =0

- i (c+ I)A2i+2)\2m—2i]° (41)

i=1

For m = o, we have \¢ = 4y + B,*/24,. Since the value of X reduces
to Ao for @ = 0, and since the wave surface cuts the axis at 4,, the

. quantity By?/24, represents the axial distance from the wave to the cusp
of the caustic. If the initial wave is plane, this distance reduces to the
ordinary focal length. The ordinary value of the longitudinal aberra-
tion (the so-called spherical aberration) is

A = Az + ZBlBa/Az — A4(Bl/A2)2.

The results calculated by this method agree very satisfactorily with the
results obtained by the usual methods. It may be mentioned that in
this method the emphasis is placed on the wave and not on the aberra-
tions. In order to study the aberrations and the effects of the trans-
mission on them, we have merely to calculate the aberrations for the
initial and for the final surfaces of the wave family and to subtract the
one from the other.

As an example of the agreement between the present method and the
usual one, let us consider a particular telescopic system as follows. Let
the front lens have a front curvature of 2.0538 and a rear curvature of
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— 3.0538. Let the rear lens have a front curvature of — 3.0538 and a
rear curvature of — 0.4394. Let the indices of refraction of the front
and rear lenses be 1.51115 and 1.61624, respectively, with respect to air,
the system being used in air. Let the lenses have axial thicknesses of
0.0065 and 0.0050, respectively, the axial separation being 0.0005. Let
the aperture be 1/30. Then the present method gives the following
results, for a plane incident wave:

B Az B; Ay

Approaching first surface. ...... 1. 0. 0. 0.

Leaving “ o 1. 0.34735 0.47208 0.53027
Approaching second “ ....... 0.99548 0.34578 0.46578 0.52570
Leaving “ L 0.99548 1.29596 —5.55684 | —3.53208
Approaching third *“ ....... 0.99418 1.29427 —5.56713 | —3.56175
Leaving “ o 0.99418 0.22537 0.94578 0.16635
Approaching fourth ““ ....... 0.99191 0.22486 0.94914 0.16785
Leaving ‘ C 0.99191 0.49663 0.43533 0.30213

The focal point is 0.99057 beyond the axial point of the last surface. The
usual theory gives this value as 0.99059. The longitudinal aberration
here is 1.03034 per unit aperture or 0.0011448, the usual theory giving
0.0011446.

While some of the formulas have been given for a refraction between
two propagations, it is usually more convenient to treat the cases of
refraction and of propagation separately, especially in numerical calcula-
tions. The formulas so divided are readily adapted to the use of a
calculating machine, although not to the use of logarithms.

As a particular case,! let us consider the case of a plane wave refracted
through a single spherical surface of curvature %, and let us write u for
w'[/u'. Let us take the optical height as parametric. Then )

. PA0=C0=G,

x = a,
Ay =A4=B3=D3 =0,
Yy = a
ot e, | | DT

£ =a+ ska a’, C2=%k,
=, J
n o LC4=%k3,

;
-9-=-]-:k 'F0=C0)
D122’

- 4I;‘2'=%k:
Ct 2C2D3 I3
Di~ Ds "8F | A=

1 See, e.g., Preston, Theory of Light, § 73.
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The refracted wave has

B, =1,

Az = 3k(1 — u),

Bs = 3&°u(1 — u),

Ay = 31 — p)(1 + 20 — 2p4%),
The second order longitudinal aberration is

_—kﬂz
P2 —1)’

This shows that if the optically denser medium is on the concave side
of the refracting surface, the surface is over-corrected for aberration,
for A\; is positive which means that the cusp of the caustic is towards
the lens surface. The focal length of the surface is B12/242 = 1/k(1 — p).

While no attempt has been made to apply the foregoing results to the
problems of practical optics, it is to be hoped that these problems may
be materially simplified by the proper choice of parameters to meet the
demands of each particular case. Since the geometrical significance of
the parameter is of no essential value, there is more freedom in the choice
of parameters than is customary in most treatments of geometrical optics.
To review what has been said, the use of a single parameter, besides the
azimuth, clarifies the interpretation of orders of small quantities. The
recursion formulas, furnish terms of all orders, to be used when occasion
demands. Since the sphericity of the lens surfaces has no essential
part in the method, it follows that the method is directly applicable to
the cases of aspherical lenses. Besides furnishing the final surface as a
whole, the present method gives a point by point correspondence between
all the surfaces of the system. While many of the quantities involved
become indeterminate at a focal point, this furnishes no special difficulty
in tracing a surface through a focal point.

In closing, the writer wishes to thank Professor Arthur C. Lunn, who
suggested the present investigation and who made numerous helpful
suggestions during its development.
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