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CHAPTER VL

NUMBER OF CLASSES OF BINARY QUADRATIC FORMS WITH
INTEGRAL COEFFICIENTS.

INTRODUCTION.

Particular interest in the mere number of the classes of binary quadratic forms of
a given determinant dates from the establishment by C. F. Gauss of the relation
between the number % of properly primitive classes of the negative determinant —D
and the number of proper representations of D as the sum of three squares. Gauss
himself found various expressions for k. @. L. Dirichlet elaborated Gauss’ method
exhaustively and rigorously.

L. Kronecker, by a study of elliptic modular equations, deduced recurrence
formulas for class-number which have come to be called class-number relations.
C. Hermite obtained many relations of the same general type by equating certain
coefficients in two different expansions of pseudo-doubly periodic functions. Her-
mite’s method was extended by K. Petr and G. Humbert to deduce all of Kronecker’s
relations as well as new and independent ones of the same general type. The method
of Hermite was translated by J. Liouville into a purely arithmetical deduction of
Kronecker’s relations.

The modular function of F. Klein, which is invariant only under a certain con-
gruencial sub-group of the group of unitary substitutions, was employed by A. Hur-
witz and J. Gierster just as elliptic moduli had been employed by Kronecker and so
the range of class-number relations was vastly extended.

Taking the suggestion from R. Dedekind in his investigation of the classes of
ideals of the quadratic field of discriminant D, Kronecker departed from the tra-
dition of Gauss and chose the representative form az®+ bzy+ cy?, where b is indif-
ferently odd or even, and regarded as primitive only forms in which the coefficients
have no common divisor. Kronecker thus simplified Dirichlet’s results and at the
same time set up a relation in terms of elliptic theta functions between the class-
number of two discriminants; so he referred the problem of the cless-number of a
positive discriminant to that of a negative discriminant.

By a study of quadratic residues, M. Lerch and others have curtailed the compu-
tation of the class-number. A. Hurwitz has accomplished the same object by
approximating h(p), p a prime, by a rapidly converging series and then applying a
congruencial condition which selects the exact value of h(p).

Reports are made on several independent methods of obtaining the asymptotic
expression for the class-number, and also methods of obtaining the ratio between
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the number of classes of different orders of the same determinant. The chief advances
that have been made in recent years have been made by extending the method of
Hermite.

We shall frequently avoid the explanation of an author’s peculiar symbols by using
the more current notation. Where there is no local indication to the contrary, 4 (D)
denotes the number of properly primitive, and 2’(D) the number of improperly
primitive, classes of Gauss forms (a, b, ¢) of determinant D=>%%—ac. Referring to
Gauss’ forms, F(D), G(D), E(D), though printed in italics, will have the meaning
which L. Kronecker (p. 109) assigned to them when printed in Roman type. The
class-number symbol H (D) is defined as G(D) —F(D). By K (D) or CiD, we denote
the number of classes of primitive Kronecker forms of discriminant D=5%—4ac.
A determinant is fundamental if it is of the form P or 2P; a discriminant is funda-
mental if it is of the form P, 4P=4(4n—1) or 8P, where P is an odd number
without a square divisor other than 1. The context will usually be depended on to
show to what extent the Legendre symbol (P/Q) is generalized.

Reduced form and equivalence will have the meanings assigned by Gauss (ef.
Ch. I). Among definite forms, only positive forms will be considered; and the
leading coefficient of representative indefinite forms will be understood to be positive.
Ordinarily, = will be used to denote the number of automorphs for a form under
consideration ; but when D>0, r=1.

Some account will be given of the modular equations which lead to class-number
relations. In reports of papers involving elliptic theta functions, the notations of the
original authors will be adopted without giving definitions of the symbols. For
the definitions and a comparison of the systems of theta-function notation, the reader
is referred to the accompanying table. The different functions of the divisors of a
number will be denoted by the symbols of Kronecker,** and without repeating the
definition. A Gauss form will be called odd if it has at least one odd outer coefficient ;
otherwise it is an even form. These terms are not applied to Kronecker forms.

TABLES OF THETA-FUNCTIONS.
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0,(2) or 8,==3, (@)=3:(@, 1) =00 (2) =600 (v) =05 (v) =06, (@) or 6,=3,(2)=3:(?, ¢)
0 (2) or © ==3,(@)=30(@, 7)==00 () =00: (v)=6.(v)==6 (@) or © =3,(2)=3(v, q)
H,(2) or H,=3,(@)==9: (@, r)=01,(2) =fi1o (v)=H, (v)=H,(z)or H;=3,(@)=3:(v, ¢)
H (2) or H=9,(2)=3,(%, r)=6u(2)=bn (v)T=H (v)=H (a) or H =%, (®)=9% (v, ¢)

Here, r=¢* 2=2Kz/=, v=z/=, n is any, m is any odd, integer; and, according
to Humbert,
0,(z) =§q"’ cos 2nz, O(z)=

1 =2 e OO n=

H,(z) =§q’"’/‘ cos mz, H(z) =§( —1)¥mDgm¥4 gin mz.

fnc=— 0w fx=—0m

-]
(—1)"g" cos 2nz,
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For =0, the following systems of special symbols are represented in this chapter.

St
% i3s3 =8 %S .
-~
e BEES  fEEEi. o o
=2
=] M I i & BREGEHS & A &

®1(0) =49, (Q) or Ha(q) =00=0; =0, =0g=3, =1,
® (0)=%, (q) ord (q) =0nn=60 =6 =0,=9,=9,
H,(0) =%, (g) or 6:(q) =b10=9 =m=0,=9,=4,
H’(0)=#%(q) or 6.’(q)=mbyy" =7 =9,/
In connection with these tables, the following relations will need to be recalled:
_ g=etr, o=1=1K’/K;
Vr=6,(q)/8s(q), V' =0(q)/0s(g), 61'(g)=0(q)0:(q)6s(q);

V2K /r=0s(q), Va&'K/r=0(q), V%EK/x=6:(q);
kmx=gt(0), ¥ =x'=*(a)-

A. M. Legendre' excluded every reduced form (“quadratic divisor”) whose
determinant has a square divisor. Each reduced form py®+ 2qyz+2m2* of determi-
nant —a=— (4n+1) has a conjugate reduced form 2py*+2qyz+mz*; here p, ¢, m
are all odd.

If a is of the form 8n+5, one of p, m is of the form 4n+1 and the other of the
form 4n—1. Hence the odd numbers represented by one of the quadratic forms are
all of the form 4n+1 and those represented by the conjugate form are of the form
4n+3. Thus a form and its conjugate are not equivalent and the total number of
reduced forms is even.

If a=8n+1, the number of reduced forms may be even or odd,* but is odd* if
a=8n+1 is prime.

Legendre? counted (, s, t) and (r, —s, t) as the same form. Hence for a=4n+1,
his number of forms is {2 (—a) — A}, where 2(—a), in the terminology of Gauss*
(Art. 172), is the number of properly primitive classes and A is the number of
ambiguous properly primitive classes plus the number of classes represented by
forms of the type (r, s, 7).

C. F. Gauss,* by the composition of classes, proved (Art. 252) that the different
geners of the same order have the same number of classes (cf. Ch. IV). He® then
set for himself the problem of finding an expression in terms of D for the number
of classes in the principal genus of determinant D. He succeeded later® in finding
an expression for the total number of primitive classes of the determinant and thus

solved his former problem only incidentally.

1 Theorie des nombres, Paris, 1798, 267-8; ed. 2, 1808, 245-6; ed. 3, 1830, Vol. I, Part II,
§ XI (No. 217), pp. 287-8; German transl. by H. Mager, Zahlentheorie, I, 283.

2 Ibid., Part IV, Prop. VIII, 1798, 449; ed. 2, 1808, 385; ed. 3, IL, 1830, 55; Zahlentheorie, II, 56.

* Ibid., 1708, No. 48, p. 74; ed. 2, 1808, p. 65; ed. 3, I, p. 77; Zahlentheorie, I, p. 79.

s Disquisitiones Arithmeticae, 1801; Werke, I, 1876; German transl. by H. Maser, Unter-
suchungen ueber Hohere Arithmetik, 1889; French transl. by A. C. M. Poullet-Delisle,
Reserches Arithmetiques, 1807, 1910.

5 Werlks?itt 1,1?3?7 ; Maser, 450 ; Supplement X to Art. 308. Cf. apening of Gauas’ & ® memoirs of
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If (Art. 253) Q denotes the number of classes of the (positive) order O of determi-
nant D, and if » denotes the number of properly primitive classes of determinant D
which, being compounded with an arbitrary class K of the order O, produce a given
arbitrary class L of the order O, then the number of properly primitive (positive)
classes is 7). We take both K and L to be the simplest form (Art. 250). It is
proved (Arts. 254-6) by the composition of forms that the above r classes are
included among certain +’ primitive forms, 7’ being given by

V=440 [1 (D ')--

in which (4, B, C) is the simplest form of order O, I’ =4D/A%, and a ranges over
the distinct odd divisors of A, while n=2 if D/A? is an integer, n=1 if 4D/A%*=1
(mod 8),n=3 if 4D/A*=5 (mod 8).

Now r=1’ if D is a positive square or a negative number except in the cases
D= —A? and —4A4? in which cases r=7//2 and 1//3 respectively. No general rela-
tion (Art. 256, IV, V) is found between r and ¢+ for D positive and not a square.

The problem of finding the ratio of the number of classes of different orders of a
determinant will be hereafter referred to as the Gauss Problem. It was solved com-
pletely by Dirichlet,? ®® Lipschitz,** Dedekind,’*®* Pepin,!?* ** Dedekind,*™
Kronecker,”* Weber,??° Mertens,?*” Lerch,?”” Chatelain,*¢ and de Séguier.?2¢

If O is the improperly primitive order, the same method gives the following result
(Art. 256, VI):

If D=1 (mod 8),r=1;if D<0and =5 (mod 8), r=3 (except when D= —3 and
then r=1); if D>0 and =5 (mod 8), r=1 or 3, according as the three properly
primitive forms

(1,0, D), (41,1(1-D)), (43, 1(9-D))
belong to one or three different classes.

Gauss (Art. 302) gave the following expression for the asymptotic median num-
ber of the properly primitive classes of a negative determinant —D:

2 _ 2
M(D)=mVD—25, M= A Ar )

He later corrected® this formula to mV D.

His tables of genera and classes led him (Art. 303) to the conjecture®** that the
number of negative determinants which have a given class-number % is finite for
every h (cf. Joubert,®® Landau,?®® Lerch,?¢? Dickson,®?” Rabinovitch®*®* and Nagel®*®").

The asymptotic median value of & (%k?) is 8%/=* (Art. 304). He conjectured that
the number of positive determinants which have genera of a single class is infinite.
Dirichlet* proved that this is true. He stated (Art. 304) that, for a positive deter-
minant D, the asymptotic median value of h(D)log(7T+U VD) is mVD—n, where
T, U give the fundamental solution of {*—Du*=1 and” for m as above, while n is a
constant as yet not evaluated (cf. Lipschitz?°?).

8 Werke, 11, 1876, 284; Maser's transl., 670. Cf. Lipschitz.103
7On the value of m, see Supplement referring to Art. 306 (X). Maser’s transl.,, p. 450;

Werke, 1, 1863, 466.
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C. F. Gauss® considered the lattice points within or on the boundary of an ellipse
az?+2bzy+cy?=A, where A is a positive integer. The area is =4/VD, where
— D=b%—ac. Hence as 4 increases indefinitely, the number of representations of all
positive numbers = A by means of the definite form (a, b, ¢) bears to A a ratio which
approaches =/V D as a limit.

Hereafter® the determinant — D has no square divisors, and the asymptotic num-
ber of representations of odd numbers = M by the complex C of representative
properly primitive forms of determinant —D is

=M
h(—D).
2VD (=D)
To evaluate h (— D), a second expression for this number of representations is found ;
but Gauss gives the deduction only in fragments. Thus if (n) denotes the number
of representations of n by C and p is an odd prime, then'’.
1. (pn)=(n), if pis a divisor of D;

2. (pn) = (n) + (h), it (:p9)=1;
3. (pn)=—(n)+h, if (;pl’)z_l,

where n=hp#, p arbitrary, h prime to p.

. This implies in the three cases

1 (k)= (ph) = (p*h) = (p*h) =" ..;

2. (ph)=2(h), (p*h) =3(R), (#h) =4(h), ...;

3. (ph) =0, (ph) = (h), (p%h) =0, (p*h) = (), -...
Hence the ratio of the mean number of representations by C of all odd numbers
= M to the mean number of representations of those numbers after the highest
possible power of p has been removed from each as a factor is, in each of the three

cases,!?
V-3

"A second odd prime divisor p’ is similarly eliminated from the odd numbers = M;
and so on. Eventually the number of representations of the numbers is asymp-
totically 3rM. Gauss, supposing —D< —1, takes the number = of automorphs to
be 2. (See Disq. Arith., Art. 179; Gauss®® of Ch. I.) Hence the original number

of representations is asymptotically’?

wmli-()2).
p/p

8 Posthumous paper presented to Konig. Gesells. der Wiss. Gottingen, 1834; Werke, II,
1876, 269-276; Untersuchungen iiber Hohere Arith., 1889, 655-661. "

9 Posthumous fragmentary paper presented to Kﬁmﬁ Gesells. der Wiss. GGthingen, 1837;
Werke, 11, 1876, 276-291; Untersuchungen iiber Hohere Arith., 1889, 662-677.

10 Cf. remarks by R. Dedekind, Werke of Gauss, 1876, II, 293-294; Untersuchungen iiber
Hohere Arith., 1889, 686.

11 Cf. R. Dedekind, Werke of Gauss, I1, 1876, 295-296; Untersuchungen, 1889, 687.

12 Cf. remarks of R. Dedekind, Werke of Gauss, II, 1876, 2906; Untersuchungen, 688.
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And hence (Untersuchungen, 670, III; cf. Dirichlet,*® (1))
_p)=2¥Pqul;_ —_D_) 11
n(-D)=2V. {1 (p p}.

Gauss gives without proof five further forms of A(—D) including

h(—D) =5 VD( £ )cotna

where §=x/N, N=D or 4D, nis odd >0 and <D. Cf. Lebesgue,® (1).
By considering the number of lattice points in a certain hyperbolic sector,*® i (D)
is found to be, for D>0,
. 0 . 36 . 50
oVD(1xdxd=...) log sin 5 +log sin 5 +logsin 5 =
log(Z7+UVD) — log(T+UV D)

where the coefficient =1 of 1/m and of logsin m8/2 is (D/m). Cf. Dirichlet,*
("), (8).

For a negative prime determinant, — D= — (4n+1), k(—D) is stated incorrectly
to be a— B, where a and B are respectively the number of quadratic residues and non-
residues of D in the first quadrant of D. [This should be 2(a—B) ; see Dirichlet,?
formula (5).]

Extensive tables lead by induction to laws which state, in terms of the class-
number of a prime determinant p, the distribution of quadratic residues of p in its
octants and 12th intervals.

G. L. Dirichlet'* obtained h(—gq), where ¢ is a positive prime =4n+3>3. By
replacing infinite sums by infinite products he obtained the lemma:

zn‘ Z n'/Zn“’

where n ranges in order over all positive odd integers prime to g, and m ranges over
all positive numbers which have only prime divisors f such that (f/g) =1; while n
is the number of such distinct divisors of m; and s is arbitrary >1. Now

az?+bzxy + cy?, a’z?+ 2b'zy + ¢’y

denotes a complete set of representative properly primitive (positive) forms of
determinant —¢g. Then, by the lemma, since the number of representations of m
by the forms is 24** (cf. Dirichlet, Zahlentheorie, § 87), we have

n)\ 1 1 1
(1) 2255 2(?)? =2 (@ + ay + c5?)* +3 @2y +cy?)s T

where z, y take every pair of values for which the values of the.quadratic forms are

18 Remarks of R. Dedekind, Gauss’ Werke, II, 1876, 209; Maser’s translation, 691. Cf.

G. L. Dirichlet, Zahlentheone, §08.
14 Jour, fiir Math., 18 1838, 259-274; Werke, I, 1889, 357-370.
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prime'® to 2q. We let s=1+p, and let p>0 approach zero. The limit of the ratio of
each double sum in the right member to

g-1 7
2qVqr
is found from the lattice points of an ellipse to be 1. But
lims L .2=1.1_4
o2 p
Hence (cf. C. F. Gauss,® Werke, II, 1876, 285),
2 h — =M s —n— —1—— = M .
() (q) ﬂ'n§1<q)n—1rs

To evaluate S, we consider
- (3)3=x(3)2-

where n now ranges in order over all integers = 1. In the cyclotomic theory,

Hence

2\ 1 . i q in q
1f<q)2
where (a/q) =1, (b/q)=—1, and a, b are >0 and <g. Since (cf. W. E. Byerly,
Fourier’s Series, 1893, 39) 2=_2bx/q is between 0 and 2,

7—'—'—'2_—? =3 —sin nz;
and so'’
2\113b—3a
3 =2[1- ~_) 2z :
(3) =21 ( ; s ;
Evaluating 9 itself by cyclotomic considerations, Dirichlet gives the result'®
4) h=A-B=24—}(g-1),

where A and B are respectively the number of quadratic residues and non-residues
of g which are <3g. For p=4n+1, Dirichlet obtained

(6) h(—p)=2(A-B)=44—-}(p-1),

18 This restriction is removed by G. Humbert, Comﬁtes Rendus, Paris, 169, 1919, 360-361.

16 Cf. C. F. Gauss, Werke, II, 1876, 12. G. L. Dirichlet, Zahlentheorie, §1186.

17 Stated empirically by C. G. J. Jacobi, Jour. fiir Math., 9, 1832, 189-192; detailed report
in this History, Vol. I, 275-6; J. V. Pexider,™ Archiv Math. Phys., (3), 14, 1909,
84-88, combined (3) with the known relation Zb -+ Za=4q (¢—1) to express h in
terms of Za alone or Zb alone.

18 G. B. Mathews, Proc. London Math. Soc., 31, 1899, 355-8, expressed A — B in terms of the
greatest integer function.
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where A and B are the number of a’s and b’s respectively between 0 and }p; and
without proof, he stated that
h(—pg) = (3b—3a)/pq or 3(3b—3a)/pg,

according as pg is =7 or 3 (mod 8), where a, b are positive integers <pg, and
(a/p) = (a/q), (b/p)=—(b/q). For h(q), the factor = in (2) must be replaced
by log(T+UVD); as the lattice points involved must now lie in a certain hyper-
bolic sector rather than an ellipse (cf. Gauss,® Dirichlet!?).

G. L. Dirichlet*® considered the four cases of a determinant: D=P-82 P=1 and
3 (mod 4) ; D=2P-8% P=1 and 3 (mod 4), where S? is the greatest square divisor
of D. He defined 8 and ¢ in the four cases as follows:

d=e=1, d=—1, =1, 8=1, e=-1, d=e=-1.

Employing the notation of his former memoir,** he found for all four cases, if m is
representable,
8“"”:“’"”({-,—): 1.

Consequently the generalization of (1) of the preceding memoir** is, for D= —D, <0,
1 1 —os 1 ssitn-n g1 (_n_) 1
= (a,z"‘-+-2l):cy_-+-cg/2)'+2 (a’z* +2b'zy +c'y?)* tee =BG e P/n*’
where the restrictions on s, z, y, n are the same as for (1) in the preceding memoir.
A lemma shows that

1_e@) 1 ¢(D) 1
2 — 2D, o or D, p°
‘according as D is 0dd or even, where s=1+p and p is indefinitely small, and ¢ is the
Euler symbol. The study of lattice points in the ellipse az®+2bzy+cy*=N for very
great N leads to

7 ¢(D) 1 w(D,) 1

® VDl Tp VD e
as the asymptotic value of each of the h sums in the first member, according as D is
odd or even. Hence for D= —D, <0,
— 2 /D 35D 1) _'l_)l_
(1) h= 2 VD38 (P ~.
Dirichlet obtained independently an analogous formula for the number h’ of
improperly primitive classes of determinant D=-—D;<0. For D>0, results
analogous to all those for D<0, are obtained by considering all the representations
of positive numbers = N by ax®+2bzy+cy?, where a is >0 and (z, y) are lattice
points in the hyperbolic sector having y>0 and bounded by y=0, U (az+by) =Ty,
and az?42bzy+cy*=N. For D>O0, these restrictions on a, z, y are hereafter
understood in this chapter of the History.

19 Jour, fiir Math., 19, 1839, 324-369; 21, 1840, 1-12, 134-155; Werke, I, 1889, 411-406;
Ostwald’s Klassiker der exakten Wxssenscha.ften, No. 91, 1897 with expla.n.a.tory notes

by R. Haussner.
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Incidentally Dirichlet?® stated for D< —3 the “fundamental equation of Dirich-
let” (see Zahlentheorie, § 92, for the general statement): .

(2) 3’¢(az?+2bzy+cy®) +3'¢(a’s*+20b'zy+cy ) +...
=2286(»-1>¢*<"’-1’(%)qb(rm’),

where ¢ is an arbitrary function which gives absolute convergence in both members;
the forms are a representative primitive system; z and y take all pairs of integral
values (excepting z=y=0) in each form for which the value of the form is prime?
to 2D if the form is properly primitive, but half of the value of the form is prime
to 2D if the form is improperly primitive; the second member is a double sum as to
n and n’. Kronecker'™ and Lerch?”” (Chapter I of his Prize Essay) used this
identity to obtain a class-number formula.

Dirichlet noted from the results in his?® former memoir that for D<0, h=h’ or
3h’, according as D=1 or 5 (mod 8), except that A=h’ for D=—3. For D>0,
if D=8n+1, h=h’; but, if D=8n+5, h=h’ or 3k/, according as the fundamental
solutions of t*— Du?=4 are odd or even. (Cf. Gauss,® Disq. Arith., Art. 256.)

Since the series in (1) may be written as

St gm0 1 -t
H{l & € (P) n} s

where n is a positive odd prime, and prime to D, it follows that if A and A’ denote
respectively the number of properly primitive classes of the two negative deter-
minants D and I’=D-8?, D having no square divisor, then
e _ 5 i;,:‘( r > 1

where?? r ranges over the odd prime positive divisors of S (except if D=—1, the
ratio thus given should be divided by 2). The corresponding ratio is found for
D’>0. '

Dirichlet:® hereafter took S=1 and, representing the series in (1) by V, found
that for D= +P=1 (mod 4), for example,

x(3)e-

v __[ AP de=— L s3 <ﬁ> e P ImT r dz__

1—(2 _1___ o 27—1 T P aa\P o T — eZmmi/P
2

n, m=0, 1, 2, ,P—1; P=|D|.

20 Jour. fiir Math., 21, 1840, 7; Werke, I, 1889, 467. The text is a report of Jour. fiir Math.
21, 1840, 1-12; Werke, I, 1889, 461-72.

21 This restriction is removed by G. Humbert, Comptes Rendus, Paris, 169, 1919, 360-361.

22 Cf, Disq. Arith., Art. 256, V; R. Lipschitz,© Jour. fiir Math., 53, 1857, 238.

28 From this point, Jour fiir Math., 21, 1840, 134-155; Werke, I, 1889, 479-496. Cf. Zahlen-
theorie, §§-103-105.
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The identity, in Gauss sums,

n %.zmﬁ_,&-_l)’<m> —
(3) 2<P)e =it ) () vp
now gives
14 __if‘z:z)’ g <m>(lo gin T mm)
I EAT SN A L S
- 2
whence

2\1 m in ™ e p_
" V=— Vf’<1 <"I‘5>?>2(~P")10g sin & , if P=4p+1,
2\1 m . A
Ve \77:?;(1 (P_>—2—>E<?—)m, it P=du—1.
For D= —P, P=4p—1, the comparison of (1) and (3) gives
2 1 .
h(D)= -3 (%)_E-n—sm n ?—';—7-’;
whence?®* finally by grouping quadratic residues and non-residues, we have:
rD=3(F), o<m'< .

So Dirichlet?® obtained his classic formulas for D<0:

[ D=—P, P=4u+3, h(D)= z(—f—,)

lo:

¥/ 8
24 (5).
) x\P
From (1) and (4) and their analogues, he wrote also in the four cases of D<0:

© 0= o= (3))5(5)o5 53(5)o5 p3(De. dx (e

where §=m ranges from 0 to P, 4P, 8P, 8P in the four respective cases, and

D=—P, P=4u+1, h(D)= 2(

(5) )
D=—2P, P=4u+3, k(D) =2z(

N % 'vlm ~

D=—2P, P=du+1, h(D)= 2:(

L

¢1=1, @= ( _1)&(7»-1), &= (_]_)umt-x)’ ©= ( — 1)§(m-1)+{(ml-1).

For D>0, the analogue of (1) is

. 2\/D— _ 3_ n 1
- 8“” 1) 3(n3-1) [ Y —,
™ MO = e ar vy <P> n

2¢ Fourier-Freeman, Theory of Heat, Cambridge, 1878, 243.
25 Jour, fiir Math., 21, 1840, 152; Werke, 1, 492-3; Zahlentheone §1086.
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where T, U are the fundamental solution of {*—Du?=1. Hence*® from equations
like (4), we obtain:

- (2)
PJ]__ Io 1I sin bxr/P
log(T+UVP) € T sin an/P’
where ¢ and b range over the integers <P and prime to P for which
(e/P)=+1, (b/P)=-1;
1 o Msindbn/P
log(T+UVP) € Wsin tan/P’

where a and b range over the integers m <4P and prime to 4P for which

(8) D=P, P=4u+l, k(D)=

(8) D=P, P=4u+3, k(D)=

(—1)im-» (%’-): +1 or —1, according as m=a or b;
SRR | gin $bx/P

log(T+UV2P) '8 M sin far/P’

where a and b range over the integers m <8P and prime to 8P, for which

(8s) D=2P, k(D)=

if P=1 (mod 4), (—1)*"""”(%):-*—1 or —1, according as m=a or b;

if P=3 (mod 4), (—1)m+im (%)= +1 or —1, according as m=a or b.

1f D=P=4p+1>0, (4) and (7) with cyclotomic considerations give*’

—Ta_of2)]logd[Y(1)+Z(1)VP]
) h(D)‘[4 2<P)] log(T+UVP)

where 3[Y (z) +Z (z) VP] =101 (z—e*"¥'/P).
Arndt®® supplied formulas for the other three cases.
A. L. Cauchy?® proved that if p is a prime of the form 41+3,
A-B

=5 = =3B i1)/4 OT Bpiaysa (mod p),

according as p=81+3 or 8/+7, where A is the number of quadratic residues and B
that of the non-residues of p which are >0 and <3p, and By is the kth Bernoullian
number. This implies, by G. L. Dirichlet,* (5), that

(1) h(—p) =2Bps1y/4 OF —6B(9,1y/4 (mod p),

according as p=81+7 or 8/+3 [cf. Friedmann and Tamarkine®*].
Cauchy® obtained also the equivalent of the following for = free from square

factors, and of the form 4z+3:
_fo_[2)]130—3a _[o_ _2_> b2 —Za?
() A-B= [2 <n>] n _[2 (n ] n? >

26 Jour. fiir Math., 21, 1840, 151; Werke, I, 492.
27 See this History, Vol. II, Ch. XII, 372 117; Cf. Dirichlet, Zsahlentheorie, 1894, 279, § 107.

28 Mém. Institut de France, 17, 1840, 445; Oeuvres, (1), III, 172. Bull. 8c. Math., Phys,
Chim. (ed., Férussac), 1831. .
29 Méltg. lInsnw'tllstlde France, 17, 1840, 697; Oeuvres, (1), III, 388. Comptes Rendus, Paris,

b




CHar. VI] BinarRY QUADRATIC ForM Crass NUMBER. 103

where A, B are the number of quadratic residues and non-residues of n, which are
<4n, while a, b are >0 and <n, (a/n)=1, (b/n) = —1: and similar formulas for
n=42+1. Hence, for n=4z+3,
_ 2\ 2b%—=a?
o= - (D]
is called Cauchy’s class-number formula.®°
M. A. Stern®® found that when P is a prime 8m+7, or 8m+3 respectively,
2ma _ w1
l;Icot P ==x(-1) ik
where a ranges over all positive integers <P prime to P such that (a/P)=1,
and & denotes the number of quadratic divisors of determinant —P. This formula
has been made to include the case P=4m+1 by Lerch.®*
G. Eisenstein®* proposed the problem: If D>0 is =5 (mod 8), to determine
a priori whether p?— Dg*=4 can be solved in odd or even integers p, q; that is®® to
furnish a criterion to determine whether the number of properly primitive classes of
determinant D is 1 or 3 times the number of improperly primitive classes of the same
determinant. He also proposed the problem®¢: To find a criterion to determine
whether the number of properly primitive classes of a determinant D is divisible by
3; and if this is the case, a criterion to determine those classes which can be obtained
by triplication®® of other classes.
V. A. Lebesgue®® employed the notation of Dirichlet*® and, in his four cases,
set p=P, 4P, 8P, 8P, and f(z) =3e(a/p)2° summed over all the positive integers

a<p, fori=1,2,3,4. Then
oL
ox(l—z”)

is the sum of integrals (for the various values of a), with proper signs prefixed,
1 20-1dz 12 Rar .. mm ™ ar
=— = = — 4 5—cot —,

L 1—aF D mEglcosm 7 log sin 5 + 2p P

For a negative determinant, the terms involving the logarithm cancel each other
and then, by the theory of Gauss®” sums, V' reduces to**

r— T Ar (é>=1 1= A<p.
(1) V——;;ECOt " F) € p ’ = p

H. W. Erler*® developed a hint by Gauss (Disq. Arith., Art. 256, § Y, t.h.ird case)
that there is a remarkable relation between the totality B of properly primitive forms

30 Cf. T. Pepin,120 Annales sc. de 'Ecole Norm. Sup., (2), 3, 1874, 205; M. Lerch,2'7 Acta
Math., 29, 1905, 381. ' ;

81 Jour, de Math., (1), 5, 1840, 216-7. This is proved by means of C. G. J. Jacobi’s result
in this History, Vol. I, 275-6.

32 Jour. fiir Math., 27, 1844, 86. .

32 Cf. G. L. Dirichlet, Zahlentheorie, 1894, Art. 89; Dirichlet.??

3« Jour, fiir Math,, 27, 1844, 87. _
35 g’mé F. Ga.uss,’ Disq. Arith., Art. 249; Maser’s translation, 1889, 261; Werke, I, 1876, 272.

86 Jour. de Math., 15, 1850, 227-232.

37 Disq. Arith., Art. 356.
38 C;s% F. Gauss, memoir of 1837, Werke, II, 1876, 286; Untersuchungen, 1889, 671.

39 Eine Zahlentheoretische Abhandlung, Progr. Zullichau, 1856, p. 18.
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of determinant D which represent A? and the least solution ?, us of 12 — Dut=A*.
Erler considered the case in which A? divides D, whence 4 divides ¢,. Write r,=t/4,
I’ =D/A?, whence ti—D’ul=1. Find the period of the solution of the latter for
modulus 4. From each pair of simultaneous values of ,, u;, we can derive one and
only one from the set B which is equivalent to the principal form. The terms of
every later period give the same forms in the same sequence as those of the first
period. In case bisection of the period is possible, the terms of the second half are
the same as in the first half. The forms obtained from the terms of the first half
(or from the entire first period, if bisection is impossible) are distinct.

G. L. Dirichlet*® recalled (see Dirichlet,?® (8)) that for a positive determinant

D=D-8?,

log(T+UVD) g.p_h(D)-8-R
log(T’+U’'V D) - N
in which R is independent of ay, a,, ..., ax in S=pf- p32. . . pg¥, where the p’s are
distinct primes. By the theory of the Pell equation it is found (see this History,
Vol. I, p. 377, Dirichlet'*) that if each a increases indefinitely, S/N is eventually
a constant. Hence for every D, there is an infinitude of determinants D’=DS? for
which k(D’) =h(D). And a proper choice of D and the primes p, p,, ..., Pk leads
to an infinite sequence of determinants D’ for which the number of genera coincides
with the value of h(D’). This establishes the conjecture of C. F. Gauss (Disq.
Arith.,* Art. 304) that there is an infinitude of determinants which have genera of

a single class.
R. Lipschitz** called the linear substitutions

8 ()

equivalent if a, ..., A are integers and if integers o/, B, ¥/, & exist such that

GG D). rorres

Every substitution of odd prime order p is equivalent to one of the p+1 non-equiva-
lent substitutions:

@ G @) G G (1))
op) \1 o0/ \1 0/ \1 0F Tt 1 0/
Let (a, b, ¢), a properly primitive form of determinant D, be transformed by (1)

into p+1 forms (a’, ¥’, ¢’). Then D’=D-p> The coefficients of every form
(a’, b’, ¢’) satisfy the system of equations

ap*=a’8*— 208y + 'y,
bp®*= —a’88+ b’ (ad+By) —c'ya,
cp*=a/B2—2b’Ba+c’d?.

40 Bericht. Acad. Berlin, 1855, 493-495; Jour. de Math., (2), 1, 1858, 76-79; Jour, fiir Math.,
53, 1857, 127-129; Werke, II, 191-194.

41 Jour. fiir Math., 53, 1857, 238-259. See H. J. S. Smith, Report Brit. Assoc., 1862, § 113;
Coll. Math. Papers, I, 246-9; also G. B. Mathews, Theory of Numbers, 1892, 159-170.

h(D')=h(D)
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Hence (a’, b’, ¢’) has no other divisor than p, and the condition that p be a divisor is
aa’ =a(aa®+2bay+cy?) = (aa+by)*—Dy*=0 (mod p).

Now, a may be assumed relatively prime to p. The number of solutions of this con-
gruence is the number of substitutions in (1) which do not lead to properly primitive
forms (a’, b’, ¢’). This number is 2, 0, 1 according as (D/p) =1, —1, 0. Hence
the number of properly primitive forms (a’, b, ¢’) is p— (D/p).

If (2 4) be one substitution of (1) which carries (a, b, ¢) over into a particular
(a’, ¥’, ¢’), then all the substitutions in (1) which effect the transformation are (3 %),

in which (Gauss, Disq. Arith., Art. 162 ; report in Ch. I)

A=at— (ab+yc)u, I'=yt+ (aa+yd)u,
B=pgt— (Bb+8c)u, A=8t+ (Ba+38b)u,

t, u ranging over ¢ pairs of integers which satisfy ¢*— Du*=1, where o is the smallest
value of 4 for which u; is a multiple of p in

(T+UVD)*=ti+uwVD.
If uo =pu’, te= t’, then

(T+UVD)y=¢'+w'Vp*D, o= log(7"+ U’V p*D)

log(T+UVD)

’

where T, U is the fundamental solution of ¢*—Du?=1, and T, U 7, of t2—Dp*u*=1.
Since only one form (a, b, ¢) can be carried over into a particular form (a’, b’ ¢’)
by (1), Dirichlet’s*® ratio h(8*D)/k(D) follows at once.*®* Similarly, Lipschitz
obtained the ratio of the number of improperly primitive classes to the number of
properly primitive classes for the same determinant.**

L. Kronecker*® stated that if n denotes a positive odd number >3 and « denotes
the modulus of an elliptic function, then the number of different values of «? which
admit of complez multiplication by V' —n [i. e., for which sn?® (wV —n, x) is ration-
ally expressible in terms of sn*(u, x) and «] is six times*® the number of classes of
quadratic forms of determinant —n. These values of «? are the sole roots of an
algebraic equation with integral coefficients, which splits into as many integral
factors as there are orders of binary quadratic forms of determinant —n. To each
order corresponds one factor whose degree is six times the number of classes belong-
ing to that order. The two following recursion formulas*’ and one immediately
deducible from them are given. Let n=3 (mod 4); let F(m) be the number of
properly primitive classes of —m plus the number of classes derived from them;

42 Jour. fiir Math., 21, 1840, 12. See Dirichlet.2° .
8 For details, see G. B. Mathews,218 Theory of Numbers, Cambridge, 1892, 159-166; also

H. J. S. Smith’s Report.”®

« For details see G. B. Mathews,218 Theory of Numbers, 1892, 166-169.

45 Monatsber. Akad. Wiss. Berlin, Oct., 1857, 455-460. French trans., Jour. de Math,
(2), 3, 1858, 265-270.

46 Of. H. J. 8. Smith, Report Brit. Assoc., 35, 1865, top of p. 335; Coll. Math. Papers, I, 305.

41 Cf. L. Kronecker, Jour. fiir Math., 57, 1860, 249.
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¢(n) be the sum of the divisors of n» which are > Vn; ¢(n) be the sum of the other
divisors. Then

() 2F (n) +4F (n—2%) +4F (n—42) + ... =4 (n) —y(n),
(IT) 4F (n—12) +4F(n—3%) +4F(n—5%) 4 ... =¢(n) +y(n),
where, in the left members, n —3>>0.

Using the absolute invariant j instead of x?, H. Weber*® has deduced in detail a

similar relation which these two imply.?** .
C. Hermite*® set u=¢ (w) =« « being the ordinary modulus in elliptic functions,

and found that the algebraic discriminant of the standard modular equation for
transformations of prime order n,

H[¢8(m)—¢s<8‘L§l§f—n>]=0, 88,=n, m=0,1,2, ..., &—1,
2

is of the form

. unu(l_us)m(z/n)m(u)’
where (%) =a,+a,u®+a,u'®+ . .. +a,u®” is a reciprocal polynomial with no multiple
roots and 6(u) is relatively prime to » and 1—u®; moreover,

_n—1 1 2
= _s——i[”(n)]-
By means of the condition for equality of two roots® of the modular equation, he

set up a correspondence between these equal roots and the roots of certain quadratic
equations of determinant —A and so proved the following theorem.®* Let

A’=(88—3n) (n—28) >0, A”=83(n—88)>0, A”’=5(n—163)>0.
Then
v=23F(A’) +23F(A”) +63G(A””).

(Cf. H. J. S. Smith, Report Brit. Assoc., 1865 ; Coll. Math. Papers, I, 344-5.)
Those roots z=¢ () of 6(u) =0 are now segregated which correspond to the roots
o of a representative system of properly primitive forms of a given negative determi-
nant — A ; similarly for a system of improperly primitive forms. If the representa-
tive form (4, B, C) of each properly primitive class is chosen with C even, A uneven,
then to the roots w of the equations Aw?+2Bw+ C=0 correspond values of u®=¢* (@)
which are the principal Toots of a reciprocal equation F (z, A) =0 with integral

48 Elliptische Functionen und Algebraische Zahlen, Braunschweig, 1891, 393-401; Algebra,
III, Braunschweig, 1908, 423-426. For the same theory see also Klein-Fricke, Ellip-
tischen Modulfunctionen, Leipzig, 1892, II, 160-184.

49 Comptes Rendus, Paris, 48, 1859, 940-948, 10791084, 1096-1105; 49, 1859, 16-24, 110-118,
141-144. Oeuvres, If, 1908, 38-82. Reprint, Paris, 1859, Sur la théorie des équations
modulaires et la résolution de I'équation du cinquiéme degré, 3

50 Cf. C. Hermite, Sur la théorie des équations modulaires, 1859, 4; Comptes Rendus, Paris,
46, 1859, 511; Oeuvres, I, 1908, 8. Cf. also H. J. 8. Smith, Report Brit. Assoc., 1865,
330; Coll. Math. Papers, I, 299. For properties of the discriminant of the modular equa-

tion, see L. Koenigsberger, Vorlesungen iiber die Theorie der Elliptischen Functionen,
Leipzig, 1874, Part II, 154-6.
51 For an equivalent result see Kronecker.124
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coefficients and of degree the double of the number of those classes. Moreover,
F(z, A) can be decomposed into factors of the form

. m—1, n—9, 2n—25, ...;
. _ 2 = s y ) *
(z+1)*+a,z(z—1)3 if A {gn, 2m—4, 2n—-16,....

This illustrates the rule that, excepting A=1, 2, the number of properly primitive
classes of —A isevenif Ais =1or 2 (mod 4).

In a theorem analogous to the preceding and concerning improperly primitive
classes, & (z, A) =0 is a reciprocal equation with integral coefficients and of degree
2 or 6 times the number of those classes, according as A= —1 or 3 (mod 8); and
& (z,4) can be decomposed into factors of the form (z*—z+1)*+a(2*—2)?%, if
A=4n—1, 4n—-9, 4n—25,....

For a few small determinants the class-number is exhibited as by the following
example. After Jacobi, the modular equations of orders 3 and 5 respectively are

(g—D*=64(1—¢*) (1-1*) (3+4ql),
(g—1)°=256(1—g*) (1—1?)[1641(9—gl)*+9(45—ql) (g—1)*]

where g=1—2x? 1=1—2A%. These equations combined with

_l——s— =z, where u*=x?, v®=2A%,

8
Y=Y

give, respectively,
[z*—z+1][(e*—2+1)3+27(2*—2)*] =F (2, 3)- &F(z, 11) =0,
[(z2—z+1)3+27(2*—2)2][(2*—2+1)*+27-3%(a* —2)?]
=F(z, 11): F(z, 19)=0.
The common factor of the two left members must be identical with S (z, 11).
Then the numbers of improperly primitive classes of determinants —3, —11, —19

are one-sixth of the degrees of the expressions in brackets in the left members of the
last two equations. P. Joubert’s®* modification of this method is given for determi-

nants —15, —23, —31.
F. Arndt®® wrote

$(2) =T(g—ewrtr),  y(2)=Ti(z—ePr")
and, in the three cases which Dirichlet had omitted (see Dirichlet,®® (9)), obtained
the following:
(II) D=P, P=4p+3, (T+UVP)*==y(1)*,

where = means — or + according to P is or is not prime;

(III)  D=2P, P=4p+1, (T+UV2P)*=y(z)*¢(—2)*

(IV) D=2P, P=4u+3, (T+UVZP)*=y(z)*¢(z*)* }; z=V(1+1).

82 Cf, Joubert,2 Comptes Rendus, Paris, 50, 1860, 911.
58 Jour. fiir Math., 56, 1859, 100.

8
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L. Kronecker® published without demonstration eight class-number recursion
formulas derived from singular moduli in the theory of elliptic functions.®® They
are algebraically-arithmetically independent of each other; and any other formula
of this type derived from an elliptic modular equation*® is a linear combination of
Kronecker’s eight. He employed the following permanent®® notations.

n is any positive integer; m any positive uneven integer; r any positive integer
8k—1; s=8k+1>0.

G(n) is the number of classes of determinant —n; F'(n) is the number of uneven
classes.

X (n) is the sum of the odd divisors of n; ®(n) is the sum of all divisors.

¥(n) is the sum of the divisors of n which are >Vn minus the sum of those
which are < V7.

®’(n) is the sum of the divisors of the form 8% =1 minus the sum of the divisors
of the form 8%k +3.

¥’(n) is the sum both of the divisors of the form 8k =1 which are >Vn and of
the divisors of the form 8% =3 which are < V7 minus the sum both of the divisors
of the form 8k =1 which are <Vn and of the divisors of the form 8/ +3 which are
>Vn.

#(n) is the number of divisors of n which are of the form 4k + 1 minus the number
of those of the form 4k—1.

¢(n) is the number of divisors of n which are of the form 3k +1 minus the number
of those of the form 3k —1.

¢’(n) is half the number of solutions of n=a?+64y?; and y’ (n) is half the
number of solutions of n=x%+3-64y?, in which positive, negative, and zero values
of z and y are counted for both equations.

(I) F(4n) +2F(4n—12) +2F(4n—2%) +2F (4n—38%) +...
=2X(n)+&(n)+¥(n),
(II) F(2m)+2F(2m—12)+2F(2m—2%) 4+ RF (2m—3%*) +. ..
=28(m) +¢(m),
(III) F(2m)—2F(2m—12) +2F(2m—2%) —2F (2m—3*) +...=—¢(m),
(IV) 3G(m)+6G(m—1%)+6G(m—2%)+6G(m—3%)+...
= (m) +3%(m) +3¢(m) +2¢(m),
(V) 2F(m)+4F(m—1%)+4F(m—2%) +4F(m—3%)+...
=®(m) +¥(m) +¢(m),
(VI) 2F(m)—4F(m—12)+4F(m—2*)—4F(m—3%)+...
m—1
=(—1)"7 [2(m) —¥(m)]+¢(m),
(VII) 2F(r)—4F(r—42)+4F(r—8) —4F(r—12%) +...
— ( —_ 1)}('--7) [‘I”(T) —\I”(T) ]’

—k s—k? s—k?
(VIII) 43(-1)'® [2F(T€)‘3G<“ﬁ‘)]
=(—1)¥e[@"(s) =¥’ () ]+ ¢ () +4y(3) —4¢"(s) =8y (s)-
54 Jour. fiir Math., 57, 1860, 248-255; Jour. de Math,, (2), 5, 1860, 289-299.

56 Demonstrated by the same method by H. J. S. Smith, Report Brit. Assoc., 1865, 349-359;

Coll. Math. Papers, I, 325-37.100 o ‘ .
t6 Later in the report of this paper will be noted the historical modification of Kronecker’s

F and G printed in Roman type.
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In all recursion formulas (except those of G. Humbert®*®) of this chapter, the
determinants are < 0. In the above 8 formulas, F(0) =0, G(0) =3. The functions
é(n), y(n), ¢’(n), y’(n) are removed hereafter from the formulas by replacing
italic letters F and G throughout by Roman letters F and @, which agree respectively
with the earlier symbols except that F(0) =0, G(0) = —v%;, and except that classes
(1, 0,1), (2,1, 2) and classes derived from them are each counted as 4 and 4 of a
class respectively. Later writers have commonly adopted these ‘conventions but have
not insisted on printing the symbols in Roman type.
The following also result®” from the theory of elliptic functions:

F(4n) =F (4n),for alln;

F(4n) =2F(n), G(4n) =F(4n) +G(n), for all n;
G(n)=F(n),ifn=10r 2 (mod 4); -

3G(n) =[5— (—1)*®]F(n), if n=3 (mod 4).

By means of these relations, Kronecker obtained from the original eight formulas
the following®®:

(IX) F(n)+F(n—2)+F(n—6)+F(n—12) +F(n—20)+...=3¥(4n+1),
(X) E(n)+2E(n—1)+2E(n—4) +2E(n—9) +...=3[2+ (=1)"]1X (n),

where E(n) =2F(n) —G(n). But

3@+ X(n) =%~ T, n=1,2, ...,
the plus or minus sign being taken on both sides according as n is even or odd.
Hence formula (X) is equivalent to the important formula
4+ o

(XT) 122E(n)q"=0:(q), 03(Q) =,.=-_2_¢,qn” q:e""’,

which implies that the number of representations® of n as the sum of three squares
is 12E(n). (Cf. this History, Vol. II, 265.)

By (VI) and (VII), Kronecker calculated F (m) for m uneven from 1 to 10,000.

P. Joubert,® referring to a conjecture of Gauss,* proved that if n is a fixed prime
and A>0 grows through a range of values which are quadratic residues of n, then
the number of classes in a genus of the forms of determinant —A has a lower limit
for the range.

P. Joubert?? considered the principal root » of Po?+Qu+R=0. If o furnishes a
root ¢*(w) of the modular equation for transformations of order 2%, p arbitrary, he
found that just two values of ¢*(w) are furnished as roots by all the forms
(P, Q, R) of a given improperly primitive class which have third coefficients a

57 For the means of immediate arithmetical deduction, see Lipschitz 42 and H. J. S. Smith,
Re:zgort Brit. Assoc., 1862, 514-519; Coll. Math. Papers, I, 246-51.

58 See H. J. 8. Smith, Report Brit. Assoc., 1865, 348; Coll. Math. Papers, I, 323.

89 Of. C. F. Gauss# Disq. Arith., Arts 201-2. For a report, see this History, Vol. II, 262;
while on pp. 263, 265, 269, are reports on papers by Dirichlet, Kronecker and Hermite
giving applications of class-number to sums of three squares.

60 Comptes Rendus, Paris, 50, 1860, 832-837.

61 Disq. Arith.* Art. 303.

¢z Comptes Rendus, Paris, 50, 1860, 907-912.
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multiple of 16. If (4, B, C) is a form of this kind and of negative determinant
—A=(82—2#2) /T2 in which 8, T are odd, it is equivalent to (2* 4, B, C/2*), and
these two forms give the same value of ¢*(w). Consequently, if in the ordinary
modular equation we set u>=v*>=z, the resulting equation f(z)=0 has a degree
which is double the number of representative improperly primitive forms (4, B, C)
of negative determinant —A; and f(z) can be decomposed into polynomial factors
each of degree the double of the number of the improperly primitive classes of the
corresponding determinant — A.

For example, if p=1, the only possible determinant is —7. The modular equation
for transformations of order 2 is v*=2u2/(1+u*), and becomes 2>+z+2=0. There-
fore there is a single improperly primitive class of determinant —7. For somewhat
larger values of determinant — (8%k—1), Hermite’s*® device is used for identifying
common factors which belong to the same A and which occur in the left members of
f(z) =0 for neighboring values of n=2~.

In the modular equation F(A, ) =0, for transformations of odd prime order =,
Joubert wrote A=2z/(1+2?), x=2?% and obtained f(z)=0 in which f(z) is a
product of polynomials which have the same characteristic properties as in the former
case. If o is such that ¢2(w) =V is a root of F(A, x) =0, then w is the principal
root of an equation

Aw®*+2Bw+C=0,

where (4, B, C) is improperly primitive and the negative determinant —A has A
equal to one of the numbers 8n—12, 8n—3%, 8n—57% .... Moreover, C is divisible
by 16 and again there are therefore just two values of ¢*(») for each improperly
primitive class; and the roots ¢?(w) lead to forms (4, B, C) which just exhaust the
classes of negative determinants — (8n—o?). Hence the aggregate number of
improperly primitive classes of the sequence of determinants is read off as in the
following example. Let n=3; then A=23, 15,
F (), k) =A*—4A%(4x®—3k) + 6A%* + 4 (3x® —4x) +«,
f(z) = (24 +42° + 52° + 22+ 4) (2° —2°+ 92* +132° + 1827+ 162+ 8).

Since 15=2-8—1, the first factor in f(z) has already been associated with A=15
by the use of n=2¢=2. The number of improperly primitive classes of determinant
—23 may be read off as half the degree of the second factor and also as the index of

its constant term regarded as a power of 2.
Joubert®® illustrated his method by many examples.
Joubert,® in the modular equations for transformations of odd order n=p°gfr

(p, g, r different primes), and with the roots
vi=g° (gw + lﬁm) ,
g1
added to the usual conditions the restriction that g and g, be relatively prime. In
the modular equation f(z, y) =0, he took y=1/z. Now f(z, 1/y) is of degree
AN =2p*1¢fr7 (p+1) (g+1) (r+1)

68 Comptes Rendus, Paris, 50, 1860, 940-4.
64 Ibid.,-1040-1045.
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and has 2 ¢~ .+¢\/;or 2 4" roots equal to unity, according as n is or is not a square,

where
N'=33y-¢(d),
dy

d? ranging over the square divisors of n (n omitted if it is a perfect square), while
yy,=n/d? y<y,, y and y, being relatively prime. Excluding the unity roots, he
established a correspondence between the roots of f(z, 1/z) =0 and the roots of
certain quadratic equations, and obtained the following formula when £ is or is not
a square respectively:
F(n)+2F(n—1%) +2F(n—2*) +2F(n—32) +...=N—A or N— #—3¢(Vn).
where F (D) denotes the number of odd classes of determinant —D which have all
their divisors prime to n. If, however, a form is involved which is derived from
(1, 0, 1), the right member in each case should be diminished by the number of
proper decompositions of n into the sum of two squares. Numerous® other class-
number relations in the modified # and a similarly modified G are obtained. Tables®
verify the formulas in F. The interdependence of Joubert’s and Kronecker’s® class-
number relations has been discussed by H. J. S. Smith.®?

H. J. S. Smith®® reproduced the principal parts of the researches of Gauss* and
Dirichlet!® 2% 28 on the class-number of binary quadratic forms. For D>0 and =1
(mod 4), he wrote

=(2). R (2)1 tan ™7
m(D) “(D)log(ﬂ TVD) *\m/ %™ 2p’
where m is positive, odd, prime to D, and <D. (Cf. Berger,**® (3).)
C. Hermite®® began with the factorization
H*(2)0,(z) _ H(2)0,(2) H(2)
e (z) ~  0(2) ®(z2)
and expanded each factor after C. G. J. Jacobi,™ setting z=2Kz/x. In the product
of the two expansions, the term independent of z is*
gt \
(1) o = P VL g mIF ()
where in the first sum, =0, =1, =2, ... =n; while in the second sum, N ranges
over all positive numbers =3 (mod 4) which can be represented by (I), and hence
by each of the three identically equal expressions

(I) (2n+1) (2n+4b+3) —40?,
(II) (2n+1) (4n+4b+4—4a) — (2n+1—2a)?,
(III) (2n+1) (4n+4b+4+4a) — (2n+1+2a)%.

*The expansion of the first fraction in (1) is Z¢%, k=4%(2n41)4-(2n4 )b, b20.

95 Comptes Rendus, Paris, 50, 1860, 1095-1100.

86 Ibid., 1147-1148.

o7 Report Brit. Assoc., 35, 1885, 364; Coll. Math. Papers, I, 343-4.

68 Report Brit. Assoc., 1861, 324-340: Coll. Math. Papers, I, 1894, 163-228.

o9 Corln te;ogendgu_sl,zParis, 83, 1861, 214-228; Jour. de Math,, (2), 7, 1862, 25-44; Oecuvres,
, 1908, 10 4.

70 Fundamenta Nova Funct. Ellipticarum, 1829, §§ 40-42; Werke, I, 1881, 159-170.
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Thus F () denotes the number of ways in which N can be represented by any one of
the expressions (I), (II), (III). We represent N by (I), (II), or (III), accord-
ing as
le|]<3(@n+1); a=3}(Rn+1); a<O0,but |a| =3 (n+1).

Now (I), (II), (III) are respectively the negatives of the determinants of the
quadratic forms

(’n+1, 2a, 2n+4b+3),

(2n+1, 2n+1—2a, 4n+4b+4—4a),

(2n+1, 2n+142a, 4n+4b+4+4a).

Thus we have F(N) forms which are reduced. Moreover, the F(N) forms exhaust
the reduced uneven forms of determinant —N. For, those of the first type constitute
all uneven reduced forms of determinant — N which have an even middle coefficient.
Those of the second and third types constitute all forms (p, g, r) of determinant
—N in which p and ¢ are uneven, p>2q, r>2¢>0. Hence, since (p, g, r) is here
never equivalent to (p, —gq, r), the number of forms of the three types together is
F(N), in the class-number sense.®*

A second factorization yields™

(2) K [2%kK H(2) ©,(2)
R r 0(z) 0(2) L
= 7@, (2) —3 co8 2nz- g™ (V@ +3V g +...+ (2n—1) Vg @1?),
For z=0, the first member vanishes and the terms under the summation sign are

of the type V-3 (S —3d),

where N=3 (mod 4), d’ is any divisor > VN of N and d is any divisor <VN.
In Kronecker’s®* symbols, we get, by (1) and (2),

®,(0)2F(N) g *=43¥(N)g"".
Or, since ®; (0) =1+2g+2¢*+2¢°+2¢*+ . . .,
(3) F(N)+2FP(N—2%) +2F(N—42) +...=3¥(N).

In Kronecker’s® formulas this is (V) + (VI).’
A third factorization combined with the first yields the following:
(4) F(4n—1)+F(4n—32) + F(4n—5%) +...=&,(n) —¥,(n),
where ®,(n) denotes the sum of the divisors of n whose conjugates are odd, and
¥,(n) denotes the sum of all the divisors <Vn and of different parity from their
conjugates. Similarly,
(5) F(N)—2F(N—2%)+2F(N—4%) —...+2(—1)*F(N—44?)...
= (—1)¥FDE,(N) =(—1)¥D.-3(B(N) —¥(N)), N=3 (mod 4),

where ¥,(n) denotes the sum of the divisors of n which are <Vn. Hermite’s three
class-number relations above are all derivable from Kronecker’s™ eight.

71 See H: J. S. Smith, Rep. Brit. Assoc., 35, 1865, 364; Coll. Math. Papers, I, 1894, 343.
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Since N in (1) is of the form 4n+3, (1) implies
(6) 3(of—eaf) =S F(8n+3)gte»®,
0

where e= (1+1)/V?, ¢¢=—1, and .o is the result of replacing ¢ by —¢ in o
Another expression for 3 (.o —e o) is found by means of the integral of the product
quoted at the beginning of this report ; comparison of it with (6) gives

(7 EF(8n+3)q*“”+”=(\'/§+\'/E°+\‘/E“+...)'.

This result is implicitly included” in Kronecker’s® (XI) and can be deduced from
it by elementary algebra.”® When the coefficients of equal powers of ¢ are equated
in the two members, this formula implies that the number of odd classes of determi-
nant — (8n+3) is the number of positive solutions of

8n+3=a+y*+2%

L. Kronecker™ referring to his®* earlier memoir, multiplied formulas (I), (II),
(V) respectively by g**, ¢°™, 3¢g™, added the results, and summed for all values of
n and m, and obtained

" — l__ n n'm_z ni-n .
&) IF( =y o (-2t
Similarly from formulas (I), (III), (VI), he obtained
2 ey w ="
) 3F (Mg =ty gl (-0 L0
Now (1) and (2) imply the following three formulas™:
kK 1 5 kK
SF(2m)gim=*X ~/ . IF(nt)g= \}ﬁ
2 — 1 kK [kK .
SF(8n+3)¢™= p -5 A 5y

and these imply Kronecker’s® (IV).
By means of an expansion™ of sin* am 2Kz/x in terms of cosines of multiples of

z, (1) takes the form

1 FBK | K (", Kz .

(3) SF(n)q = o WI sin - 0,(z) cos zdz.

“From (3), all the formulas® (I)-(VIII) can be deduced.” Other such relations
are indicated by means of theta-functions, although the eight formulas “are
algebraically-arithmetically independent.”

73 Jour. fiir Math., 57, 1860, 253

3Cf. L. J. Mordell Messenger Math 45, 1915, 79.

7¢ Monatsber. Akad. Wiss. Berlin, 1862 302-311. French transl, Annales Sc. Ecole Norm.
Sup., 3, 1866, 287-204.

76 Cf. C Hermlte,“ Comptes Rendus, Paris, 53, 1861, 226,

76 Cf. C. G. J. Jacobi, Fundamenta Nova, 1829, 110, (1) Werke 1, 1881, 166.
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Kronecker stated that he had obtained arithmetical deductions of certain of his
class-number relations by following the plan of Jacobi” who had first found by
equating coefficients in two expansions, the number of expressions for n as the sum
of four squares and had later translated the analytic method into an arithmetical
one.”™ The following theorem, which Kronecker deduced from his formula (V), was
offered as a suggestion for a means of deducing his class-number relations arith-
metically: Let p be any odd prime and let

4,2 +Rb,2+¢,=0,  a,2°+2b2+¢,=0... (mod p)

be a succession of congruences corresponding to reduced forms of determinants,
—p, —(p—1%), — (p—2?), ... respectively (with b taken negative in the reduced
form if a=c) ; then the number of roots of the congruences is

F(p) +2F(p—12) +2F (p—2*) +2F (p—3%) +...;

that is to say, by formula (V), the number is p+1 or p according as p is =1 or 3
(mod 4).

H. J. S. Smith™ gave an account of Lipschitz’s* method of obtaining the ratio
of h(D-8%) to h(D).

C. Hermite® gave a list of expansions of quotients obtained from theta-functions
and showed how the products and quotients of theta-functions lead to class-number
relations (cf. Hermite®®). This list of doubly periodic functions of the third kind
has been extended by C. Biehler,** P. Appell,®** Petr,** 2*¢ Humbert,®® and E. T.
Bell.®? Finally, Hermite deduced Kronecker’s** relation (XI).

Hermite®® generalized a theorem of Legendre (this History, Vol. I, 115, (5)) into
the Lemma: If m=ac®bBc”...k*, wherea, b, c, ..., k are p different primes, then
the number of integers which are less than or equal to z and relatively prime to m is

&(z) =E(z) -zE(%) +EE<£~> —EE(Z%) +... 1E<WL])
with the convention ®(z) =E(z) if m=1. It fo]lc;ws that
1) @(z):%:ﬁ(m)-{—‘&“"g —1<e< +1.
Now P (n) is defined by F(n) =3{=3f(4), where f(¢) =0 if ¢ is not a divisor of n or if

§ is a divisor of n but is not prime to m ; also F'(n) =0, if m and n are not relatively
prime. Then, by definition,

kglp(k) =é1f(i)¢(-?->'

77 Fundamenta Nova, 1829, Art. 66; Werke, I, 1881, 239.

78 Jour fiir Math., 12, 1834, 167-172; Werke, VI, 1891, 245-251.

72 Report Brit. Aseoc., 1862, § 113; Coll. Math. Papers, I, 1904, 246-9.

8o Cotﬁptes Rendus, Paris, 55, 1862, 11, 85; Jour. de Ma.th., (2), 9, 1864, 145-159; Oeuvres,
, 1008, 241-254.

81 Thegis, Paris, 1879.

81 Annales de 'Ecole Normale, (3), 1, 1884, 135-164; 2, 1885, 9-36.

82 Messenger Math., 49, 1019, 84.

82 Comptes Rendus, Paris, 55, 1862, 684-692. Oeuvres, II, 1908, 255-263.
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Now (cf. Dirichlet,” (1)), if D=8%D,, where D, is a fundamental determinant, and
if n is any positive uneven integer relatively prime to D, then for f(2) = (D,/t) and
D uneven, for example, the formula

n
2) F(n) =".-21<%>¢<':'£)’ k=2if D<—3, k=1if D>0, m=2|D),
gives the sum of the number of representations of integers from 1 to n which are
uneven and relatively prime to D by the representative properly primitive forms of
determinant D with the usual restriction® on z and y in case D>0.
Hermite omits the rather difficult proof that the term containing e in (1) is
negligible®® for n very great and concludes from (1) and (2) that, for n very great,

F(n) =k‘§1<%’> s 3y #((~1)*2D).

C. F. Gauss®® and G. L. Dirichlet®” had found geometrically the asymptotic mean
number of such representations furnished by each form for n large. A comparison

yields the class-number (Dirichlet,’® (1)).
J. Liouville® stated that the number® of solutions of yz+2¢+zy=n in positive

0dd integers with y+2z=2 (mod 4), n=3 (mod 4), is F(n).
J. Liouville® obtained an arithmetical deduction of a Kronecker® recursion

formula in the form
F(2m—1%) +F(2m—3?) +F(2m—5°) +... =3[&(m) +p(m)],

where m is an arbitrary uneven integer, Z,(m) represents the sum of the divisors
of m, and p(m) is the excess of the number of divisors of m which are =1 (mod 4)

over the number of divisors =3 (mod 4).
Lemma 1. Let any uneven integer m be subjected to the two types of partitions

(1) m=2m’*+d"8"’, 2m=mi+ d,8,+2%*1d,3;,
where my, da, ds, 82, 85 are positive uneven integers; a;>0; while m’ is any positive,
negative, or zero integer. Then, if f(z) is an even function,
33[d”’f(em’) —f(2m”) —2f (2m"+2) — of(2m’+4) — ... —2f(2m’+8"—1)]
(2) =3 [f(‘lziz"_s; —_ ds> —f(él%—jz +da>] .
Now take f(z) so that f(0) =1, f(z) =0 if 0. Then the only partitions of the

second type (1) which furnish terms in the right member of (2) are those in which
d,=4(d,+8,). Hence the right member of (2) has for its value the number of

solutions of om—mi= d282+2“l(d2+82)83-

8¢ G. L. Dirichlet,® Zahlentheorie, Art. 90, ed. 4, 1894, 225 and 226.
& Cf. T. Pepin, Annales Sc. de 'Ecole Norm. Sup., (2), 3, 1874, 165; M. Lerch, Acta Math,,

29, 1905, 360.
88 Werke, II, 1876, 281 (Gauss¢).
87 Jour. fiir Math.1° 19, 1839, 360 and 364.
88 Jour. de Math., (2), 7, 1862, 44.
89 Cf, Bell,#7° and Mordell.872
90 Jour, de Math., (2), 7, 1862, 44-48.
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We set d;+8,=2u, d,—8,=42. Hence u>?z. Keeping m, fixed, Liouville followed
the method of Hermite®® and obtained the result that the number of solutions of
2m—mi= u(u+4d) —42% is

SF(2m—mi) —33¢(@m —m}) —33w(2m —s3),
my my LY

in which {(n) denotes the number of divisors of n, w(n) =1 or 0 according as n is

or not a perfect square. Hence 3w (2m —si) =p(m).
Now in the first member of (2), the summation of the first two terms in the

bracket is equal to {,(m) —{(m). Furthermore the expression in (2):
F(2m7 +2) +F(2m’+4) + . .. +f(2m’+87—1)

will have the value 1 for each pair of values m’<0, 2m’+8’>0 and the value 0 for
all other values m’ and 2m’+8”. Let A denote the number of pairs of values
m’ <0, 2m’+§">0 in the partition (1,). We have now proved that

(3) 3F (2m—mi) =33 (2m—mi) —3p(m) =K &(m) —¢{(m) } -4,
m, M
Lemma 2. Let any uneven integer M be subjected to the two types of partitions
M=2M"+D"A", M =M} +D,A,,
where M,, D,, A,, D”’, A” are positive odd integers, while M’ is any integer. Then,
if f1(z) is an uneven function,

(4) sf, (D +2M") =3, (&;—Az).

To evaluate 4, we identify m and M and specialize f,(z) so that f,(z) =1 if
z>0, f,(z)=0 if z=0, f,(z)=—1 if 2<0. Since the number of solutions of
M=2M"+D"”A” with M’>0 is equal to the number with M’<0, the left member
of (4) is composed of the following four parts:

A=3f(D"+2M’), M’<0, D”+2M’>0;
—B=3f,(D”+2M’), M’'<0, D”+4+2M’<0;
A+B=3f,(D"”+2M’), M’>0, D”+2M’>0;
t(m)=3f,(D”+2M’), M’=0, D”+2M’>0.

Hence (4) implies that

244+¢(m) =2f1(2’-'§—A’>=2{‘(2m—m§).

Thus (3) becomes®
3F(2m—mi) =3{&,(m) +p(m)].
This result has been established in detail by Bachmann® and Meissner.?** From

the same two lemmas, H. J. S. Smith®? obtains a different form of the right member,
for the case m odd.

91 Cf. P. Bachmann, Niedere Zahlentheorie, Leipzig, II, 1910, 423-433.
92 Report Brit. Assoc., 35, 1865, 366; Coll. Math. Papers, I, 1894, 346-350.



Cuar. VI] BiNnary QuabpraTIC ForM Crass NUMBER. 117

Hermite’s discovery®® of the relation between the number of classes of determinant
N and the number of certain decompositions of N, also enabled Liouville to announce
that formulas exist analogous to those of Kronecker,** but in which the successive
negative determinants are respectively 2s?—n, 3s*—n, 4s*—n, ..., where n is fixed
and s has a sequence of values.**

G. L. Dirichlet®® reproduced in a text-book the theory of his memoirs* 1% 20 28 of
1838, 1839, 1840. Continuing his former notation, he obtained (Arts. 105-110)
new expressions for

(P—l

N=—up H 1+ (-1 3(5) -2

z—76°’
j=e"i/4, =¢>"/P, while s ranges over a complete set of incongruent numbers
(mod P) prime to P. The result® is, for D>0, D=1 (mod 4), for example,

N-2VP=—{1-(5)i}og{F(1)*}, F(z)=T(s—0%)rP.
Thence in the notation of the Pellian equation, for example,
(1) D=P=1 (mod 8), (T+UVP)*® =(t+uVD)}, k:P-(%ﬂ(z—o,

where k=1 or 0 according as P is prime or composite, and ¢, u are positive integers
satisfying ¢*—Du?=1. From five such relations, Dirichlet points out divisibility
properties of h(D); e. g, if D=1 (mod 4), h(D) is odd or even according as P is
prime or composite.

Incidentally (Art. 91), Dirichlet proved that the number of representations of a
number on by a system of primitive forms of determinant D is

() (D/3)

where ¢=1 or 2 according as the forms are proper or improper, n is prime to 2D,
and 8 ranges over the divisors of n.

This formula has been used by Hermite,®® Pepin,’*° Poincaré*™ to evaluate the
class-number.

V. Schemmel®® denoted by p an arbitrary positive odd number which has no square
divisors. By the use of Gauss sums he set up such identities as the following, when

p=4n+3:

=1/m 1 #-1/m\sin pa sin 2mwr/p
(1) 3 <p)sm = Ve 3 < )cos 2mn/p—cos o’

where a is an arbitrary real number. He took a=/2 in both members, then

— 1"1< tan 2T
A-B—C+D=—g )a n,

920 Cf, Liouville,107 100 Gierster 145, Stieltjes,15% 162 Hurwitz,167 18¢ Petr 268, Humbert 2°3,

Chapelon 840
93V ber Zahlenth Braunchweig, 1863, 1871, 1879, 1894, Ch. V.
94 ? ﬂésul’gg%;cﬁet 28 f:ur e?tﬁeMath 21, 1840, 154; Werke, I, 1889 495; Arndt.s®

% De multitudine formarum secundi gradus dxsquxsmones, Diss., Breslau, 1863, 19 pp.
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where A, B, C, D are the number of positive quadratic residues which are <p and
of the respective forms 4n+1, 4n+2, 4n+3, 4n+4. Whence,*

=— 1 _P5(mY e, 2mr
(@) h(=p) == 53 <p)tan .

After differentiating both members of (1) with respect to a, he took a=0. The

result ig??
HOER O
1(5)m=305 3 ()t

whence follows Lebesgue’s®® class-number formula (1) :

()
p/rt (ﬁ)cot mm.
p 14

Similarly to (3) are obtained
_ _ 1 2mr
(4) p=4n+1, h(—p)= 2\/17 ? ( )sec p
1 = p.
p=in+3,  h(- 2P)__T/Z 2 (p ::)l;iZZp
1 =1 2 P,

Schemmel, without discussing convergence, decomposed an infinite series by the
identity

E(Z)cosm hm?( ){cosma+coe(p+m)a+...+(xp+m)a},

K=o 1

where p=3 (mod 4), and n is positive and relatively prime to p. After transforming
the right member, he integrated both members between the limits 0 and 3, with
Dirichlet’s?® formula (8,) as the final result:

3 gesepte/t)
(5) MP) = tog(T+ V) BT cos(an/pm/) "

Employing the usual cyclotomic notation,®®
y(z) =M(z—emlr),  ¢(z)=T(z—e?"*?),
Schemmel found that, for p=4n+3>0,

'l”(l) ¢ (1) 1 1 i p—1 "o
(6) v(1) ¢(1) =& " ezerify -3 1—eomilp = & ? (p) ot—p—,

which by (8) gives a new class-number formula for —p (see H. Holden?®®). He
noted that, for p=4n4-3>0,

LAWY
¥ ('L) cos <%’r + 1 )exar/p

98 G. L. Dirichlet,?® Jour. fiir Math., 21, 1840, 1562; Zahlentheorie, Art. 104, ed. 4, 1894, 264.

e®b—2a)w/p =1 or —1,
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according as p is composite or prime. Hence by (5), if we set

F(z)=log= gji(:—; s
we have, for p=4n+43>0,

2 .
h(p)= —————— F(3).
o )= gwrovay T
Similarly for p=4n-+3>0,
Y@ _ ¢(3) _ _ 1 PF(m) g, 2ma Y=L @
i -5 =- 2 T (5= ea=gFo:
Moreover, if p=4n+3>0,

h - % o) —F(—o*)];
(2p) log(T+UV2p) [F(u?) = F( )]h’( 2p) i+1[F,( )+ F(—o®)]
—2p)=—"'T= o® '(—w®)],
2Vp
and, if p=4n+1,
= 4 w)—F(—o —2p)= =L [F'(0) —F'(—o
h@)= s [P ~F(=0)], h(—2p) = 00 [P/ (o) =P (=),

where, in the last four formulas, o= (1+1)/ V2.
L. Kronecker®” obtained, more simply than had G. L. Dirichlet,® the fundamental

equation (2) of Dirichlet,?® and specialized it in the form

(1) rE(—g«)(nn’)‘l“’z S 3 (az®+2bzy+cy?) P

a,b,¢c 2,y

For a particular (a, b, ¢), the sum
3 (az*+2bzy+cy?)?= 3 ¢(z,y)
z=8

r=g
lies between the two values .
=(hy,y) +[, (@ 9)dz,
if hy<s<hy+1. Hence
| lim o 3 3 4z 9)=lim p 3" 6(z )ds,
p=0 y=1aml p=0 y=1J) Ay

where % is taken so that ah?+2bh+c5=0. When we set az+by=2y, this limit is
given by

r dz 1 t+uVD a3t D>o
u’

lim 3 an+b22—D — 4VD log t—uVD’

p=0
- X , D<O
V—D <
Hence, when we exclude®® from the final sum (1) those terms for which the form
takes values not prime to P, (1) implies, for p=0,
1 D\ 1

Bty dy e on( ) 1-(2)2)

97 Monatsber. Akad. Wiss. Berlin, 1864, 285-205.
98 Jour. fiir Math., 21, 1840, 7; Werke, I, 1880, 467.
9 Cf. R, Dedekind, Remarks on Gauss’ Untersuchungen iiber hohere Arithmetik, Berlin,

1889, 685-686; Gauss’ Werke, IT, 2934
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where p ranges over the distinct prime divisions of P, and ¢, u, are fundamental
solutions of $2—Du?=1. For D>0, this proves that & (D) is finite, since the left
member is a definite number.

H. J. S. Smith!® discussed the researches of Kronecker,* ¢ Hermite,* &
Joubert,® % and Liouville® in class-number relations. He found proofs of Kro-
necker’s class-number relations® by means of the complex multiplication of elliptic
functions. The details are based on the methods used by Joubert and Hermite.
L. Kronecker'®* has commended the report for its mastery and insight.

For instance, formula (V) of Kronecker is proved by putting z=«* and 1—z=A*
in the ordinary modular equation f,(x? A?) =0 for transformations of uneven order
m. The right member of the desired formula is found as the order of the infinity of
fo(z, 1—z) a3  increases without limit. The left member is the aggregate multi-
plicity of the roots of fg(z, 1—x) =0.

R. Lipschitz*** developed a general theory of asymptotic expansions for number-
theoretic functions and found that, in the special case of the number of properly
primitive classes, the asymptotic expression is

h(—m)= 72’;_3 mt, 3=1,2,3,...; m>O0.

This agrees with C. F. Gauss'®® since
v 1 1 — 1 1
?<1+§§+3—3+...)__4(1+ 3;+§+...>.

And asymptotically,
h(m)= 2472)3.32 mb, =1, 2,3, ...; m>0.

The method of Lipschitz is illustrated by C. Hermite.***

J. Liouville'*® stated without proof that if a and o’ denote respectively the [odd]
minimum and second [0dd] minimum of the forms of a properly primitive class of
determinant —k= — (8n+3) <0, then

Sa(a’—a)=%k-h(—Fk).
al

He discussed as examples the cases k=3, 11, 19, 27. The theorem has been proved

arithmetically by Humbert.?*®

Liouville’®® let m be an arbitrary number of the form 8n+ 3, whence the only
reduced ambiguous forms of negative determinant — (m—40*) are (d, 0, 3), where
d8=m+40? and d = Vm—40>. Hence the d’s are the values of the minima of the
uneven ambiguous classes of determinant — (m—44¢?). And hence, if n, [and n,]
denotes the number of ambiguous classes of determinant —m whose minima are =1

100 Report Brit. Assoc., 35, 1865, 322-375; Collected Papers, I, 1894, 289-358.

101 Sitzungsber. Akad. Wiss. Berlin, 1875, 234, .

102 Sitzungsber. Akad. Berlin, 1865, 174-185. Reproduced by P. Bachmann, Zahlentheorie,
Leipzig, IT, 1894, 438-459.

108 Werke, 11, 1876, 284; Untersuchungen,® Berlin, 1889, 670.

104 Bull. des Sc. Math.20¢ (2), 10, I, 1886, 29; Oeuvres, IV, 220-222.

105 Jour. de Math. (2), 11, 1866, 191-192.

106 Jour. de Math. (2), 11, 1866, 221-224.
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(mod 4) [and =3 (mod 4)], and if p, [and p,] denotes the number of uneven
ambiguous classes of determinants — (m—40?) excluding 0=0, whose minima are
=1 (mod 4) [and =3 (mod 4)], then in the notation of this History, Vol. II, p. 265
(Liouville®®#),

My =My +2(py— o) =p"(m) +Rp" (M —4-12) +-2p" (m—4-2%) + .. ..
By the theorem there stated, it follows from Hermite® that
F(m)=n;—n,+R(p,—p.).

Liouville'®” stated that he had obtained the following results arithmetically. He
generalized Hermite’s®® formula (4) both to

1) SF(2%*m—1*) =R°2d—3D, 1>0,
in which ¢ and m are odd ; and to
2) Si2F (2942m — i2) = 29m (292d—3D) —3D%, >0

where o is an integer = 0, d denotes a divisor of m ; and D is a divisor of 2%m which
is of opposite party to its conjugate divisor. By the nature of their second members,
these formulas represent what Humbert?*® has called the second type of Liouville’s
formulas.

For m=d8=12¢g+7 or 12¢+ 11, he gave
(3) SF(2m —3i%) = L 3+ (1733” ﬂ%) d.

where 1=1, 3, 5.... He stated that if m denotes an odd positive number prime to
5; and a, B are given positive numbers or zero, and m=d3, then

(4) SF(8-25m—bi®) =2 59 — (1) (1"5.>] z({’-) q,

a

where s=1, 3, 5, ..., m=ds. A special case of this relation is proved by Chapelon®*®
as his formula (3) below.
If m is a positive integer of the form 24¢+11, then

F(m) +25F (m—48-5%) =33 <%>d, §>0.
a
Finally, if m=4¢+3 and =g —s, then
g
3(8s+3)F(8t+3) =43 (—1) ®-1/2ge,
@ =0

The right members here characterize what Humbert has called the first type of
Liouville’s formulas. G. Humbert®® has deduced formulas of this type, by C. Her-
mite’s method, from elliptic function theory.

107 Comptes Rendus, Paris, 62, 1866, 1350; Jour. de Math., (2), 12, 1867, 98-103.
108 Jour. de Math.,298 (6), 3, 1907, 366-368, 446-447.
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Liouville'®® by replacing # by 3m in Hermite’s®® formula (4), decomposed it into
two class-number relations

S'F(12m—14?)=¢, (3m) — ¢ (m), 15%0 (mod 3), ¢=0 (mod 2)
SF(12m—9¢%) =¢, (m), 1=0 (mod 3),

where ¢;(n) is the sum of the divisors of n; and m is odd.
Liouville'*® announced without proof the relation'**

z(#)if«’(ém—i“’) =3(a®—40?),

where 1=1, 3, 5, 7, ...; a is positive and uneven; and a, b range over the integral
solutions of m=a?-+4b%; m odd.
Stieltjes®® and G. Humbert!*? have each given a proof by Hermite’s method of
equating coefficients in expansions of doubly periodic functions of the third kind.
Liouville*? stated for m=5 (mod 1) that

8 (3= 2a3(2)a,

where 1=1, 5, 7, 11, 13, 17, ... is relatively prime to 6; m=38d. For'** m odd and
relatively prime to 5,
F(10m) +23F (10m —2512) =2®(m),

where t=1,2,3, ...; ®(m) denotes the sum of the divisors of m.

R. Dedekind,**® by the composition of classes, solved completely the Gauss* prob-
lem, obtaining the results of Dirichlet.?°

R. Gotting,'*® to evaluate Dirichlet’s** formula (4) for A(—p), p a prime of the
form 4n+ 3, proved that

i [ q n—1 103 1®=3)
2<—~>=—-‘ g 3 o;,—R 3 pj,
a=o0\ P vt =0 b
1(®—-3) 1 ¥ /a p241
5= = 3 (et 2L,
20 77T P aZo\p * 1
where 0;= [\} pi+ -g'] o e=LVedl
Hence if p=8n+7, Soj=+:(p*—1);
if p=8n+3, Soj+23p;=1(p*—1).

He obtained numerous formulas for computing = (a’/p).

109 Jour. de Math., (2), 13, 1868, 1-4.

110 Jour. de Math. (2), 14, 1869, 1-6.

111 Cf, * T, Pepin, Memoire della Pontifica Accad. Nuovi Lincei, 5, 1889, 131-151.

112 Jour. de Math.,298 (6), 3, 1907, 367, Art. 30.

118 Jour. de Math,, (2), 14, 1869, 7.

114 Jhid., 260-262. Proved on p. 171 of Chapelon’s340 Thesis.

115 Supplement X to G. L. Dirichlet’s Zahlentheorie, ed. 3, 1871; ed. 4, 1894, §§ 150-151.

116 Ueber Klassenzahl quadratischen Formen. Sub-title: Ueber den Werth des Ausdrucks
Z(a'/p) wenn p eine Primzahl von der Form 4n 43 und o' jede ganze Zahl zwischen
0 und 3p bedeutet. Prog., Torgau, 1871, 20 pp-
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F. Mertens'” denoted by y(s, ) the number of positive classes of negative
determinants 1, 2, 3, ..., £ which have reduced forms with middle coefficient +s; by
x (s, z) the number of these classes which are even. By a study of the coefficients of
reduced forms, it is found that the number of uneven classes of negative determi-
nants 1,2, 3, ..., z is''®

Vz/3
F@)=3 [¥(s,2) —x(5 2)],

where, except for terms of the order of z,

Vz/3 Vz/8
3 glz(s,z):g;—':ci, p> x(s,x)=118»zi,
0 0

If we set f(N) =3h(—n), we have

F(z) =f(z) +f(z/3%) +f(z/5*) +1(=/7*) +f(z/9) + . ..
F(z/3%)= f(z/3%) +f(z/9*) +...
F(z/5%) = f(2/5%) +...

and we solve for f(z) by multiplying the respective equations by u(1), u(3), n(5),
..., where p(n) is the Moebius function (this History, Vol I, Ch. XIX). Thus

f(2)= 3 n(n)F(a/m).

T i z
P(3)= g +o (%)
where Of(z) denotes a function of the order of f(z), or more exactly a function
whose quotient by f(z) remains numerically less than a fixed finite value for all

sufficiently large values of z.
Hence, when terms of the order of z are neglected,

)= a3 = 5ot (1-5) (1-5:) (1-32) (1= ).

Then, asymptotically,
N 4 1 1 1
2 h(-n)=g1g, M S=ltmtgmtat...

But

And therefore the asymptotic median class number is'*® 22V N/(78,).

T. Pepin'®*® let Sm be the total number of representations of numbers n relatively
prime to & given number A, 0 < n =< M, M being an arbitrary positive integer, by a
system of properly primitive forms of negative determinant D. He also let Zm be
the total number of representations of numbers 2n, n relatively prime to A,

117 Jour. fiir M:stg., 77, 1874, 312-319. Reproduced by P. Bachmann, Zahlentheorie, Leipsig,

11, 1894, 459,
1s f, C. F. Gauss, Disq. Arith., Art. 171.
119 4. C. F. Gauss, Disq, Arith,, Art, 303; Werke, II, 1876, 284. Cf. R. Lipachits %% Sits-
ungsber. Akad., Berlin, 1865, 174-185.
120 Annales So. de I'Ecole Norm. Bup., (2), 3, 1874, 165-208.

9
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0= n =M, by a system of improperly primitive forms of determinant D. In every
representation, let

z=az:+v, y=By+8, y<eo, 3<B, a, B, v, 8 each=0;

and in each of the two cases above, let K, K” be respectively the number of pairs of
values y, 8 possible for given a, 8. Then'*

R fﬁ)’rM‘ + Y= EW alp?)"M +Mn=3m,

where the limits of Me and My for M = « are finite.
A comparison of K and K’ for a=B=A=2 gives Dirichlet’s*® ratio &/A’. The
corresponding result is obtained for the other orders and for the positive determinant.
Pepin avoids the convergence difficulty of Hermite®® and obtains Dirichlet’s®
classic closed expression (5) for & (D), D<0, by extending a theorem of Dirichlet®

(), to give
3m=x3 3(Do/),

in which « is the automorph factor 2, 4 or 6; D, is a fundamental determinant,
D=D,8%; i ranges over all divisors of n, while n ranges over all odd numbers = M ;

and (D,/1) is the Jacobi-Legendre symbol.
Pepin translating certain results of A. Cauchy'** on the location of quadratic

residues, found in Dirichlet’s*® notation

2\13b—3 2\7 32 —3a?
@ aew=fe-(R)]2FE=P-(3)1 T
where —n= — (4p+3) is a fundamental negative determinant. This latter class-

number formula, called Cauchy’s, has been simply deduced by M. Lerch, Acta Math.,
29, 1905, 381. Other results of Cauchy'*® give, in terms of Bernoullian numbers,

h(—ﬂ) 523('”.1)/4 if ‘n=81+7; ’5—63("01)/{ if n=81+3,

modulo n a prime. And without proof Pepin states, for n>0, that

h(—n)= [2— (;2,—)]{&[2l+1][4z+1] -2 3 i[Vin]}, 1= nt

L. Kronecker'?* obtained from his® eight classic relations mew ones, as, for
example, by combining (IV), (V), (VI), the following:
%( —1)MF(n—4h?) =3(—1)i+{®(n) +¥(n)}, n=3 (mod 4), hZ0

By means of'**
(1) 402F(4n+2)q"’*=6;(q)03(9),

111 C, F, Gauss, Werke, II, 1876, 280; Untersuchungen iiber héhere Arithmetik, Berlin, 1889,

666.
122 Mém. Institut de France,2? 17, 1840, 697; Oeuvres, (1), III, 388.
128 Mém. Institut de France, 17, 1840, 445 (Cauchy 28) ; Oeuvres, (1), III, 172.
124 Monatsber. Akad. Wiss. Berlin, 1875, 223-236.
126 Cf, Monatsber. Akad. Wiss. Berlin,’¢ 1862, 309.
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he obtained formulas for

ze(szs) 2F(s ") s=1 (mod 8).

h

He obtained two analogues'®® of (1), and stated that, in his®* classic relations,
3(IV) —35(V) + 4% (VI) —3(VIII) is, when m is the square of a prime, equivalent
to Hermite’s*® first class-number relation.

R. Dedekind*® supplied the details of Gauss’ fragmentary deduction of formulas
for k(D) and h(—D). He also'?? deduced and complemented Gauss’™ set of theorems
which state, in terms of the class-number of the determinant —p, the distribution
of quadratic residues and non-residues of p in octants and 12th intervals of p, where
p is an odd prime.

Dedekind,*™ in a study of ideals, obtained results which he translated®’® im-
mediately into the solution of the Gauss Problem.*

Dedekind'?® extended the notion of equivalence in modular function theory by
removing the condition'*® that 8 and y be even in the unitary substitution (¥ 3
Bach point w in the upper half of the complex plane is equivalent to just one point
wo, called a reduced point, in a fundamental triangle defined as lying above the circle
2?4+y*=1 and between the lines z= +4 and including only the right half of the
boundary (cf. Smith®® of Ch. I). The function, called the valence of ,

8 2)8
(1) v=val(w) = %ﬁ | k=,
where p is an ima.ginary cube root of unity, is invariant'®® under the general unitary
substitution. Dedekind’s v is —4/27 times C. Hermite’s'* a. Let

— C+ Dm) CD|_ _
v..—val<A+Bw s AB n,
where 4, B, C, D are integers without common divisor. Then v, ranges exactly over

the values

val(c-{;de))’

where a, ¢, d are integers = 0 and ad=n; moreover, if ¢ is the g.c.d. of @ and d, then
¢ ranges over those of the numbers 0, 1, 2, ..., a which are relatively prime to e.
Hence the number of distinct values of v, is

@) v=32 () =nmi(1+ ),

where p ranges over the distinet prime divisors of n.

126 Remark on Disq. Arith., in Gauss's Werke, II, 1876, 293-286; Untersuchungen iiber
Hohere Arithmetik, 1889, 686-688.

127 Gauss’s Werke, 11, 1876 301-303 Untersuchungen, 1889, 693-695.

127 Uber die Anzahl der Idea.l-cla.sen in der verschiedenen Ordnungen eines endlichen
. Korpers. Festschrift gur Saecularfeier des Geburstages von Carl Frederich Gauss,
Braunschweig, 1877 55 pp

128 Jour. fiir Math.,

120 Cf, H. J. 8. Smlth 1°° Re ﬁIBm Asoc 35, 1865, 330; Coll. Math. Papers, I, 299.

180 Cf, C. F. Gauss, Werke 1876, 386

181 Qeuvres, II, 1908, 68 (Hermite ).
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Dedekind discussed the equations whose roots are the v values of .

H. J. S. Smith?*2 called the totality of those indefinite forms which are equivalent
with respect to his normal substitution (Smith®® of Ch. I) a subaltern class. He
found that if o denotes 2 or 1, according as U is even or uneven in T*—NU?*=1, the
circles of each properly primitive class of determinant N are divided into 3o subaltern
classes which in sets of o satisfy the respective conditions

(A) a=c=1 (mod?); (B) a=0,c=1 (mod?); (C) a=1, ¢=0 (mod 2).

Since the circle [a, b, ¢] corresponds to both (a, b, ¢) and (—a, —b, —c), the
number of subaltern classes of properly primitive circles of determinant N is
H=3}ch(N). Thereis a similar relation for the improperly primitive circles.

Now w=2+1y, representing a point in the fundamental region 3, is inserted in

¢ (0) =3+ X +17, V¥(0)=3—-X—1Y,

where ¢*(w), y*(w) are Hermite’s*® symbols in elliptic function theory. Then if the
circle [a, b, ¢] satisfy (A), for example, the arcs within X of all and only circles
(completely) equivalent to [a, b, ¢] are transformed by the modular equation
F (%, A?) =0 of order N into a certain algebraic curve, an interlaced lemmiscatic
spiral. Hence all the circles of determinant N that satisfy (A) go over into a
modular curve consisting of 3H distinct algebraic branches. This is called by
F. Klein the Smith-curve.*®®

The number of improperly primitive subaltern classes of determinant N (not a
square) is just the number of branches of a modular curve which is derived as the
preceding from circles of determinant &, in which a=c¢=0 (mod 2).

F. Klein'* called Dedekind’s!?® v the absolute invariant J and, instead of v,
he wrote J’. The equation, II(J —J”) =0 is called the transformation equation of
order n. He gave an account of its Galois group, fundamental polygon, and Riemann
surface. Simplest forms of Galois resolvents are found for n=2, 3, 4, 5. For
example, the simplest resolvent for n=>5 is the icosahedron equation.

Define n(w) as a modular function if it is invariant under a subgroup of the group
of unitary substitutions (2 5). Then w, and w; are relatively equivalent if y(w,) =
n(e,). A subgroup (% 4) is said to be of grade (stufe) ¢ if

afB\_[ad
()= n
where a, b, ¢, d are constants. Klein ascribed the grade ¢ to any modular function
which is invariant under only (that is, belongs to) such a subgroup. The subgroup

aB\_/10
(5%8)=(8 2)mo2 0
is called the principad subgroup ; and it is found that the icosahedron irrationality
belongs to this subgroup if g=>5. This result for the case of n=5 is extended to all

183 Atti della R. Accad. Lincei, fis. math. nat. (3), 1, 1877, 134-149; Coll. Math. Papers, II,
71804, 224-239; Abstract, Transunti, (3), 1, 63-60.

138 Elliptische Modulfunctionen,?17 II, 1892, 167 and 205.

184 Math. Annalen, 14, 1879, 111-162.
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odd primes n. A modular function which belongs to the principal subgroup is called
a principal modular function.

If n is an odd prime, the simplest Galois resolvent is of order 3n(n*—1) and its
Riemann surface is equivalent to 4n(n?—1) triangles in the modular division of
the plane. These triangles are chosen so as to form a polygon ; and the surface of the
resolvent is formed from the polygon by joining the points in the boundary which
are relatively equivalent. The genus of the surface is

, p=vz(n—3) (n—5) (n+2).
Klein hereafter ascribes the p of the surface to 5 itself. Hence if & principal modular
function » has ¢=3 or 5 then p=0; but if ¢g=7, then p=38. It follows that if ¢
is an odd prime, J is a rational function of » if and only if g=3 or 5. It is found

similarly that if ¢g=2 or 4, J is a rational function of .
The modular equation of prime order n =5 and of grade 5 is written as

(1) I[7(w) —n(«")]1=0,

where 5(w) is the icosahedron function, and the n+1 relatively non-equivalent
representatives o’ are displayed in detail.

J. Gierster'®® wrote a set of eight class-number relations which he stated he had
found from the icosahedron equation (XKlein,’** (1)) by the method of L. Kro-
necker'®® and Smith.*®® For example,

33H (4n—kt)=®(n), n==1 (mod b),

where, as always hereafter, H(m) denotes the number of even classes of determinant
—m with the usual conventions®*; k, ranges over positive quadratic residues of 5
which are < V4n.

A combination of these eight relations gives

(A) SH(4n—k*)=®(n) +¥(n),
which may be expressed in terms of Kronecker’s®* original eight:
I(n)—II(m) or I(n) —84I(m) +3IV(m)—3V(m),

according as p is odd or even in n=_2%m, where m is odd.

T. Pepin'®” completed the solution of Gauss’* problem. He accomplished this by
finding the number of properly primitive classes of determinant S%-D which when
compounded with (S, 0, —D-8) reproduce that class. Similarly he found the ratio
between the number of properly and improperly primitive classes of the same
determinant.

F. Klein'* emphasized the importance of the study of the modular functions
(cf. Klein'®) which are invariants of subgroups of finite index (i. e., subgroups
whose substitutions are in (1, k) correspondence with those of the modular group)
and in particular those in which the subgroups are at once (a) congruence sub-

188 Gottingen Nach., 1879, 277-81; Math. Annalen, 17, 1880, 71-3.
186 Monatsber. Akad. Wiss. Berlin, 1875, 235.

187 Atti Accad. Pont. Nuovi Lincei, 33, 1879-80, 356-370.

138 Math. Annalen, 17, 1880, 62-70.
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groups, (b) invariant subgroups, and (c) of genus zero. In the last case, a (1, 1)
correspondence can be set up between the points of the fundamental polygon of the
sub-group in the o plane and the points of the complex plane by means of the equa-
tion J=f(n) of genus zero where 7(») is called a haupt modul. But if the genus
p is >0, n(») must be replaced by a system of modular functions M, (), M;3(w),
.... Klein and after him A. Hurwitz and J. Giester always chose M:(w) so that

awt B 5 gy=
My (228, a-py=1,

for all values of 1, is a linear combination of M,(»), M,(»),.... The representatives
o’ are (Aw+B)/D, with AD=n, 0 = B<D, B having no factor common to 4 and
D. The analogue of the vanishing of II[5(w) —5(»’)] in the modular equation®®*
for the case p=0, is for the case p>0 the coincidence of the values of M, (w),
M,(w), ... with those of M,(«’), M,(«’), ... respectively. This analogue of the
modular equation is called the modular correspondence and it is said to be grade q
if the M’s are of grade q.

J. Gierster'®® stated that all of F. Kronecker’s®* eight class-number relations are
obtainable as formulas of grades 2, 4, 8, 16. From F. Klein’s'*® correspondence of
order n and grade ¢>2, Gierster obtained r=3¢(q*—1) correspondences by means
of the unitary substitutions. He also considered the case where 4, B, D have a
common factor, i. e., the reducible correspondence. The number of coincidences of a
reducible correspondence at points o in the fundamental polygon'®** for g can be
determined arithmetically in terms of class-number and algebraically in terms of
the divisors of n. Ezxcluding the coincidences which occur at the vertices, in the
real axis, of the fundamental polygon, he gave briefly the chief material for the
arithmetical determination. This he'4®* made complete later.

If a given congruence subgroup @ is not invariant, Gierster indicated a method of
finding the number of coincidences of a correspondence for G in terms of the number
of coincidences of the r reducible correspondences for the largest invariant subgroup
under @ and hence in terms of a class-number aggregate (cf. Gierster'® for details).

He here stated (but later'! proved) a full set of class-number relations of grade 7
(failing to evaluate just one arithmetical function £(n) which occurs in several of
the relations). These relations for the case when n is relatively prime to 7 were
derived in detail later by Gierster'*® and A. Hurwitz'*? by different methods, Gierster
employing modular functions which belong to other than invariant congruence
subgroups.

A. Hurwitz'*® denoted by D any positive or negative integer which has no square
factor other than 1, and wrote

F(s,D) =1~ (~1)ie=» +] '12(9)

g 1 it D=1 (mod 4),

n

F(s, D)=% <D)—1; in all other cases,

n)n

189 Sjtzungsber. Miinchener Akad., 1880, 147-63; Math. Annalen, 17, 1880, 74-82.
140 Math. Annalen, 17, 1880, 68 (Klein 138),

141 Ibid., 22, 1883, 190-210 (Giester 148).

142 [bid., 25, 1885, 183-196 (Hurwitg 18¢),

143 Zeitschrift Math. Phys., 27, 1882, 86-101.
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where the summation extends over all integers n>0 prime to 2D. (Cf. Dirichlet,*’
(1).) He proved the following four theorems:
(I) The functions F(s, D) are everywhere one-valued functions of the complex

variable s.
(II) Every function F(s, D), except F(s, 1), has a finite value for every finite

value of s.
(III) For every finite value of s, the function F(s, 1) has a finite value except

when s=1. Then F(s, 1) becomes infinite in such a way that
lim [(s—1)#(s,1)]=1.
L g
(IV) If D>0,

F(1-s, D)=(%’;.>“ Pf:) VD cos jsn-F(s, D)

_ (<D "*_I_‘(_—;__>_F(s,D);
-2

T 1-s
r(152 )
it D<0,
F(l—s, D)-(_z"Df"isf_) V ZxDsin ysm-F(s, D)

-F(s, D),

=(—KD).-§ r(_%_+%>

=) p(5te L)

where k=1if D=1 (mod 4), k=4 in all other cases. These four results are extended
to D=D’-8? by the use of Dirichlet’s identity

D\ 1 D’ D’
E<nﬁ'>n‘ —2<n),7—11[1 (r)r‘]’
where n’ ranges over all positive integers prime to 2D’, and r ranges over all prime

numbers which are divisors of D’ but not of D (cf. Dirichlet, Zahlentheorie, § 100).
The memoir ends with an ingenious proof of the three following theorems:

If D>0 and D= 1, F(s, D) =0,

for $=0 and for all negative even integral values of s. If D<0, F(s, D) =0 for all
negative odd integral values of s.

F(s, D) .r< ;) ("D>"’(D>o), F(s, D)I‘(s';1> ( ';D )‘“(D<0)

are not altered in value when g is replaced by 1—s.

L. Kronecker'** proved six of his® eight classic relations by means of a formula for
the class-number of bilinear forms and a correspondence between classes of bilinear
forms and classes of quadratic forms (Kronecker'* of Ch. XVII).

Two quadratic forms are completely equivalent if and only if one is transformed
into the other by a unitary substitution congruent to the identity (mod 2). (For

14¢ Abhand. Akad. Wiss. Berlin, 1883, II, No. 2; Werke, II, 1897, 425-460.
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more details, see Kronecker'’® of Ch. I.) Whence 12G(n) and 12F(n) are the
number of classes and of odd classes respectively of determinant —n under this new
definition of equivalence. Two bilinear forms are likewise completely equivalent if
they are transformed into each other by cogredient substitutions of the above kind.
Then the number of representative bilinear forms Az:y:+ Bz:ys— C2:y:+Dz2ys
having a determinant A=AD+BC is 12(G(n) —F(n)) or 12G(n), according as
B+C is 0dd or even where n=—A+%(B+C)? is the determinant of the quadratic
form (4, $3(B—C), D). But since G(4n) —F(4n) =G(n), the number of classes
of bilinear forms of determinant A is

12§[G(4A—h=)—F(4A—h=)], —2VA<Kh<2VA.
And there are 123F(A=h?) classes of those bilinear forms of determinant 4, for

which at least one of the outer coefficients 4 and D is odd and the sum of the middle

coefficients B and C is even.
The class-number of bilinear forms is now obtained in terms of ®(A), ¥(A) and
X(A). This gives immediately such class-number relations as

3[G(4A-1) —F(4a—h")]=8(8) +¥(4) ;

and so (I)~(VI) of Kronecker.®* )

J. Gierster™® gave a serviceable introductory account of the modular equation
f(J’, J) =1 (J—J’) =0 and of the congruencial modular equation, and also of the
congruencial modular correspondence. He determined (p. 11) the location and
order of the branch-points of the Riemann surface of the transformed congruencial
modular function u(«’) as a function of u(w), for the case g a prime, n prime to g,
and g (o) belonging to the unitary sub-group,

(1) (39 =@ (modyg).

From the condition that o furnish a root of the reducible modular equation’*
f(J’, J) =0, namely, that integers a, b, c, d exist such that

—td g b=
(?) w—w+d,ad be=n,

he established (p. 17) a correspondence between the roots of f(J’, J) =0 and the
roots of certain quadratic equations Pw?+Qu+R=0 of all discriminants —A=
(d+a)*—4n<0. Whence the number of zeros of f(J’, J) in the fundamental
triangle is

SH(4n—«?), «=0,=x1, %2, ..., «*<4n

To study the infinities of f(J, J”) in the fundamental triangle, Gierster (after
Dedekind*?*) took o’= (4w+ B) /D, noted the initial terms in the expansion of J and
J’ in powers of g=e¢***, and found that

(J —J’)P/T=const. Jo/T
in the neighborhood of w=4c ; in which g is the greater of A and D, and T is the

148 Math. Annalen, 21, 1883, 1-50. Cf. Gierster 189; Klein-Fricke, Elliptische Modulfunc-
tionen, II, 160-235.
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gcd. of A and D. Whence, taking into account the number of values of B, he
arrived at the class-number relation

SH(4n—«?)=®(n)+¥(n), «=0, £1, =2, ....

The result also follows from the Chasles correspondence principle.}¢®

The irreducible correspondence'®® is now studied (p. 29) between ui(w) and
pi(w”), where the pi(w) are a system of functions invariant only of the subgroup
of unitary substitutions (1), and o’ ranges over a complete set of relatively non-
equivalent representatives

where n is prime to ¢, and a, b, ¢, d have fixed residues (mod g). Now o in the
fundamental polygon'** furnishes a finite coincidence if and only if there exist
integers a, b, ¢, d satisfying (2). Hence the condition is that » be the vanishing point
for some form Pw?+ Quw+ R, for which

(3) *P=x*¢, =*Q==x(d-a), ==R==7b (mod g).

For an arbitrary reduced form P,o®+ Qo0+ R,, let g be the number of equivalent
forms P,w?+Q,w+ R, which have roots in the fundamental polygon and which satisfy
both (3) and

(4) (Py, @1 BR,) (5 3) = (P, Qo Ry)-
In the particular case, b=c=0, d=a=Vn, we have a+d=2Vn, 0=P,=Q,=R,

=A=4n—(a+d)* (mod g); and (3) and (4) impose no condition on a, B, v, 8.
Hence (Klein**), g=4¢(g*—1) and the number of finite coincidences is

to(p-nam(2F),

where ! ranges over the positive and negative integers for which 4n—1I2 is positive
and divisible by ¢*, while H”(m) is the number of classes of forms of discriminant
—m which have no divisor which is a divisor of n. The number of finite coincidences
of the reducible correspondence of order n is therefore

s=g(g~1)3H (125,

where & = k,ya ranges over the positive integers = 2V/n which are = =2V n (mod ¢).
Gierster now finds for the reducible correspondence the number of infinite coinei-
dences in the fundamental polygon. For the above particular case, this is

O =2x+ (q’-l)Uvi’

where Us denotes the sum of the divisors of n which are <Vn and = +¢ (mod gq),
provided that, if Vn is an integer = =i (mod ¢) then 3V is to be added to the
sum. He evaluated o in many further cases.

146 M, Chasles, Comptes Rendus Paris, 58, 1864, 1776. A. Cayley, On the Correspondence of
%‘wo Po‘x;:Its ggilaa Curve, Proc. London Math. Soc., 1, 1865-6, Pt. VII; Coll. Math.
apers, VI, .
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For ¢’s such that'® p=0, the o’s are evaluated also by the principle of Chasles.
And so for g=3 and 5, twelve exhaustive class-number relations are written such as
(for our particular case above) :

3 _
g=>5, (g)=1, 6023(%#).—.@(11)-120‘,;.

J. Gierster'*” tabulated congruence sub-groups of prime grade g of the modular
group and calculated their genus (Klein*) for ¢ = 13.

Gierster'*® continued his*® investigation but now replaced his former invariant
subgroup of grade g by any one not invariant. There the total number of coincidences
in the correspondences was expressed as a sum o of class-numbers. Here the
analogues of the o’s are found to be mere linear combinations of the former o’s.
Employing congruence groups of grade 7, 11, 13 and genus'®* *** zero, he deduced
class-number relations'*® including for example

4SH (4n—x?) =®(n), ¢=", s=4V —n, (n/7)=—1
A. Berger'® employed an odd prime p, integers m, n and put
Un=(—1)V1=4[3Vn]-2[Vn]+1, 0=n<lp’
Sn= 3 Uiy 0= m<tp,

where [2] denotes the largest integer = 2. Various expressions for Sm are found.
For example, if p=1 (mod 4),

kZm/4 k
(1) Smmetz 30 (E),

k>(m—p)/4

where e= +1if m=0 (mod 4), e=—1if m=1, 2, or 3 (mod 4). Write

k<rp/8 k
L=_% (%)
E>(r—1p/8\ P
Let K, be the number of properly primitive classes of determinant —p, and K,

that of determinant —2p. A study of L, and Dirichlet’s?® formula (5) give

K,=2(L,+L,), K,=2(L,—L,), if p=1 (mod 4);
L1=Ls=}(K1+K2): L2=L4=L5=L7=i(K1—Ka)s if p=1 (mOd 8).

Wheilce, for p=1 (mod 8), he found by (1) such relations as

So=1+K1, Sp=—1+K1, S”=—1—K1,
8p=—1-K,, Sopp=1+E,+K,,  Sw-vp=—1-K,

Similar relations are obtained for p=3, 5, 7 (mod 8).

147 Math. Annalen, 22, 1883, 177-189.

148 Jbid., 180-210.

149 Notations of Gierster 145 (2), or more fully in Math. Ann., 22, 1883, 43-50. .

150 Nova Acta Reg. Soc. Sc. Upsaliensis, (3), 11, 1883, No. 7, 22 pp. For some details of
the proof of (1), see Fortschritte Math., 14, 1882, 143, where the denotation of (1) is

incorrectly given.



Caar. VI] BiNARY QuaDRATIC ForM Crass NUMBER. 133

Berger wrote Q(z) for the largest square = z and deduced eight theorems like
the following: Among the p squares

(2) Q(0), Q(4p), Q(8p), --., AR4(p—1)pt,

there are 3 (p+1+K,), 3(p+1), 3(p+1+K,), or 3(p+1—2K,) even numbers,
according as p=1, 3, 5, or 7 (mod 8). Since K, and K, are positive, the squares (2)
include at least 3(p+5), 3(p+1), 3(p+3), or 3(p—1) even numbers in the
respective cases.

C. Hermite!*! communicated to Stieltjes and Kronecker the fact that if F(D)
denotes the number of uneven classes of determinant — D, then (cf. Hermite,'** (2))

F(3)+F(")+...+F(4n—1)= 2E<"-V>+22E<_2:’+;323>

—v2—4v n—v’—2kv) .
+22E<—————2v+5 )+...+22E<—ﬁ2v+2k+1 ;

in which n—v?—2kv = v 4+-2k+1.

Hermite!®? stated Oct. 24, 1883, that if #(N) denotes the number of properly
primitive [he meant uneven] classes of determinant —N and ¢(n) =3(—1) ¢/,
where d ranges over all divisors < V7 of n, then

F(3) +F(11) +F(19) + ...+ F(n) =y¢(3) +¢(11) + ... +y¢(n)
+23y(R)E(3Vn—F) +2Sy (D E(FVn—1+1);

k=3,11,19, ..., n;1=7,15,23, ..., n—4.
T. J. Stieltjes'®® observed that this result is equivalent to

F(n)=y(n) +2y(n—4-12) + 2y (n—4-22) +2y(n—4-3%) +...;

and this is equivalent to an earlier result of J. Liouville, Jour. de Math., (2), %,
1862, 43—44. [For, by definition, Liouville’s p’(n) is Hermite’s y(n); see this
History, Vol. II, Ch. VII, 265, note 33a.]

Stieltjes'®t let F(n) denote generally the number of classes of determinant —n
with positive outer coefficients, but in case n==8k+ 3 with even forms excluded. Then
he found, when n=>5 (mod 8), that $#(n) is the number of solutions of n=2*+2y*
+R2% z, y, z each >0 and uneven. Consequently setting ¢(n) =%(2/d,)d, dd,=n,
he found that

F(n)+2F(n—8-1?) +2F(n—8-2*) +...=3¢(n), n=38 or 4 (mod 8);
F(n—2-1*)+F(n—2-3*) +F(n—2-5*)+...=3¢(n), n=>5 or 7 (mod 8).
On Nov. 15, 1883, Stieltjes!®® observed that the former of the last two theorems is
a corollary to Gauss, Disq. Arith., Art. 292. For ¢=1, 2, 3, 5 or 6, he found that

N . k.
3IF(8n+i)= g NI

n=1

151 Aug., 1883, Correspondance d’Hermite et Stieltjes, Paris, I, 1905, 26.
162 Correspondance d’Hermite et Stieltjes, Paris, I, 1905, 43.
188 Jbid., 45; Oct. 28, 1883.
164 Correspondance d’Hermite et Stieltjes, Paris, 1905, I, 50-52, Nov. 12, 1883.
188 Ibid., 52-54.
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asymptotically (cf. Gauss,* Disq. Arith., Art. 302, Mertens,'*” Gegenbauer,'®®
Lipschitz1°?).
Stieltjes,'® by the use of the two Kronecker'** formulas,

3P (4n+1)=0,(9)61(a),  8ZF(8n+3)g"1=6i(),
0
obtained the following three results: Let
®(n)=3(2/d")d, dd’=n; ¥(n)=3(-2/d),
whence 2¥(n) is the total number of representations of n by 2%+ 2y?; then
n=1 (mod 8), 3F(n—8r%)=4®(n)+3¥(n)
n=3,5 (mod 8), 3F(n—8r)=43(n)
n=3,5,17 (mod 8), SF(n—2s*)=38(n)+3¥(n), (s=1,3,5, ...).
Stieltjes'®? stated that he had deduced Liouville’s!*® class-number relation of 1869
and other similar formulas both by arithmetical methods and by the theory of elliptic
functions. For example, for N >0,
R (—1)¥e-VgF (4N —2s%) = (—1)WF-DZ (22— 242), $=1,3,5, ...,
summed for all integral solutions of 22+2y*=N. This he'*® later proved in detail.
For N>0,

r=0, x1, =2, ...

3(—1)¥e-0sF (16N —38%) =3 (a2 —3¢%), s=1,8, 5, ...,

summed for all integral solutions of different parity of 22+3y*=N. The method of
verifying this formula was indicated'®® later.
Stieltjes!® obtained from classic expansions the expansion

(1) 6(q)62(q)0,(q) =163(2*—9*)g=™", 2=1,8,5,7, ..., y=0, =2, =4, ....
But

(?) G(Q)ez(Q)as(Q) =2(q‘/‘+3q°/‘+5q"/‘+ R
and (cf. Hermite,® (7))
3) 63(q) =83F (8n+8) gien.

A comparison of (1), (2), (3) gives at once a Liouville'’® class-number relation.
Stieltjes added three new relations of the same type; e. g., for N=8k+1,

23 (—1)3-DHE-DgR (2N —5?) =3 (—1)¥(2*— 8¢?),

summed for all integral solutions of 2?4 8y*=AN in which 2>0 and uneven.
Stieltjes'®* stated, for the Kronecker® symbol F(n), that

() Fap)=[p+po+ = () (B ) IF ().

156 Correspondance d’Hermite et Stieltjes, Paris, I, 1805, 54, Nov. 24, 1883.

157 Comptes Rendus, Paris, 97, 1883, 1358-1359; Oeuvres, I, 1914, 324-5.

168 Correspondance d’Hermite et Stieltjes, Paris, I, 1905, 63, Nov. 27, 1883.

159 Ibid., 68-70, Dec. 8, 1883.

160 Comptes Rendus, Paris, 97, 1883, 1415-1418; Oeuvres, I, 1914, 326-8.

161 Correspondance d’ Hermite et Stieltjes, Paris, I, 1905, 81, 85-87, letter to Hermite,

Jan. 6, 1884.
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He gave'®? a proof depending on the fact that F(n)=p2k(n/d), where d ranges

over the odd square divisors of n; p=3% or 1, according as n is or is not an uneven

square; h(m) denotes the number of properly primitive classes of determinant —m.
Stieltjes'®? put

y(n)=3(-1)Vd  (dd=n); x(n)=3z,

where z ranges over the solutions of n=2?—2y2>0, 2>0, |y| <3z, and stated that,
when n is odd,

23 (—1)"F(n—2r") =(=1)®D2x(n), r=0, =1, +2,...;
23F (n—2r*) =29 (n) —x(n), r=0, =1, =2, ....

These and two similar formulas he was unable to deduce by equating coefficients of
powers of g in expansions. This was later done for formulas which include these as
special cases by Petr,?*® Humbert,?*® and Mordell.?*?

C. Hermite'®® imparted to Stieltjes in advance the outline of the deduction of
Hermite’s'®¢ formula (1).

Hermite,**¢ by the same study of the conditions on the coefficients of reduced forms
as he employed® in 1861, found that

03(q) =R43[(N) +2f(N)]g¥/*—16¢,

where (N) denotes the number of ambiguous, and f(N) the number of unambiguous,
even classes of determinant — N; while e=1 or 0, according as N is or is not the
treble of a square. For the case N=3 (mod 8) a comparison of this with his earlier
result®® 63(q) =83F(N)g"4, where F(N) is the number of uneven classes of —N,
gives at once the ratio between the number of classes of the two primitive orders
(cf. Gauss,* Disq. Arith., Art. 266, VI).

Kronecker’s'® formula (1) implies that

(1) ﬂ%ﬂ =4(§q~)§F(4n+2)qn+i=4§[F(2) +F(6)+. .. +F(4n+2)]q™.

But obviously
i(g) = [23 ¢ " =3f(8c+2) g%,
] 0

where f(n) denotes the number of solutions of z*+y*=n. Moreover,
6,(g) =1+ 2§qn’°
Therefore, in the identity

6(9)6:(q) _ 0’(4) (iq"')o.(z)
l1—g¢ q+2 -q

the first term of the right member is 2f(8c+2)¢**, summed for n=0, 1, 2, ...;

1682 Correspondance d’Henmte et Stieltjes, Paris, I, 1905, 82-85, Jan. 15, 1884.

168 Jbyd., I, 88-89, Feb. 28, 1884.

164 Bull. de I'Acad. desSc 8t. Petersburg, 29, 1884, 325-352; Acta Math., 5, 1884-5, 297-330;
Oeuvres, IV, 1917, 138-168.
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¢=0,1,2, ..., [#n]; the second term, by a lemma on the Legendre greatest-integer
symbol, is
23f(8¢+2)-[Vn—2c]-q*4,
summed for n=0,1,2, ...,¢=0,1,2, ..., [$(n—1)]. Hence a comparison with
(1) gives
n —
A[F(R)+F(6)+...+F(4n+2)]= Eof(8cl+2) +23f(8¢+2)-[Vn—2c].
6=

By the use of Jacobi’s expansion formula:
—q ‘e

Hermite found similarly other expressions for F(2)+F(6)+...+F(4n+2),
such as
(1) 2(_1)&(0-1).*_22(_1)}(0—1)[

\ 1+¢ 1 —s 1+ g%
A @=4Va 1L v L v -

4n+2—a’—b’]
4a ’

where g and b range over all odd positive integers satisfying
in+2—a>—02=0.
By means of two other formulas of Kronecker, Hermite evaluated similarly
F(1)+F()+...+F(4n+1), F(3)+F(11)+...+F(8n+3).

He announced without proof that
*) F3)+F(V)+...+F(4n+38) =23 [n+1—c’—2cc'J’

2c+2c’+1
¢>0, >0 and satisfying (c+1) (2¢+2¢+1) = n+1, counting half of each term
in which ¢’=0. '
T. J. Stieltjes'®® stated that by the theory of elliptic functions he obtained the
theorem: If d range over the odd divisors of n and
y(n) =3(~Dienden=3(Z8), y(0)=4,

then, for n=2 (mod 4), in Kronecker’s®* notation,
F(n) =33y (n—2r%) =3¢y(n—8r%), r=0, 1, =2, ...

Thence he verified his'®* earlier theorem (1) for the cases n=F%* and n=2k* by the
method used by Hurwitz in finding the number of decompositions of a square into
the sum of five squares (see this History, Vol. IT, 311).

A. Berger,'®® to evaluate Dirichlet’s'* series (2), namely,

= [A\1
=30t

165 Comptes Rendus, Paris, 98, 1884, 663-664; Oeuvres, 1, 1914, 360-1.
166 Nova Acta Regiae Soc. Sc. Upsaliensis, (3), 12, 1884-5, No. 7, 31 pp.
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A being a fundamental discriminant, started from Kronecker’s'™ identity (4a) in
the form

eAz—-l ( % ) e2Mkmi/(ed) = (V/A) (%)’

h=1
where e is the sign of A, and k>0. By separating the real from the imaginary and
by a study of quadratic residues and non-residues, he obtained

—4/2(AY . Rhkx A
(1) a<0, 3 (§)sin P = 3v=ac(3), k>0
Since (cf. Dirichlet'*)
“sinnu _ r—u

we get, by dividing (1) by ¥ and summing, Dirichlet’s*® formula (6) for A<0.
Similarly by the use of the identity

.U\ _ 3 cosnu
—log (2 sin 7) = “2,1 >
Berger obtained Dirichlet’s?® closed formula (8), for A>0.
To obtain Dirichlet’s®® second clesed form, Berger took, for A<O0 (cf. Dirichlet,

Zahlentheorie, § 89, ed. 4, p. 224)

o (A)1] =l 3 (A 1
V=51 [1 (p) p] T k§1(2k—1)2k—1’
where!” r=1—4(A/2), and p ranges over all odd positive primes. By means of (1),
this becomes

2 (A1 —9 h<=a/2/A\ ® 1 .
rk§1<7)7_722 hil (f)kilmsmzh(zk 1)w/A.

But (2) implies that the final factor is w/4. Hence we get Dirichlet’s® classic
formula (5). By parallel procedure, Berger obtained, for A>0,

(3) V= i n<§/z<%)log cot%z.
—(2 A b=l
2— (%) VA

Cf. Dirichlet,* (8).

A. Hurwitz!%? gave without proof!®® thirteen class-number relations of the 11th
grade which he had deduced by the method which he had used to obtain relations of
the 7th grade.’®®

For example,

63H (4n— %) =8 () +4,(n) +ha(m) —ta(m),  ({7)=1,
where x ranges over all positive integers whose square is =n (mod 11); while

167 Berichte Sichs. Gesells, Math-Phys. Classe, 36, 1884, 193-197. .

168 For proof, see F. Klein and R. Fricke, Vorlesungen iiber Elliptischen Functionen,?1?
Leipsig, 11, 1892, 663-664.

169 Math. Annalen,18¢ 25, 1885, 157-196.
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¥, (n) =43z, where z ranges over those solutions of 4n=2%+11y? in which z and y
are not 0, and (z/11) =—1;

¥:(n) =3[6Z (n) —12®(n)],  ¢s(n) =3[3Z,(n) —Z(n)],
in which Z (n) denotes the number of solutions of 4n=2?+ 11y%+ 2%+ 11u? for which
z+y is even; Z,(n), the number for which one of z, 2, z—2, +2 is divisible by 11.

By eliminating y, and y, from his set, Hurwitz obtained a new set which he showed
to include J. Gierster’s'” class-number relations of grade 11.

L. Kronecker,»™ unlike Gauss, studied quadratic forms az*+bzy+ cy® in which b
may be even or uneven. He defined primitive forms as those in which a, b, ¢ have
no common factor. He denoted by K (D) the number of primitive classes of dis-
criminant D=5%—4ac. He put

a0=5(7)i- (3)=(3)(%)

if h=29h’, h’ uneven, in which the symbols of the last right member are the Jacobi-

Legendre signs.
Dirichlet’s?® fundamental formula (2) is specialized as follows:
Q’) (2 - o
(1) ‘r‘h,zk<h k)F(hk)—a,f.o mz,n<ﬂb)F(amf+bmn+cnz)’

where h, k range over all positive integers; m, n over all integers not both zero;
a, b, ¢ over the coefficients of a system of representative forms (a, b, ¢) of the primi-
tive classes of the discriminant D=2D,-Q? (D, being fundamental) ; a>0 is relatively
prime to Q; and b and ¢ are divisible by all the prime divisors of Q; F(z) is any
function for which the series in each member is convergent.

By Dirichlet’s methods (Zahlentheorie, Arts. 93-98) are obtained the following

results:

_ 2 . _K(D) T+UVD
=T 0 H(D)= L 3
These are combined into one formula
_ dz
H(D)=K(D)| %5,

where T, U denote that fundamental solution of 7*— DU?*=1 or 4 for which T/U
is the greater. This is equivalent to

(3) an) =k g) log (D), E(D)= % (T+UVD), r=1or 2.
But (cf. Dirichlet, Zahlentheorie, Art. 100),

H(D):H(Do)n(l—(%’) 7;_)

170 Math. Annalen,¢8 22, 1883, 203-206.
171 Sjtzungsber, Akad. Wiss. Berlin, 1885, II, 768-780.
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g ranging over the prime divisors of Q. Hence,

K(D) _ D,\ 1 \log E(D,)
4 __g_._ n<{1— __g)_ o)
@ oy =0 (3) e e 5 )
In the light of the identity (p. 780)

D 1 /D

4 Do) = 1 5(Do)grramiron ;=1,3,5, ... -1;
(42) (%) \/Dof<k>e , k=1,8,5, ..., 2|Dy|—1; r>0,
(2) implies

_ v Rt /D,
o KDy =53 2 (F)k De<o,

Dy—1
K (D,) log E(D,) = — 1,21 (pl?o) log(1—e**4/Ds), D,>0.

H. Weber'" and J. de Séguier'’® have modified the above identity (4a) so as to
be true also for Do=0 (mod 4), which is not the case in Kronecker’s form of it.
De Séguier has given the deduction in full of (5) and has shown that (5,) holds
also for Dy<<0. Dirichlet'’* at this point needed to treat eight cases instead of
Kronecker’s two and de Séguier’s one.

Kronecker'™ had defined the function 6({, ») by

0(8, w) =ZetCrotbi-mmi = +1 +3 x5 ...,
»
and the function A by

_ . i 0(o+705, 0,)0(0c—103, 0g)
= 2) T (W +wy) TS, 1y 1
A(o, 7, 0y, 0y) = (4n%)de” e [7(0, )@ (0, w) ¥ °

in which o, r are arbitrary complex numbers; o,, v, are any complex numbers such
that o,¢ and w,¢ have negative real parts. He'"® found that if , and —w, are the

roots of a+bw+cw*=0, where b?—4ac= —A is a negative discriminant, then

a2( moinT)wi

- VA,

(6) log A(o, 7, 0y, ) = “om },1:.1 'E” (am®+bmn+on?)
and therefore A is a class invariant. Relation (6) was afterward developed by
Kronecker*’” into what J. de Séguier’” has called Kronecker’s second fundamental
formula.

For D,, D, two arbitrary conjugate divisors of D=D, - Dy=D, - Q* (1) is found
to imply what J. de Séguier'”™ has called Kronecker’s first fundamental formula,
namely,8°

5 500

T () 2. immsen

178 Gétting. Nachr., 1893, 51-52.
178 Formes quadratiques et multiplication complexe,22¢ Berlin, 1894, 32.

174 Zghlentheorie, Art. 105, ed. 4, 1894, 274-5.
s ?Wr. Akad. Wiss. Berlin, 1883, I, 497-498.

177 Sitzungsber. Akad. Wiss. Berlin, 1889, I, 134, formula (16); 205, formula (18).318
178 Formes quadratiques et multiplication complexe, 1894, 218, formula (3).226

179 Jbid., 133, formula (6).226

180 T,, Kronecker, Sitsungsber. Akad. Wiss. Berlin, 1885, TI, 779.

10
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with ranges of summation as in (1), while 2am/n+b = U/T and n>0,if D is >0;
A is an arbitrary number relatively prime to 2D and representable by (a, b, ¢). An
elegant demonstration has been given by H. Weber.!®!

Take Q=1, D, <0, D,>0, F(z) =2'*. When (6) is applied to the right member,
the result, when p=0, is

) ’;/A H(D,)H(D,)= 3 (21> log c[6'(0, ©,)6"(0, ;) ]}, A=—D.
T a,bo\@
This formula refers the problem of the class-number of a positive discriminant to
that of a negative discriminant. For the purposes of calculation, this formula has

been improved by J. de Séguier.2%2
L. Kronecker*®® considered solutions (U V) of U?+DV?=4p, where p=1 (mod

D), D a prime=4n+3>0. If 2#=1,a?=1,25%1,a5=1, and ¢ is a primitive root
of p, then

I (z+a°2? +a%2 + ... +a®Po9”*) =ju+ vV - D,

a

where a ranges over the incongruent quadratic residues of D, and u and v are integers.
Whence finally he stated that U and V are determined from

u+vV=D _(U+VV=D )"’“’“
u—vV =D (U VvV -— ’
Cf. Dirichlet’s®® formula (6).

A. Hurwitz'®* stated that his'®®* modular equations of the 8th grade®* yield those
class-number relations which L. Kronecker'** had given in Monatsber., Berlin, 1875,
230-233. He modified Gierster’s'*® deduction of the class-number relation of the
first grade by showing that a modular function f(J, J’) has as many poles as zeros
in the fundamental polygon.

For genus'®® p>0, Hurwitz employed a system of normalized integrals j,(w),
j2(®), ..., jp(w) of the first kind on the Riemann surface formed from the funda-
mental polygon for the largest invariant sub-group of grade g. For arbitrary con-
stants e, the 6 functions?®® of j, have the property

0L+ (T (@) —er]=6[jr(o) —erlet, b= 3 2 (jr(w) —er) +C,

where T is an arbitrary unit substitution = (;1) (mod q) ; while ¢,, ¢,, ¢;, ..., &5, Ct
depend only on 7. Constants cr are 8o chosen that

6Lie(0) =7+ (@) — e 1 =07 (0) = jr (o) +er],
and =0 when and only when the zero regarded as a value of w(and Q) is relatively

181 Reproduced by de Séguier, Formes quadratiques, 332-334.

182 Formes quadratiques et multiplication complexe, Berlin, 1894, 314, (25).

183 thugetmlehrte Angeigen; Nachrichten Konigl. Gesells. st 1885, 368-370, letter
o Dirichle

18¢ Math, Annalen, 25, 18853ég7-196

188 Gottingen Nacfu'
188 Cf. B. Riemann: Jour. fiir Math., 65, 1866, 120; Werke, 1892, 105; QOeuvres, 1898, Mém.

)}%Imw C. Neumann, Theorie der Abel’schen Integra.le, Lelpmg, 1884, Chaps X1,
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equivalent to Q, w;, wy, ..., wp, (80d ©, wp, wp,y, « .., Wp o), Where o, @y, ..., wyp_g
are constants chosen almost®” arbitrarily ; moreover, that zero is of the first order.

The transformations R, (w), B,(w), ... are a system of representative substitu-
tions?®® of order n and are

= 240 (mod g),

where a, b, ¢, d are fixed for all R’s.
Consider the function
P (w) =I‘I0[ir(w) —jr(Bi(w)) —ecrl,

where if n is a square, we omit the representative

= V2% (mod g),

which is relatively*®* equivalent to w. Aside from the zero values which are due to the
choice of w,, w,, ..., wyp_,, and aside from the rational points w, the theory of the
zerog'®® of a 6-function shows that, since ®(w) is reproduced except for a finite
exponential factor under the substitution 7'(w), ®(») vanishes in the fundamental
polygon as many times as there are identities

-—-a’w(p+b’ (7 [ YV a,b’ =<ab
Wo = Cog+d"’ a’'d’—b'c’=n, <0’d’)— cd)(mod 9.

From this point Hurwitz treats the 6-functions as Gierster'*® had treated the
factors »(w) —n(w’) of the modular equation and his determination of Gierster’s o
differs only in details from Gierster’s determination.

To complete Gierster’s nine class-number relations'® of the 7th grade for n5%£0
(mod 7) and without recourse to non-invariant subgroups, Hurwitz, after F. Klein,?

ut
P 2y(0) =3 (—1)7ghI@+D481 5 () =3(—1)7ghlT@r+D+117)
2, (0) =3 (—1)7gdl7@+D+21%,

Three normalized integrals of the first kind and of grade 7 are
1 [e d .
I(0)=— 7 [(28(0lq) Uz ¥elm) gomrr, r=1,2,4;

summed for values of m=r (mod 7), where necessarily y,(m) =43a, the summation
extending over all positive and negative integer solutions a, 8 of 4m=a%+ 782,
m=r (mod ?), (a/7)=1. Now I,(w) has the property

t(Enl) I.(Ri(w)) =const., or ¢ (n)I,(S(w)) +const.,

according as (n/7) = —1 or +1, while
§(o) = 2%L (mod 7),

187 Cf, H. Poincaré and E. Picard, Comptes Rendus, Paris, 97, 1883, 1284,
188 F, Klein, Math. Annalen, 14, 1879 161.

189 B, Rlemann, Jour, fiir Math 65, 1866 161-172; Werke, 1892, 212-224.
190 Math. Annalen, 17, 1880, 82; 22 1883 201-202.

191 Ibid., 17, 1880, 569,
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and y(n)=43q, the summation extending over all positive and negative integer
solutions a, B8 of 4n=a?+7B?% (a/7)=1. Let this property of the integrals I, be
possessed by the integrals j,, 7,, j,. Hurwitz put

*(n) o .
®(o,0) = I 0[fr () =jr(Bi(w)) —or],

vt o) Ol () =ir(S(0)) —e] ¥, i€ (/1) =1,
(o', 0) = 1 , it (n/7)=-1,

o, 0)=®(o’,0) ¥(o, 0 o, 0)= o', w) ;
Vo) =0, ) ¥(W),  Foho)= jrblliel

where ws, w, are arbitrary fixed values of » with positive imaginary parts. Then
F(o’, ») is invariant under T (o’) and hence as a function of » and of «’ is.an
algebraic function belongs to the Riemann surface of the 7th grade. F(o’, 0)=0
expresses algebraically the modular correspondence®? of grade ¢ and order .

F(o’, ) is an algebraic function which belongs to the surface and has as many
zeros as poles in the fundamental polygon. Hence

1 o—k-¢(n) =2®(n) =2y (n) if (33) 7= ("2,

where k is the number of zeros of 6[jr(w) —jr(8(w))—cr] in the fundamental
polygon, and o has the value given by Gierster.!4
Similarly

) 0=28(n) —6y(n) +1, if (23)=(y79),
where n=4 or 0 according as n is or is not a square.
From (1) and (2) and the relation*®

2T+ Uyt U) =0(m) —4(n),  p=y/n(%),

Gierster’s'®® class-number relations of grade 7 follow at once; for, Gierster’s'®® ¢(n)
is Hurwitz’s —2y(n).

A. Hurwitz** generalized completely his*®* deduction of the class-number relations
of grade 7 to grade ¢, where ¢ is a prime >5; and showed that the right member of
these relations is 2®(n) plus a simple linear combination of coefficients y(n) which
occur in an expansion of Abelian integrals of the first kind and of grade ¢. That
is, if o(n) be determined in terms of class-number as by Gierster'¢® and Hurwitz, %

o(n) —2®(n) —n=hy,(n) +hpo(n) + . .. +huipu (n),

where p=2(p—1) or 0 accoi'ding a8 n is or is not a square; and h,, k,, ..., h, are
independent of n. Klein and Fricke®” have since shown for ¢="7, 11, how the A’s
may be simply evaluated when the y’s are known.

192 Cf, A. Hurwits, Gottingen Nachr., 1883, 359.
198 Math. Annalen, 22, 1883, 199-203 (Gierster 148),
194 Berichte Konigl. Sachs. Gesells., Leipzig, 37, 1885, 222-240.



Caar. VI BiNARY QUaDRATIO ForM Crass NUMBER. 143

E. Pfeiffer'®® wrote H(n) for the number of classes of forms of negative determi-
nant —n, and sharpened Merten’s’!” asymptotic expression for the sum ZH(n)
to the equivalent of

2 H(n)-— wzi— - +0(zl+e),

n=1

where the order'*” only of the last term is indicated and e is a small positive quantity.
Pfeiffer, in a discussion which lacks rigor, indicated a method of proof (see Landau®*®
and Hermite***).

L. Gegenbauer'®® denoted by f(n) the number of representations of n as the sum
of two squares, and deduced from four of Kronecker’s formulas like*** (1) four
formulas similar to and including the following:

n vn]
12 3 B(@)=f,(n) +2 X fo(n—2),
where®* A
r tve) -
E(n)=2F(n) —G(n), f.(r) =x§1f(m) = E__o[\/r—x“ ].
His earlier result®’

[\Im/a]

[\/m —az

transforms this into
2 E(z) =}rn®2+0(n).

(For the notation O, see F. Mertens.’?”) The other analogous results are

lim 3 F(4s+a)/m¥=4n,  lim goF(8z+3) /n=3rV/3,
n=wo 2z=0 n=w I=
where a=1 or 2. Hence the asymptotic median number in the three cases is 4=V,
irV'n, #Vn/2. These four results combined with those of Gauss!®® and Mertens!!?
give the asymptotic median number of odd classes as
-1 1 1 1 1
an{ﬁ-l-Wg)’}, f(3)51+‘2—3+§+1—3+-..

Gegenbauer®® derived from four of Kronecker’s?*® and four of Hurwitz’s*?
formulas, twelve class-number relations with more elegance than he?*® or Hermite!®*
had derived three of the same formulas. For example, from the following formula
of Hurwitz,?°?

¢ 3 F(8n+1)g™t=6,(9)03(¢%),
n=

195 Jphresbericht der Pfeiffer’schen Lehr-und Erziehungs-Anstalt, Jena, 1885-1886, 1-21.
196 ?ét:iungsber Akad. Wiss. Wien, Math-Natur., 92, II, 1885, 1307-1316.

197

198 Digq, Arith.¢ Art. 302; Werke, II, 1876, 284

109 Sxtmngsber " Akad. Wiss. Wien., Math -Natur 93, II, 1886, 54-61.

200 Monatsber. Akad. Wiss. Berlin,12¢ 1875, 229
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it follows that 4F(8n+1) is the number of integral (positive, negative or zero)
solutions of
8n+1=82%+48y*4 (R2—1)2
Put 2®+y*>=Fk and solve for z. For a fixed k, the number of integer values of z as n
ranges-from 1 to N is therefore
[3V8N+1-8k+13].

Hence

2¢%0F(8z+ 1)= %of(z) [4VERTT=87+1],

where f(z) denotes the number of representations of z as the sum of two squares.
The symbol f(z) is decomposed so that the last formula becomes

3 F(82+1)=3xV2n%2+0(n),
z=0

with O as in Mertens.?'” As in the previous case,’®® Gegenbauer now finds that the
asymptotic median number of odd classes of the determinant — (8n+1), ¢=1, 2, 3,
5, or 6 is #Vn/2.

Gegenbauer?** without giving proofs supplemented his earlier list'®® of 12 class-
number relations with 20 others which are easily deduced by processes analogous to
those used before'®® and which include the following three types:

%OF(S“’”) [3VBrFi—8z+4]= '_i°¢1(2z+1),

in which [presumably] y,(n) denotes the number of representations of 4n as the
sum of four uneven squares, where the order of terms is regarded, but (—a)? is
regarded as the same as (+a)Z.

S P(162+14) =2 3 p(8c+5)[3VIn+1—4+1],

Z=( z=0
p(m)=3(—2/d,), d, ranging over the odd divisors of n.

— 2 -
i F(8z+6)=22(—1)ﬂ“1+42 (__1),_,[2(11 2y +2y) z2+z]’
z=0 v v,z 83/-4

y=1;251; -4y +4y—22+2=0.

A. Hurwitz**? employed four formulas of Kronecker**® all of the same type and
including
(1) 43F (4n+2)g"=g01(9) 6, (q),
) 43F (4n+1) " =3q740, (¢h) 63 (g).
He enlarged the list to 12 such formulas by simple methods, for example by replacing
¢ by —gin (1), adding the result to (1), and then using the relation

03(q) =20,(g*)65(q%).
201 Sitzungsber. Akad. Wiss. Wien, Math-Natur., 93, II, 1886, 288-290.

202 Jour. fiir. Math., 99, 1886, 185-168; letter to Kroneci:er, 1885.
208 Monatsber. Akad. Wiss. Berlin,12¢ 1875, 229-230.
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The result in this case is
(5) R3F(8n+2)g"=¢'0,(9)0:(q)0;(q?).

Seven class-number relations are obtained similarly to the following. We multiply
(2) by 6,(iqt). The relation
6,(ig)6: (¢°) =6i (iq)

40, (ig?) -3F (4n+1) -q*¥=0,(q) 6] (ig}) ;
and the equating of coefficients here gives

2(-1)"‘"”"1"("' —h ) 10,(m), m=3 (mod 8)

in which % is uneven and positive, Q,(m)=32(—2/»)v, where v ranges over all
positive uneven numbers satisfying m =v*+2n?.

C. Hermite*** represented the totality of reduced unambiguous quadratic forms
of negative determinant and positive middle coefficient by (2s+r, s, 28+r+1),
r,8,t=1,2,3 .... Hencein

now gives

s-_.ggq(zur)(zunn—.'

the coefficient of ¢¥ is the number of unambiguous classes of determinant —N. And
if we put n==R2s+r, we get

n > _
1-¢""  s=1,2,3,..., ["'21].
The number of ambiguous forms (4, 0, C) s A =C, of determinant —N is the
number of factorizations N=n(n+-¢), where n is a positive integer and ¢= 0. This
implies that the number of ambiguous forms of this type is the coefficient of ¢¥ in
the doubly infinite sum
— (n+d) — 9“’ .
8, n.ziq” = 1—q
Similarly the number of ambiguous reduced forms of the type (2B, B, C) and
(4, B, A) of determinant — N is the coefficient of ¢¥ in the expansion of

2.2
8,=3 0" =123, ....

1—g¢*’
This gives?°®
_ n=1,23,...;
8,+8,=37 qu +377 q"" m=1,3,5,7, ....
Hence, if H(n) denotes the number of classes of determinant —n,
ndin-g?
3H (n)q"= z—i— +3 7 g q,,, +23 91__q,

20¢ Bull, des sc. math., 10, I, 1888, 23-30; Oeuvres, IV, 1917, 215-222.
206 Cf, C.G.J. Jacobl, Fundamenta Nova, 1829, Art. 65 p. 187 Werke, 1, 1881, 239 (trans-

formation of C. Clausen).



146 HisTorY oF THR THEORY OF NUMBERS. [Crar. V1

We divide each member by 1—g and expand according to increasing powers of g¢.
Then the coefficient of ¢¥ in the left member is U=H(1)+H(2)+...+H(N).

By the use of the identity?*®
1 __gi__._zE N+a b g
» (1-9)(1-¢) < a )q

the coefficient of ¢¥ in the second member becomes
U=3E (N—"‘"——’L) +2E'(N — ) +25F (ZU-S;."JE’;).

Neglecting quantities of the order of E(VN)=v, we get
2E<N+ﬂ—-n2>=zN+ﬂ—n’ =N(1+§+§+---+l>— —y
n n v 2
=N(31logN+C)—3N;

N—n?\_N—n*_N 1\ s—v
EE( = >..2 = 2(1+i+&+...+v>— 4
=N (3 log N+C) —1N,

where C is the Euler constant.®® In short,
U=3Nlog N+2x N +&=n,

n

Geometric°? considerations give the approximate value of the last term as

2 (25 ety 2450,

where the limits of integration are given by the relations y>R2z, N+a*—y*>0.

Hence for N very great, U=34=N!. Cf. Pfeiffer,’®® Landau.**
L. Gegenbauer,*® employing the same notation as had G. L. Dirichlet**® and the

same restrictions, obtained by new methods the results of Dirichlet, that the mean
number of representations of a single positive integer by a system of representative
forms of fundamental discriminant A is
ri(%)%, if A20; 20K (A)/V =4, if <0,

where K (A) is the number of classes of negative discriminant A. For example, in
the first case, the identity

3 [2](0)= 00 =5010G)

zil[z:I(z)—z'i_l (:cy>< El‘ r)3\a)
in which, presumably, e(z) =0 or 1 according a8 <1 or >1; and the last summation
extends over divisors of r, implies that

ia(@)=3E16E)

206 C, Hermite, Acta Math., 5, 1884-5, 311; Oeuvres, IV, 1917, 162.
207 Cf. R. prschtts 102 Sltzu%d)er Akad. Wiss. Berlin, 1865 174-175.
208 Sitgungsber. Akad. Wiss ien, 96, II, 1887, 476-488,

209 Zahlentheorie, Braunchweig, 1894, 229 Dirichlet.19




Caar. VI BinArRY QUADRATIC ForM Crass NUMBER. ' 147

where d ranges over the divisors of z and 7% (A/d) is Dirichlet’s®® expression (2) for
the number of representations of z by a system of representative forms of determi-
nant A. Hence

il A 2/A\1 ® A1 val /A n nl/A
5a()=mi ()2 m 3 )T 3 [21)

z=1 z=[Val+l z=1
where 0 = ¢,<{1, and each of the last three terms remains finite when n becomes
infinite.
Gegenbauer?'® defined a certain function by
a)/aAa
xe(m)=m3)(2),

in which (A/d) is the Jacobi-Legendre symbol, d ranges over the divisors of n, and
#(z) is the Moebius function (this History, Vol. I, Ch. XIX). Then

z§=1 [%] <%)xk(z) =z§1<%>z*,

if A is prime to 1,2, 3, ..., n. This relation combined with Kronecker’s'" formulas
(2) and (5) gives the number of classes of & prime discriminant A. That is,
_ _LIAI-I |A|—1 (A)
E(2)=12x e [ z ] z Jx(2)s
Lt WeIrjajy Ay
k(=)= 2(2— (%)) zil [ 23] <$)x°(z)'
For example, if A=—Y, x(1)=1, x(2) =0, x(3)=2, x.(1)=1, x:(2)=1,

x1(8) =4, x:(4) =2, x,(5) =6, x,(6) =4. Therefore K(—7)=1.
C. Hermite*'* employed an earlier result®®

(a%+20)-0? n a=13,5,...
z :ﬁl__T =3F(n)q3s, n=4m-1, { v a—l')’

6=0, £1, £2, ... *(T

for a=2¢’+1, divided by g%, then applied his*** identity (1), and equated coefficients
of ¢™* and obtained

ALO

n m—dd’
3 por-n=n8(375),
where d, d’ are of the same parity; &’ = d; m = (d+1) (d’+1) ; and the coefficient
2 is to be replaced by 1 if d=d’. But when in mathematical induction m—1 is
replaced by m, the right member of the last equation is increased by double the
number of solutions of
m—dd’ _ -1= @) — (2c—1)*

7 v o e dm—1=4(c+d) (c+d’) —(2ec—1)3,
in which ¢=1, 2, ..., m; d=d’ (mod ), d’>d; while, if d’=d, each solution is
counted §. This gives the value of F/(4m—1).

210 Sitzungaber. Akad. Wiss. Wien (Math.), 96, II, 1887, 807-613.
211 Jour, fiir Math., 100, 1887, 51-85; Oeuvres, IV, 1917, 223-239.
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Hermite equated the coefficients of certain powers of g in two expansions of H; (0)
and found that, for m=3 (mod 8), the number of odd classes of the negative deter-
minant —m is S®(m—5b2?), in which =0, =2, =4, ...; b’*<m; and ®(m)=
3(—1)¥@+D, ¢’ ranging over the divisors of m which are >Vm and =3 (mod 4).

P. Nazimow?!? gave an account of the use® 45 of modular equations, and of
Hermite’s® method of equating coefficients in the theta-function expansions, to obtain

class-number relations.
X. Stouff*?® of Ch. I extended Dirichlet’s'® determination of the class-number

when the quadratic forms and the definition of equivalence both relate to a fixed set

of integers called modules.
L. Kronecker®'® let az®+bzy+ cy® be a representative form of negative discrimi-

nant D= —A=b?—4ac; put a=a, VA and (Cf. Kronecker'?®)

A(0, 0, w3, w3) = %"2 (y(g#‘”:) 0’((2)”"’2))

-—b A b A

He obtained the fundamental formula

1.1 (VB™ ] 1og 4r420—log A"
hm[- o 3 e )W] log 4n*+2C —log A’ (0, 0, vy, w,),
where C is a constant independent of D, a, b, c. When each member of this identity
is summed for the K (D,) representative forms of fundamental discriminant D,,
the result enables Kronecker'” to evaluate the ratio H’(—A4,)/H(—4,) in terms
of K(D,), where

meargh () mem i)

This is called Kronecker’s limit ratio.
H. Weber®** denoted by o the principal root of a reduced quadratic form of
determinant —m, and denoted by j(w) the product of F. Klein’s'®* class-invariant J

by 1728. The class equation
(1) O[u—j(e)]=0,
in which » ranges over the principal roots of a representative system of primitive
quadratic forms of determinant —m, he expressed by
(2) Hm(u)=0, or (3) Hu(u)=0,

according as the forms are of proper or improper order. By applying transformations
of the second order to , he set up a correspondence between the roots of (2) and (3).
This correspondence is 1 to 1, if m= —1 (mod 8); 3 to 1, if m=3 (mod 8), except
when m=3. Whence he obtained Dirichlet’s®® ratio between & (D) and &’(D), D<O0.

212 On the applications of the theory of elliptic functions to the theory of numbers, 1885,
(Russian). Summary in Annales 8c. de 'Ecole Norm. 8Sup., (3), 5, 1888, 23-48, 147-
176 (Frmch)

218 Sitgungsber. Akad. Berlin, 1889, I, 1

214 Elliptische Functionen und Algebraxsche Zahlen, 1891, 338-344.
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Weber?® gave the name (cf. Dedekind’s**® valence equation (1)) invariant equa-
tton to

. o c+do _
®) i) i (ZEe2)] =o,
of order ad —bc=n, in which the g.c.d. of a, b, ¢, d is 1, and
o= Ctdo
a+bo

is a complete set of non-equivalent representatives. He observed that, if » furnishes
a root §(w) of (4), then w must be the principal root of a quadratic form

(5) Av®+Bw+C, B*—44C=D,
where, for a positive integer z,
b=Az, c=—0Cz, a—d=Bz;

and if we set a+d=y, we must have

(6) 4n=y*— Dz,
Conversely, for each of the & representations of — D in the form
—D= éﬁz:z}L’ ,

there are Cl(D) =h’(D) forms (5) each of whose principal roots furnishes one root
of (4). Hence (4) can be written (cf. Weber’s Algebra, III, 1908, 421)

(7) CHp*(u)HF(u)...=0, u=j(w).
If j(w) is a root of (4), expansion of the left member in powers of g=e"* shows
that the degree of (4) in j(w) is

232 ¢(e) +9(Vm) or 22 2 4(0),

according as n is or is not a square (cf. Dedekind,*® (2)) where 3> Vn is a
divisor of n. The degree of (7) in j(w) is 3h’(D%)k:, summed for ¢=1, 2, 3, ....

For brevity, (4) is written Fn(u, u) =0. The simplest case of deducing a class-
number relation of L. Kronecker’s type*® is presented by equating two valuations of
the highest degree of #=j(») in the reducible invariant equation

Fuy(u, %) Fo,(u, u) - Fo,(u, u)...=0,

where ns, 71, 73, ... are derived from n in every possible way by removing square
divisors including 1, but excluding n when n is square. The relation is

E(n)+2K(n—1)+2K(n—4)+...+2K’(4n—1) + 2K’ (4n—9) +...
=230 or 232+ Vn+i,

according a8 n is not or is a square. Here K(m) denotes the number of classes of

215 Elliptische Functionen und Algebraische Zahlen, 1891, 393-401.
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determinant —m, and K’(m) denotes the number of classes of determinant —m
derived from improperly primitive classes. Finally, 39 is the sum of the divisors

of n which are > Vn.
J. Hacks®**® considered the negative prime determinant —g, where g=4n+3;

he put
s=S7[2), 257,

e=1 LG s=1 L ¢

and found that the number of properly primitive classes of determinant —gq is
h=3%(g—1) —R8’+48. This is given the two following modified forms
p=S 2 S (cnvigs), =25t 42E R (-
1 =1 1
and finally is reduced to Dirichlet’s?® formula (6).

F. Klein and R. Fricke?'” reproduced the theory of modular functions of Dede-
kind**® and Klein,'** **¢ also (Vol. II, pp. 160-235, 519-666) the application by
Gierster, 5% 189 145, 147 Hyrwitz,197 184, 19 gnd Weber?!¢ of that theory to the deduc-
tion of class-number relations of negative determinants. They gave (Vol. II, p. 234)
the relations of grade 3 which come from the tetrahedron equation and (Vol. II, pp.
231-233) the relations of grade 5 that come from the icosahedron equation. Their
formulas (1,) p. 231, and (7), p. 233, should all have their right members divided
by 2. They reproduced (Vol. IL, pp. 165-73, 204-7) the theory of the relation between
modular equations and Smith’s**? reduced forms of positive determinant.

In connection with Hurwitz’s'* general class-number relation of prime grade
g>b and relatively prime to n, Klein and Fricke constructed a table of values of y;
and y; for n = 43. A sample of the table follows (p. 616) :

nl ¥ ¥ s n X1 Xz
1{-1 1 O 2 0 -1

3] 1 1-1 (|6 1 O
4] 2 0 1 |J|7] -1 o0

For ¢g=11 and (n/q) = —1, Hurwitz’s first general formula becomes

6 3 H(4n—«*)=28(n)+1tx1+taxs
Vs

where x is positive or negative and x*=(3V —n)?® (mod g): Hence, by the table
for n=2, n=6,

12H(4) =6—t,  12H(23) =24+1,.

But it is known that H(4) =4; H(23) =3. Therefore ¢,=12; {,=0.

G. B. Mathews*!® reproduced in outline the researches of G. L. Dirichlet®® on the
number of properly primitive classes of a given determinant; and those of Lip-
schitz**® on the ratio of the numbers of classes of different orders of the same
determinant.

216 Acta Math.. 14, 1890-1, 321-328.
217 Elliptische Modulfunctionen, I, 1890, 163-416; II, 1892, 37-159.
318 Theory of Numbers, Cambndge, 1892 230-256.

29 Jbid,, 158-170.
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H. Weber,?*° by arithmetical processes, obtained L. Kronecker’s*** expression for
the number % of primitive classes of forms az®+ bzy+cy® of discriminant D. For
D=¢@*-A, A a fundamental discriminant, he obtained by Dirichlet’s®® methods,
Kronecker’s'™ ratio (4) of the class-number of D and of A. By the use of Gauss
sums, he transformed the former result for @ =1 into

(1) h_— E(A 8)s, A<,
(2) hlog }(T+UVA)=—3(4, s)log sin sx/a, A0,
8
in which??? (4, s) is the generalized symbol (A/s) of Kronecker'”; and 0 <3< +A.

By Dirichlet’s methods, he obtained the analogue of Dirichlet’s*® formulas (5).
See Lerch,?* (4). By use of the Gauss function

- _.1r 1 1 ‘
\I'(u)—-llﬁ(logm u+1l w42 "'u+m)’

the formulas written above become

(3) = v 38 et T, A<0;

() hlogHT+UVE) =238 [#(F) +o(-1+ L], a>o,

0<v< +A/2 (cf. Lebesgue,® (1)).
For A= —m <0 and uneven, (3) is equivalent (cf. M. Lerch,®*® (1)) to

(5) h—m ?cot;

Weber transformed (p. 264) his formula (2) above by cyclotomic considerations®*®
and observed that h(A) is odd if A is an odd prime or 8, and even in all other cases.
(Cf. Dirichlet, Zahlentheorie, 1894, §§ 107-109.)

P. Bachmann?®* reproduced (pp. 89-145, 188-227) a great part of the class-
number theory of Gauss* ® Dirichlet,”® and (pp. 228-231) Schemmel®®; and also
(pp. 437-65) the researches of Lipschitz'®® and Mertens'!” on the asymptotic value
of h (D).

J .(de Séguier?*® showed that Kronecker’s'™ formula (5,) is valid for D,<0, if in
the right member, D, be replaced by |D,|. This proof is reproduced in his**® treatise.

J. de Séguier®*® wrote a treatise on binary quadratic forms from Kronecker’s*™
later point of view making special reference**' to two fundamental formulas of

* 230 Gottingen Nachr., 1893, 138-147, 263—4.
221 Sltlungdang eri7t Akad. Wiss. Berlin, 1885, II, 771.
222 Cf, H. Weber, Algebra, III, 1908 !85 pp. '322-328,
228 Cf, Dirichlet, o (1); Arndt®s
224 Zahlentheme, II, Die Analytische Zahlentheorie, Leipsig, 1894.
238 Comptes Rendus, Paris, 118, 1894, 1407-9
236 Formes quadratiques et multnphea.txon complexe deux formules fondamentales d’aprés
Kronecker, Berlin, 1894.
227 Ibid., 183, formula (6) ; p. 218, formula (3).
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Kronecker.??®* He extended (p. 32) Kronecker’s'™ identity (4a) in Gauss sums
(cf. H. Weber, Gott. Nachr., 1893, 51) to the form
1Dg]—1
3

(%) e2ehwi/|Dy]| — (%) Vﬁo( —1)#Gen A—D(sgn Do) p=t=0,

=1

where sgn 2= +1 or —1, according as z is > or z<0, while D, is a fundamental
discriminant.

Then, whether D is positive or negative, it follows at once in Kronecker’s'’* nota-
tion that the number of primitive classes is given by

(1) K(D;) log E(D,) =VDH(D)=VD, 3 (7)1
_'P=1/D )\ = g2mxi/ID] _ 1D-1/D
k-E—-l (—)uz = (k

% ) log (1— emi/IDel),

=1 n k=1

in which E(D,) is a fundamental unit; and, if z=re*, then logz=logr+14,
—z<0<x (pp. 118-126). For D,>0, this formula is Kronecker’s*"* (5,). Else-
where de Séguier®*® repeated briefly his own deduction of (1).

By noting that

log (1— e #/IDol) =log 2 sin kw/|D,|+i(3w—kx/|D,|),

he obtained from (1) two distinct formulas; one being Kronecker’s!” (5,) and
the other (p. 127) being Weber’s®?® (2),

_ 1 % /D . kw
K(Dy)=— ————log (D)) 51(7") log sin D, D,>0.

By a study of groups of classes in respect to composition of classes, de Séguier
(pp. 77-96) obtained the ratio of C7(D-8%) to Cl(D). Cf. Gauss,* Arts. 254-256.

Denoting the Moebius function (see this History, Vol I, Ch. XIX) by e,
de Séguier found (p. 116) that for any function F which insures convergence in
each member of the following formula, we have

® Qz @©
X = d).
,,.El(m> (m) f[qeduilp(ﬂ )

If a, b, ¢ are arbitrary constants (eventually integers) and F is taken such that
F(zy)=F(z)-F(y), we have

3 (Q:)F(am’+bmn+cn3)= S e F(d)F(adm’+bmn+in’),
m, n \M diQ m,n d
m, n=0, x1, 2, ..., = o0, except m=n=0. Let F(u) be p/u'**. Since, for
such a function,

lim = F(am?+bdmn+cn?)

>0 m, n

228 I,, Kronecker,171, 218 Sitgungsber. Akad. Wiss. Berlin, 1885, II, 779; 1889, I, 205.
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depends only on b%— 4ac, we have

1 9__2 2 2)-1-, _4’(@) : € 2y-1-
}’1:.1 pmﬁ'”<m)(am +bmn+cn?)P= —0—1,1__:_1(1) p=(adm?+dmn+ " ).
Butlﬂ.
tH(D) =K (D)lim p3 (am®+bmn+cn?)-1-*.
p=0 m, R
Hence we have, for D<0,

(4) TDyQs gi(l)o_Qr #(Q) _ 2"2 ‘j(i(%;—-"bod" (dd’=Q).

To this formula is applied the following lemma due to Kronecker®**: Let f(n),
g(n) be two arbitrary functions of » and let A (n) =3f(d)g(d’) (dd’=n), and let g
have the property g(mn) =g(m)g(n), (1) =1; then
F(n) =Seag(d) (&) (dd’'=n).
Hence we deduce from (4) the new relation (p. 128)
H(D,Q*) _p ¢(d) H(D,a*
e R = ke i Ty <O

For discriminants D,<0, D,>0, de Séguier gave the following approximation
formula (p. 314):

E(D)log B(D,)= 5z P> 3(% )(LMD— +loga),

the summation extending over a system of primitive forms (a, b, ¢) of discriminant
D=D,-D,; while A is an arbitrary number representable by (a, b, ¢) and relatively

prime to 2D. .
M. Lerch,?®° in the case of Kronecker’s forms of negative fundamental discrimi-
nant —A=5 (mod 8), gave to Dirichlet’s*® equation (2) the form

3 3 F(am*+bdmn+cn®)= 2 (—A/h)F (hk),

a,b,e m,n
m,n=0, =1, =2 ..., except m=n=0;h, k=1, 2,3, .... Hetook
F(z)=(—1)%gem/Va
and obtained
(1) 3 (- — 1) mnsmsn g-w (amPdmason’) VA= 3, (:—A)(—l)’"‘e""‘"‘m.
a,b, e mn h, k h

But by taking ¢=r=0 in Kronecker’s*** fundamental formula, it is seen that the
left member of (1) would vanish if it contained the terms with m=n=0. Hence
the left member of (1) is —CI(—A), and (1) can be written

h H
a(-a=3 (%) 1o, H=(-1remns

229 DemSég‘n’ier’;ogomes quadmtiqueg, 114; L. Kronecker, Sxtzungsber. Akad. Wiss. Berlin,
1

280 Comptes Rendus, Paris, 121, 1895, 879.

281 Sitgungsber. Akad. Wiss. Berlin, 1883, 1, 505.175
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By expressing the right member in terms of a 6-function,*” we obtain

5.(5) (3 |s5va) =y0I(~4)-(A+iVA),

‘(K’AH\/K) ‘ ‘
y=gifA=3; y=1ifA>3.

G. Osborn,?*? from Dirichlet’s*® formulas (6) and his own elementary theorems?**
on the distribution of quadratic residues, drew the immediate conclusion that the
number of properly primitive classes of determinant — N, N a prime, is

&(N—l)—l—g-E(R), N=8m—1>0,

but is 3 times that number if N=8m+3>>0, where 3(R) is the sum of the quadratic
residues of NV between 0 and N.

*R. Gotting?** found transformations of the more complicated of Dirichlet’s?®
closed expressions for class-numbers of negative deterfninants.

A. Hurwitz?*® denoted by A (D) the number of classes of properly primitive posi-
tive forms of negative determinant —D. Let p be a prime =3 (mod 4) and write
?’=3(p—1). Since (s/p) =¢' (mod p), Dirichlet’s®® result (5,) implies

h(p) =142+ ... +p (mod p).
The right member is the coefficient of
(6)) (—1)i 22/’

in the expansion of :
. . et COB 3Z—c08 3pz
¢(z) =sin z+sin 2z+ ... +sin p’z= Ssmis .
This numerator is congruent to cos z—1 modulo p, and by applying a theorem on
the congruence of infinite series, we get
_cosz—1  —2sin’}z _
$(z) = 2sin4z ~ 4sin }zcos iz =—ttan iz (mod p).

But when z is replaced by 4«, (1) is multiplied by 4* or 2-*=1 (mod p). Hence
h(p) is congruent modulo p to the coefficient of (1) in the expansion of —4 tan z.
When p=1 (mod 4), we employ the expa.nslon of 3secz. Other such theorems
give h(2p).

The same result of Dirichlet is used to prove that if g=1 (mod 4) and g has no
square factor >1, and if

coslqz {(%) sin z—(—z—) sin 3z+<~g-) sin bz—... —<g;—2> sin(q—2)z}
=c,z+c,2/38 !+ cz®/5!+.. .,

”:Ihg:?enger Math,, 25, 1895, 157.

28

284 Program No. 257 of the Gymnasium of Turgau, 1895.
280 Acta Math,, 19, 1895, 351-384.
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and if p=3 (mod 4) is a prime not dividing g, then

h(?Q) = (_ 1)“’”1)0}(“1) (mOd p).

There are analogous theorems for 4 (pg) and & (2pq) for all combinations of residues
1and 3 (mod 4) of p and ¢.

‘To obtain a lower bound for the number of times that 2 may occur as a divisor of
h, the number of genera of the properly primitive order is calculated.?*® If k,(D)
denote the number of classes in a properly primitive genus of determinant — D, the
parities of hy(pg) and hy(2pg) depend only on the values of (p/g) and p (mod 8)
and ¢ (mod 8), and are shown in tables.

By combining the two theories of this memoir one obtains, for special g, results
such as the following:

If p=3 (mod 4), h(5p) is the least positive residue modulo 2p of (—1)¥#*V¢y,,.,,
where ¢,, ¢, ... are the coefficients in the expansion

gin z+4-sin 3z _ z* z*n!
ey el Ak YRR s oY

F. Mertens®®” completed the solution of Gauss’ problem (Disq. Arith.%, Art. 256) to
find by the composition of forms the ratio of the number of the properly primitive
classes of the determinant S*-D to that of D. He modified Gauss’ procedure by
taking schlicht forms (Mertens®” of Ch. ITI) as the representatives of classes and
by means of them found for any determinant the number of primitive classes which
when compounded with an arbitrary class of order § would produce an arbitrary
class of order 8 (Mertens?®” of Ch. III).

M. Lerch?*® rediscovered Lebesgue’s®® class-number formula (1) above, and wrote
it for the case A=p=4m+3 a prime:

93 cot €7 A __!101( -p), k=12, ... p—1, (%):1.

By replacing k by a®— p[a?/p], he obtained Weber’s formula®?° (5) :
y replacing O]

@) WV 01(~p)= 3, cot 7.
He found for A=4p, p=4m+1, a prime >1,
1
(2) VpCi(—4p) = zsmh/(zp) ~14,=1,35, ..., p—2).
For A=8p, Lerch derived more comphcated formulas which are analogous to
(1) and (2).

L. Gegenbauer®® in a paper on determinants of m dimensions and order n, stated
the following theorem. If for k=1, ..., n in turn in a non-vanishing determinant of
even order m, we replace, in the sequence of elements which belong to any particular

”004Fl§}92ua§i Disq. Arith,, Art. 252; G. L. Dirichlet, Zahlentheorie, Supplement IV, ed.
287 Sltzu.ngdaer Akad. Wiss. Wien, 104, Ila, 1895, 103-137.

288 Sitgungsber. Bohm. Gesells. Wiss., Pra.g'ue, 1897 No. 43, 16 pp.

289 Denkschrift Akad. Wiss. Wien, Math ~Natur,, 57 1&0 735-52.

11
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rth index, the elements which belong to the oth index ¥, by the corresponding elements
respectively which have the oth index k2+ %+ A, where — A is a negative fundamental
discriminant and where all the indices are taken modulo n ; and if we divide each of
the resulting determinants by the original, the product of VA by the sum of the
quotients has mean value, G(—A), when n becomes infinite (p. ¥49). Three similar
theorems include a case of n finite.

M. Lerch?¢® employed
sin 2y
—

E*(z)=z—3+ ;
r=1

Then E*(z)=[z] if >0 is fractional, but =[z]—3% if z is an integer. In the
initial equation, z is replaced by z+am/A, where —A is a negative fundamental
discriminant ; each member is then multiplied by (—A/a) and summed for =1, 2,
3, ...,A—1. Since [a misprint is corrected here],

81/_A —A\_ _(=A

@ 3(3%)=0 (2)=-(3")
it follows from the theory of Gauss’ sums (cf. G. L. Dirichlet, Zahlentheorie, Art. 116,
ed. 4, 1894, p. 303) that

55 (4 )= T (e ()5 (50) =

a=1\ @ a=1\ @ T p=1\ V v
Then by Kronecker’s!’ formula (5,) we have

a-1 VA 2 cos 2vzw

@ I(3H)m(e+ T+ F oo =(FH) T 5 (58) =0

a=1 T p=1

By comparing this result with the case m =1, we have for 2=0,

@ A (G- TG

For m not divisible by A, E*(em/A) is equal to [am/A]. Taking m=2 and
applying (1), we get*

@ He-@)]e-o="5(3).

Hereafter we take A>4, 1. e., 7=2. Then, for m =4, we have

® - (- 5(32) ]

When we put S(a,...,b) for 3} (—A/a), formula (5) is reduced by means of (1) to
35(0, s, _:.) +8 (%, e, %—): [4-(%—)] Cl(—A).

But (4) is equivalent to

S(o,..., ;}) +8 (-2— —;—)=[2—(§—)]01(-A).

240 Bull, des sc. math. (2), 21, I, 1897, 290-304.
21 Cf, H. Weber,220 Géttingen Nachr., 1893, 145.




Caap. VI BiNARY Qummnq Form Crass NUMBER. 157

By combining the last two formulas we obtain the two serviceable ones

D53 (2) () o
o )=o) (D) acs,

A still more expeditious formula is obtained by taking m=3 in (3), whence

@)= ()]ocs;

and this relation combined with (6) yields

(22 [(3)+(3) + (F)] v

For m=1, (2) becomes
2 \/A ® (—A\ cos 2vzr 1
(8) - Ol(-a)= 3 ( ” )'—“—<0§$<K).

T p=1 v
This is a generalization of Dirichlet’s’® formula (1) and it holds for —A not a
fundamental discriminant. Lerch showed that (8) is valid for any negative dis-
criminant when 0 = z<1/A by reducing it from Dirichlet’s'® formula (1). By
simply integrating (8), he deduced
Cl(—A) = ‘rA\/_ ( ) sin 2vr/A
v=1\ V

v2 b

Cl( A)_TA\/_ c'°(-- )Sinzl;r/A.
=1 v v

M. Lerch*** applied to Kronecker forms az®+bzy+ cy? the unit substitution and
for a given value of b*—4ac=D<0 studied the number of principal roots  of
reduced forms which would lie in the fundamental region.*® By arithmetical
methods he obtained cumbersome formulas, involving the Legendre symbol E(z),
for 3F(4k) and 3F(4k—1), summed for k=1, 2, ..., n, where F(A) denotes the
number of classes of discriminant —A. He identified these results with the concise
ones of Hermite®'! which had been obtained from elliptic functions for forms
ax®+ 2bzy +cy®.

Lerch®® in an expository article, deduced for negative and positive discriminants
Dirichlet’s’ class-number formulas (1) in which enters P(D) =3 (D/h)/h. For
an arbitrary discriminant D, where |D|=A, he found by logarithmic differentiation
of the ordinary I'-function that

ro-- 13 /7(2)

242 Rogpravy Ceské Akad., Prague, 7 1898, No. 4, 16 pp. (Bohemian).
248 Rogpravy Ceské Akad. Prague, 7, 1898 No. 5 51 pp. (Bohemian); resumé in French,
Bull. de I'Acad. des Se. Bohéme, 5, 1898, 33°36.
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To this he applied the identity:

kﬂ’ arT

T'(—f—>//1‘<-ii>-—r’(1)=—log 24— cot— + 2 cos 2Ak log sin x*

For the fundamental discriminant D,, this furnishes familiar formulas including,
e. g., for Dy >0, Weber’s®?° formula (1).

Lerch?* repeated the deduction of his?* formula (8) and established the validity
of the formula for a non-fundamental discriminant D for the interval 0 = z<
1/(A¢Q’), where D=AyQ: and @’ is the product of the distinct factors of .

Lerch?*® transformed the Gauss sum

n—1
b eza’mﬂ/n
a=0

as it occurs in class-number formulas (cf. G. L. Dirichlet, Zahlentheorie, Arts. 103,
115) and so obtained finally

) "il{a;m _E(zm>}_n q_2< ) l(~d),

a=1

where m, n are relatively prime positive integers, n is uneven and ¢* its greatest
square divisor, while d ranges over the divisors of n which are =3 (mod 4). Lerch
has since?™ repeated the deduction in detail. From (1) follows ™

@ Ffa+ S -E (1+°7)}
Sl 1)TE< ) Cl(—4d,) — z(d>l—@@—)01( —ds),

in which d, and d, range over the divisors of n such that d, =1, dy=3 (mod 4).

J. de Séguier**® in a paper primarily on certain infinite series and on genera
simplified his results by substituting the class-number for its known value. He
found, for example (p. 114), if F(z) is an arbitrary function which insures con-
vergence, then

1 DyQ2 (D

2 \4

—_— 2 2
ED) oto )F(am +bmn+cn?)

_20(D,, d)r(D,d*)  (D:d?\(D,Di'd "
=2 =R D) ,ﬁ(h)( ) F @),

where K (m) is the number of properly primitive classes of discriminant m; 4 is
representable by am?+bmn+cn®; D=D,D,=D,Q*? D, being fundamental; and
O(D,, d) is the number of classes of discriminant D, and of order d, where dd’=@.

*J. S. Aladow?*" evaluated in four separate cases the number G of classes of odd

binary quadratic forms of prime negative determinant —p:

244 Rozpravy Geské Akad., Prague, 7, 1898, No. 6; French resumé in Bull. de ’Acad. des
Sc. Bohéme, 5 1898, 36-3
245 Ro Tavy Geskeé Akad Pra.gue, 7, 1898 No 7 (Bohemmn) French resumé in Bull de
’Acad. des Se. Bohéme, Prague, 5, 1898, 3
2"Jcmx' de Math. (5), 5, 1899, 55-115.
241 3t, Petersburg Math, Gesells,, 1899, 103-5 (Russian).
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(i) If p=7 (mod 8), G equals the difference between the number of quadratic

residues and non-residues = }{p—38—2(3/p) }.
(ii) If p=3 (mod 8), G equals the difference between the number of quadratic

residues in the sequence

and the number in the sequence

Hp+3-2(8/p)t, .-, 1(p—-3).

(iii) If p=5 (mod 8), G equals twice the difference between the number of
quadratic residues and non-residues in the sequence

Hp+3+2(3/p)}, Hp+9+2(3/p)} ..., 1(p—1).

(iv) If p=1 (mod 8), G equals twice the sum of the difference between the number
of quadratic residues and non-residues in the sequence

i(p+3)"": H2P_3+(3/p)}
and the corresponding difference in the sequence

Hp+3+2(3/p)h, Hp+9+2(3/p)} ..., 1(p—1).

R. Dedekind,?® in a long investigation of ideals in a real cubic field, proved the
following result. If at least one of the integers a, b, ab is divisible by no square, and
if we write k=3ab or k=ab, according as a*—b* is not or is divisible by 9, then the
number of all non-equivalent, positive, primitive forms Az?+ Bzy+ Cy? of discrimi-
nant D=B?—4A4C= —3k* is a multiple 3K of 3. For primes p=1 (mod B), p not
dividing D, K of the forms represent all and only such primes p of which ab? is a
cubic residue, while the remaining 2K forms represent all and only such primes p
of which ab? is a cubic non-residue.

D. N. Lehmer?*® calls any point in the cartesian plane a fofient point if its two
co-ordinates are integers and relatively prime. He wrote

r -1 r
Pim,y= ‘1;11 p“;-ut‘ff;,_?-m—) , k= ‘1=11p;“.
The number of totient points**® in the ellipse az?®+2bzy+cy*=N, b*—4ac=

D=—A,is :

(1) 1—"2I_Zi\/~7-‘-_1’<1. 20) 5

and in the hyperbolic sector, always taken®®* in this connection, the number is
(2) % VDPq 20N log(T+UVD),

N being very great in both cases. Noting now Dirichlet’s®® formula (2) for the

248 Jour. fiir Math., 121, 1900, 95.

240 Amer. Jour. Math., 22, 1900, 293-335. Cf. Lehmer,218 Ch. V, Vol. I. of this History.
250 Cf. G. L. Dirichlet,2° Zahlentheorie, Art. 95.

351 Cf, tbid.1® Art. 98, ed. 4, 1894, 246.
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number of representations of a given number by a system of quadratic forms of
determinant D, he finds the class-number, for example, for D=-A<0,

h(l))‘—'€ 12 \/_P(l M)Ilm X7 2 2’("’)@ (z),

in which ¢ is the number of solutions of {*—Du?=1; z is any positive number
relatively prime to 2D, v(z) is the number of distinct prime factors of z; ®,(z) =1
or 0, according as each prime divisor does or does, not have D as a quadratic residue.
K. Petr,®? by the use of five functions 4 (=Hermite’s®® .o7), B, C, D, E, all
analogous to Hermite’s®® .of deduced all of Kronecker’s® eight classic relations.
For example, from expansions by C. Jordan (Cours d’analyse, I, 1894, 409—411),
he obtained

(1) ®’MG%®)Q— C-®1(v)—8§ cos(2n+1)w~q‘”ﬂ"§kq"".

1 1
Also C is the coefficient®®® of 24% cos #v in the product of the right member of
(2) %10_@ (l 22 sin 2navg™{2q+ 20+ . . . +2g D'}

by the right member of"‘

O(v) _ 4¢*sinmv | 4¢¥?gin3mv , 4¢**sin 5mv
8,(v) ~ 1I—gq 1-¢° I-¢¢ T

But in that product, the coefficient of cos »v is a power series in g in which the
coefficient of ¢¥*# is 8 times the combined number of solutions of

n?— (k+3)2+ (n—3) (RI+1)=N+1%,
n?— (k+3)*+ (n+3) (R1+1)=N+4,

where n and I are positive integers, I taking also the value zero 3 =0,1,2,...,n—1.
But these equations can be written®®® in the forms

. (n—k+1) (n+k) + (n—k—1) (I+1) + (n+k) (I+1) =N,
) { (n—k) (n+k+1) + (n—k) (1) + (n+k+1) (}) =N;

and the left members may be regarded as the discriminants N=ab+bc+ca of
reduced Selling?**® quadratic forms a(y—¢)2+b(t—z)*+c(z—y)? in which a, b,
¢ do not agree in parity. Since there is a correspondence between such Selling forms
of discriminant N and odd classes of Gauss forms of determinant — N, we have

(3) 0,0,

(5) C=83F(n)q"
The identity (Fundamenta Nova, § 41)
e2(v) nq" cos 2y
®’®: ®, (v) —-82 1 qzn - 82 1 qzn

252 Rogpravy Geské Akad., Prague, 9, 1900, No 38 (Bohemian) ; Abstract,261 Bull. Internat.
de 'Acad. des Se. de Boh éme, Prague, 1903, 180-187 (Germa.n)

253 Cf, P. Appell, Annales de I'Ecole Norm. Sup. @, 1 , 1884, 135; 2, 1885, 9.

264 Cf, C. G. J. Jacobi, Fundamenta Nova 1829, p 101 (19) Werke I, 1881 157.

285 Cf, J. Liouville,38 Jour. de Math. (2), 7, 1862 Bell 370 and Mordell 372

2550 . Selling, Jour. fiir Math., 77, 1874, 143,
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is multiplied member by member with Jacobi’s expansion formula for ®,(v). In the
resulting left member, the coefficient of cos »v is C-2¢#®,. When this coefficient is
equated to the coefficient of cos xv in the resulting right member, a comparison with
(5) yields the relation:
(1) F(n)+2F(n—1%) +2F(n—2%) +...=3d\ —3d,,
where d) denotes a divisor of n which has an 0dd conjugate and d, denotes a divisor
of n which is = V'n and which agrees with its conjugate in parity.

He also found the classic formula® for the number of solutions of z*+y*+2*=n.

To obtain a class-number relation of Liouville’s®® second type, Petr expands in
powers of v each member of an identity of the same general type as (1) above.
Coefficients of v? are equated, with the result that

12F(8n—1%) 4+ 3%F(8n—32) + 52F (8n—5%) +...
=2n2dx —2n3(du+d,)) —3(dh + dih),

where, the d’s are the divisors of 2n; d, <\/2n di is 0odd ; dx has an odd conjugate;
and the subscripts of d retain their mgmﬁcance when they are compounded.

To obtain a class-number relation of Liouville’s®®” first type, each member of an
identity of the same general type as (1) above is expanded in the neighborhood of
v=4. Equating coefficients of v, Petr then obtains

H(8n—12) —3H(8n—3%) + 5H (8n—b5%) — ... =3(—1)H&u+dstD gl

where di is a divisor of 2n such that its conjugate d is of different parity, and

1< Van.
K. Petr,*® employing the same notation as*** in 1900, multiplied member by

member the identity

@I@,@.g,l(%—SE( —1)*(n+k) g~ rCntigin (2k — 1) 7o,

n=0,1,2,3,...; k=1,2,8, ...
by the formula for transformation of order 2
®(0)®, (0)/@,(0, 27) =0 (20, 21).
In the resulting left member, the coefficient of gt cos xv is 163F(n)¢"®, (0, 27) ; in
the right member it is 8 times the sum of
( — 1)u+b—1 (”+ 2k) q(ﬂ+8k)’-3k', ( — 1) n+k-1 (n+ 2k — l)q (”+“.1)L’(b.1)l’

forn=0,1,2,8,...;%k=1,2,3,.... Hence
(1) 2(—1)F(n—2-2)=3(—1)o11g,
where z and y are the integer solution of 2* —Ry*=n, 2 = 2y, y = 0; while, as also in

2868 J, Llouvﬂle,m" Jour. de Math., (2) 12, 1867, 99. Cf. G. Humbert,298 Jour. de Math.,, (6),
1907, 369-373, formulas (40 (443 as numbered in the memoir.
257Cf ' J. Liouville,%7 Jour. de Math (2), 14, 1868, 1; also G. Humbert,2°® sbid. (6), 3,
1907, 366—369, formulas (35),
288 Rospravy Gské Akad Prai\xe, 10 1901 No 40 (Bohemian). Abstract, Bull. Internat. de
I Acad. des Sc. de Bohdme Prague, , 1903 180-187, (German).
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(2), v ranges over all integers, positive, negative, or zero. In the summation z receives
an extra coefficient 3 if one of the inequalities becomes an equality. Similarly,
() S(—1)’F(8n—1—-82)=3(—1)¥ewy 2_22=8n—1, z>2, y>O0.

These are the first published class-number relations which are obtained from elliptic
function theory and which involve an indefinite quadratic form, e. g., z*—2y2.
By means of the elementary relation

70,0,0,=273(—1)"(2n+1)¢"¥, 2n=0,1,2,3, ...
and the relation -
010, =43F (4n+2) gt¢m?
the identity ©}0,-0,=©,0,0,. @, yields
F(4n+2) —2F (4n+2—4-1?) +2F (4n+2—4.2%) + ... =3 (—1)¥eDyg,

z, y>0, 22+ y?>=4n+2; which is of the type of Hurwitz.2°?
A transformation formula of order 3 in a treatment similar to the above yields
five such relations as

F(4n+3)—H(4n+3) —2[F(4n+3—38-1%°) —H(4n+3-3-1%)]
+...=3(—1)Hery,

2243y2=4n+3,2= 0, y>0; and
(3) F(4n) —2F(4n—3-1?) +2F (4n—3-2?) — ... = — 23z,

2-3y=,y=0,2=3y.
From transformations of order 5, Petr obtained three relations including,

(4) F(8n) —2F(8n—5-12) +2F (8n—5-2%) — ... = —43z
22—5y*=2n, y =0, by = =.
M. Lerch?®® wrote
it 1 Vo — -
Ro9)= 3 tomyer K@, 056) =3 (am* +brn-tont) ™,

where o is an arbitrary constant; m, n=0, =1, £2, ..., except m=n=0; (a, b, ¢),
a positive form of negative discriminant —A; a, b, ¢ real. From Dirichlet’s** funda-
mental equation (2), it follows that the relation

(1) S K(a b, c; s) =rA~R(1, 5) Af':(—‘;%zz(% s)

a, b, e

is valid over the complex s-plane, if (a, b, ¢) ranges over a system of representative
primitive positive forms of discriminant —A, which is now supposed to be funda-
mental.

280 Comptes Rendus, Paris, 135, 1902, 1314-1315.
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Employ the Maclaurin developments in powers of s,

(2) B(w, ) = (3—w) +log 1\‘/(‘2”) St

(8) K(a,b,c¢;8)=—1—2slog [%/-:H (—b;:\/z)H <b+2?/x)] +...,

where
H(w) = ewfl/nn (1 — g2nurd ) .
1

When substitution is made of (2) and (3) in (1), Lerch compares the terms which
are independent of s and obtains Kronecker’s'™ class-number formula (5).

E. Laudau®* showed that every pegative determinant < —7 has more than one
properly primitive reduced form (cf. the conjecture of Gauss;* Disq. Arith., Art.
303) by proving that if —A=b%*—ac is <—7, there is always another such form in
addition to (1, 0, A). If there is no properly primitive reduced form (a, 0, ¢) other
than (1, 0, A), then A has no distinct factors, but must be of the form p*, p a
prime.

(I) If p=2, and A = 4, there is the additional properly primitive reduced form
(4, 2,2»24-1).

(II) If pis an odd prime and if there is no reduced properly primitive form with
b=1, then A+1 cannot be expressed as a-c, where one of the factors is uneven and
>2. Hence A+1=2". When v= 6, there is an additional properly primitive
reduced form (8, 3, 2*8+1).

Landau now tested the few remaining adm1&s1ble A’s and found none which are
> 7 and have a single class.

K. Petr®® gave in German an abstract of his two long Bohemian papers,2"% 258
including eleven class-number relations of the second paper. He indicated com-
pletely a method of expanding ®1@, (0, 5r), which leads to new expressions®® for
the number of solutions of 2*+y”+2’+50’=n and hence to generalizations of
Petr’s®®® relation (4).

M. Lerch,?%* in order to find the negative discriminants — A for which CI(—A) =1,
wrote —A= —A,Q?% where A, is fundamental and g ranges over the distinct factors
of Q=Q'Tlq. Then the equation to be satisfied is (Kronecker,'" (4))

Cl(—A)= —f; om {o- (_qA")}CZ(—Ao) =1.

If Ay=4, then r,=4, Q=1 or2.

If A,=3, then 7,=6, Q=1,2 or 3.

If Ay>4, then 1,=2. Here Cl(—A) can be uneven only for Q’=1 and A, prime,
or for A,=8. The case A,=8 is excluded if @5~1. If A, is a prime, Cl(—A)>1
unless Q=¢=2, (2/4,)=1,i. e, A,=8k—1. But 1f k=2, (1,1,2Kk) and (2 1, k)
are non-equivalent reduced forms of discriminant —

260 Math. Annalen, 56, 1902, 671-676.
261 Bull, Internat. de 'Acad, des Sc. de Bohdme, Prague, 7, 1903, 180-187.

262 Math. Annalen, 57, 1903, 569-5670.
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Hence CI(—A)=1for A=4, 8; 3, 12, 27; 8, 7, 28. Any further solution A must
be a prime =3 (mod 8). Butitis undeclded whether there are such solutions other
than 11, 19, 43, 67, 163.

Lerch?®® wrote y(z) for IV(z)/T'(z) and observed that Dirichlet’s*® formula (7)
for the number of positive classes of a positive fundamental discriminant D gives the
relation
b1/D h -

5 (7?)'/' (7)—) =— VD CI(D) log E(D).

h=1
From this ¢ is eliminated by means of
—C—log 4xr+loga—y(z) —y(1—2z)
dz dz

= 3 aemrer 2 19 3 o 2nmj e —,

m=—xnll/a \/ a=1 z
where C is the Euler constant®® and ¢ an arbitrary positive constant. The final result
is that CI(D) is determined uniquely by

S—2(P,+Q) _ S—2(P,+Q.)
Teg E(D) <D< 5Dy

in which, to a close approximation,
8=4V D(log D+.046181) —3} log D+.023090,
dz

2
=35 2% __ g, = J' 292
P psr BV /D TR dz, O-=1 % Bsr pusp® T

while r is chosen sufficiently large to insure a unique determination of C1(D). For
example, if D=9817, log E(D)=222, §=450.5, whence Cl(D)<450/222. We
need not compute P, and @, since Cl1(D) is uneven (Dirichlet®®) and hence is 1.

J. W. L. Glaisher?®* called a number s a positive, a negative or a non-prime with
respect to a given number P, according as the Jacobi-Legendre symbol (s/P)=+1,
—1, or 0. He denoted by ar, br, Ar, respectively, the number of positives, negatives
and non-primes in the -th octant of P. For example, if P=8k+ 1 is without a square
factor, Dirichlet’s?® formulas (5) for the number of properly primitive classes of
determinant — P and — 2P, respectively,

=2(a,—b,+a,—b,), b’=2(a,—b,—a,+b,)
become?%®

=4(a1t+a) —3(P-1), *I”"=4(a1—as),

where ar=a,+4A,. Similarly for other types of P. Obvious congruencial properties
(mod 8) of h” and A’ are deduced from all of these formulas.

Again b’ and b’ are expressed in terms of Br=b,+3Ar (r=1, 2, 3, 4). Next,
I and p, are used to denote respectively the number of positives and non-primes <P

268 Jour. de Math. (5), 9, 1803, 377-401; Prace mat. fiz. Warsaw, 15, 1904, 91-113 (Polish).

26¢ Quar. Jour. Math., 34, 1903 1-27.
265 Glaisher, Quar. Jour. Math., 34, 1903, 178-204.
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which are of the form 8k+r, while L,=I-+4u,. A table (p. 13) transforms the
preceding formulas into results such as

P=8k+1, W=2(Li—L), k”"=4(Li~L,).

If Qr denotes the number of uneven positives in the rth quadrant plus $A,, we have,
for example,
P=8k+1, M=2(Q.—Q:), r'=4(Q.—0¢.).

L. C. Karpinski®*®® gave details of R. Dedekind’s?*? brief proofs of his theorems
which state the distribution of quadratic residues of a positive uneven number P in
octants and 12th intervals of P in terms of the class-number of — P, — 2P and —3P.
He added to Dedekind’s notation the symbols Cy and C,, which denote the number
of properly primitive classes of determinant —5P and — 6P, respectively, and, by
an argument precisely parallel to that of Dedekind, obtained for all positive uneven
numbers P which have no square divisor, the distribution of quadratic residues in the

24th intervals of P as linear functions of C,, C,, Cy, C,. He put Si=%(s,/P),
where ¢ is a positive integer, and sr ranges over the integers z for which

(r—1)P/t<z<rP/t.
He deduced such relations as the following: If P=23 (mod 24),
(1) S=-85=C,, 8;=8;=8:=8:=0.
If P=1, 5 or 17 (mod 24), C, is a multiple of 6. For P=3 (mod 4),
Ci=8Y+8P+80+80+8y,  Co=28+48+ 280

Cf. Dirichlet,?® (5). Three other relations among S;° which arise from familiar
properties of quadratic residues lead to a complete determination of 8)° as linear
functions of C, and Cg for r=1,2,3, ..., 10.

E. Landau®®® studied the identity

§ (—Q>;L—, Eﬂ—_s)(&r) VA cos 3sr 3 (D)n}_,, D<O,

n=1\"M ™ n=1
which is valid for a real s, 0<s<1. The limit of the right member for s=0 is
Va2 (D) 1
Y23 (=)=.
T a=1\N/ N

The customary evaluation of the divergent left member for s=0 would give
(Dirichlet,* (1) above) the erroneous result A= 3 (D/n). A similar study is
made of the limit for s=0 of the ratio

:(2)kgn . 3 (D)1
,51(T> n® 'T',,El n) n*’

which for s=1 is Kronecker’s?'? limit ratio.

268 Thesis, Strassburg, 1903, 21 pp.; reprinted, Jour. fiir Math., 127, 1904, 1-19.

267 Werke of Gauss, II, 1863 1-3; Maser’s German translation of Dusq Arith,, 1889,
Remarks by Dedekm 693-695.

268 Jour. fur Math., 125, 1903, 130-132, 161-182.



166 HisTorY OF THE THEORY OF NUMBERS. [CHaap. VI

*M. Lerch?**® denoted by g an arbitrary primitive root of a prime p=2m+1, and put
=1
F"(z) =p2 qindv z”,
»=1

where a is an integer of index m=p—1—n referred to the primitive root g as base.
C. G. J. Jacobi?™ had found the relation

Fn(l14y)=—Ym/m! (mod p),

where Y is the sum of the terms in y™, y™2, ..., y** in the Maclaurin’s expansion
of [log(1+y)]®. Thus

e A Y 1 .

’El 2)F=" —ﬁ—!lm(w—l) (mod p).
Hence if c; is the coefficient of y/ in ¥'m(y), and if we set
2m
3 ¢y (t—1)"=A+1B,

m! yem
then A=B=H (mod p), in which H is the number of positive quadratic forms of
discriminant —4p.,
H. Poincaré*™ wrote

-1

F(q) =3 qam’+2bmn+en’, g= e—t’
m, n

where (a, b, ¢) is a fixed representative properly primitive form of negative determi-
nant —p and the summation is taken over every pair of integers m, n, for which the
value of (a, b, c¢) is prime to 2p except m=n=0. F(q) is regarded as a special
case of the Abelian function

(4) 0(z, y) =St (mormy) qamhszbmmson,

The theory of the flow of heat is used to show that if %, &’ each range over all integral
values, ®(z, y) may be written

(B) o(z, y) =kzk,% ¢P, —3Er=b'—ac=—p,
P= o [a(y—2¥'x)*~2b (y— 2r) (s — 2kr) +o(z—2km)].

Now for z=y=0 and ¢ small, ®(z, y) is asymptotically #(1). Hence, in the
neighborhood of ¢=1,

(1) | F(g)=2T

and is therefore independent of the choice of (a, b, ¢) of determinant —p.
But, for p a prime =3 (mod 4), we have (cf. Dirichlet’s*® formula (2))

2 3 03 P=2z(l) -
( ) @,d, ) m,nq p .

260 Bull. Int. de ’Acad. des Sc. de Cracovie, 1904, 57-70 (French). .

270 Monatsber. Akad. Wiss. Berlin, 1837, 127; Jour. fiir Math., 30, 1846, 166; Werke, Berlin,
VI, 1891, 254-258.

211 Jour, fiir Math., 129, 1905, 120-129.
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where now P=am?+2bmn+cn* ranges over a system of properly primitive forms
of determinant —p, and m, n take all pairs of integral and zero values for which P
is prime to 2p; in the second member, n, n’ range over every pair of odd positive
integers each prime to P. By a simple transformation of each member, (2) can be
written

| F(g)— = F(—gq)=4 l)-i"—.
@) (a,zb,c) () (a,b,c)( ) 2(9 1—g*
But from (4), it follows that F(¢q) =©(0,0), F(—g) =®(w, ) ; and hence from
(B), it follows that
' o 2 _ 2
Fl=3Fe?, F(-=35e% P=fo (ai=thw+o),

where p, v are even integers in the case of F(g), and odd integers in the case of
F(—g). Since for £ small, all terms of the left member of (3) except those having
p=v=0 are to be neglected, the left member becomes

—T-h
N p (-»p).
Moreover
_tt 1
1:"21 —g* 2’

Hence?"? (3) becomes Dirichlet’s’* formula (2). Equation (3) is also transformed
to give Dirichlet’s*® closed form (5) for h(—p).
A. Hurwitz?"® by the substitution

—aZtBytyz | _ e+ Byty.z

T aztBytyr’ aT+By+yz
transformed the Cartesian area §§du dv of a plane region @ into what he called the
generalized area of @ with respect to the form az+By+y2. Such a generalized area
of the conic zy—22=0is

(1) 2/ (V4ay— %)

For points on the conic, we put z=1%, y=rs, 2=¢% and consider points (z, y, 2) =
(r, 8) =(—r, —s), r and s being relatively prime integers. An elementary triangle
is one having as its three vertices the points

(®) (r,8), (11, 8), (r+ry,s8+8), re—rs==x1.

All such possible triangles in the aggregate cover the conic simply six times and their
total area is

(3) $3{ar®+ Brs+vys®) (af:+:8r131+73:)
[a(r+r)*+B(r+r,) (s+8,) +y(s+8,)%] }"1

summed for the solutions r, s, r,, 8, of 3, —r,8=*1.

272 Cf, Q. L. Dirichlet, Zahlentheorie, Art. 97.
278 Jour. fiir Math., 129 1908, 187-213.




168 HisTorYy oF THE THEORY OF NUMBERS. [CHaar. VI

But if the Gauss form au’+,8uv +yv’ be subjected to all the unitary substitutions,
it goes over into a’u’’+ B'u’v’ +y’v"’, where o’, B/, ¥’ have values such that (3) can
be written as 38/{a’y’(a’+B’+7’) }, where (a’, ﬂ’/2, y’) ranges over all forms
equivalent to (a, 8/2,v). Hence by comparison of (1) and (3) we have

31 a3 1
2DVD " b, ¢ ac(a+2b+c)’
where (a, b, ¢) ranges over all positive forms of determinant D.

By modifying his definition of generalized area Hurwitz obtained for the right

member a more rapidly convergent series.
M. Lerch,®™ by use of his®**® trigonometric formula for E*, showed by means of

Gauss sums that
-1 a’m n
8='3 E*(z+ —) p) (z+ - )— 5 +8,

a=0 a=0
in which 8, is the imaginary part of

s 1 (m" ) d,Vd, - 4 @y—D3g2ppami
»=1VT .
where d, is the g.c.d. of # and v, and dy=n/d», v'=v/dy. Then, if we put d;=d
dy=d’, and also
8(s,d)=Va s (d)ﬂ%ﬂ—" if d=—1(mod4);

=Vd ; ( )smiﬂ" if d=+1 (mod4);

we find
8= 3 ( )e(d'z, d).

Hence we get the chief formula of this memoir:

1) "s{E*(o+ —-) (a+ “Z")}:- 243 (2)e(az, ).

a=0

But by Kronecker,'™ (2), #(0,A)=2r'Cl(—A), where CI(—A) denotes the
number of primitive positive classes of discriminant —A. And for £=0, m positive
and relatively prime to n, (1) becomes?’® Lerch’s formula®® (1).

For z=4, (1) becomes®*®

n—1 m 2 2
e+ 9] =1 (-3} S aca,
d ranging over the divisors 4k+3 of n. Similar results are obtained by taking
z=% (cf. Lerch®® (2)) and z=1.

274 Annali di Mat. (3), 11, 1905, 79—91
278 Cf Lerch, Rozpravy deaké Akad ., Prague, 7, 1898, No. 7; also Bull. de I’Acad. des Sc.

Bohéme, Prague, 1898, 6 p
276 Reproduced by Lerch in his gnze Essay,278 Acta Math., 30, 1906, 242, formula (40).
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Lerch observed that the sum A of the quadratic residues of an odd number n,
which are prime to n, >0 and <mn, is given by

amd [ (] (] - B () (2

where p,, p,, ..., p, are the distinct prime divisors of n. Hence

WA= § <%> (12) v,
d r=1 4
where d ranges over those divisors of n which have no square factor. By means of
the Moebius function (this History, Vol. I, Ch. XIX), he transformed this into

2°4.=ng (n) —n3 %Gl(—d)Md(n),

where d ranges over those divisors = —1 (mod 4) of n which have no square factor
and
Ms(n)=1{1—(p/d)},

where p ranges over the distinct prime factors of d’=n/d.
M. Lerch®” in a prize essay wrote an expository introduction on class-number
from the later view-point of L. Kronecker'™; and stated without proof that if

X (z)=z—[z] and
m—1 np
R(m,n)= 3 pA (ﬁ)
o=1
and if —A, and —A, are two negative fundamental discriminants, and D=A,A,;
moreover, if for an arbitrary positive integer =, ¢ and » be defined by

(T+UV )’_ t+uVD
2 - 2
then

2 a-a)cu-2)= 3 (i) [+ (o 250 + 182 - 41,

a, b, e

where (a, b, ¢) ranges over a complete system of representative forms of discriminant
D, a>0.

In Ch. I, use is made of Dirichlet’s® fundamental formula (2) to make rigorous
Hermite’s®® deduction of Dirichlet’s?® classic class-number formula (5). By new
methods he obtained the familiar evaluations of the class-number that are due to
Dirichlet,?®* Kronecker,'™ Lebesgue,®® and Cauchy,®® and established anew Kro-
necker’s'™ ratio (4) of C1(D,-Q?) to Cl(D,).

He found that if Dy are fundamental discriminants (i=1, 2, 3, ..., r), and
| Ds| =Ay, and if 2v of the determinants are negative, then

(1) CZ(D1D2. . -Dr)log E(D].Dg. . -Dr)

D,\ /D
—(—1ym 3 (_1)(_2)
(-1) B Ray ..., e \By/ \ Pig

277 Full notes of the Essay were published in Acta Math., 29, 1905, 334-424; 30, 1906, 203-293 ;
Mém. sav. étr., Paris, 1908, 244 pp.

D, . (h h h,
(T)IOg sxn(i + K: +...+ K:)"’

T
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where 0<h¢<Aq, the term containing log0 is to be suppressed, and E (D)=
3(T+UVD). Bytaking r=2, D,=—A, D,= —4, we obtain one of the corollaries:

L G N 1+tan hr/A
Cl(48)log E(48) =2 3 (—h——)log—————-—l_tim hen /A *

In Ch. II, Lerch extended his®* methods of 1897 and obtained new formulas
including the following comprehensive formula, suitable for computation :

T(2)*5"(22) =—s01aD),

a=1 \ O v=1

where —A, D are fundamental discriminants, and A, D>0. Also,

2 VA 2 [—A\1 T(¢)? _
70’("A)—T,§1< ” )7P(£+2vz/A)I‘(f—2vz/A)’ >3 0<a<l

" In Ch.#™ III, the identity in cyclotomic theory*"™
A®) __\punp § (D)2
logB(x) = \/DsgnD“};'1 P lz] <1,
where D>0 is a fundamental discriminant, for the limiting value z=1, gives, by
Kronecker,™* (2) above, the formula,

Cl(D)log E(D) =log ?8?5%&)— log IY(I)V+4¥(I;)Z(1)I.

Suppose D is prime and >3; if in the known identity Y?(1) —DZ*(1) =F (1) =4D,
we put Y (1) =Dz, Z (1) =y, we get y*—D2*= —4; and hence y and z do not satisfy
the equation #*— Du?=4. Hence

D Tr'+UVD

is not an integer. Therefore C1(D) is odd. Similarly, it is proved that if D is
>8 and composite, CI(D) is even (cf. G. L. Dirichlet,”® Zahlentheorie, near the end
of each of the articles 108, 109, 110). Congruences (mod 2) are given for C1(—8m),
m a prime.

Lerch showed (Acta Math.,, pp. 231-233) how to obtain Y (z, D,D,) and
Z(z, D,D,) from the cyclotomic polynomials for D, and D,, and thence found for

D,, D, fundamental and >0,
D, ,D,) +VD,Z(g, D, .
CH(D:D:)log B (D:Ds) = E( ?) og 1}:((;,01;+\/v:128,1)1))’ g otri.

Lerch obtains the following as a new type of formula analogous to Gauss sums:

(1) "‘Ecot—_m \/sol( —39),

=1
where —m is a negative, fundamental, odd discriminant, and & ranges over the
divisors of m which have the form 4k+ 3 (Acta Math., 1906, 248).

278 Chapters III, IV ap;ear in Acta Math., 30, 1908, 203-293.
219 Cf. G. L. Dmchlet ahlentheorie, Art. 105 for notation.
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To express C1(D),where D is fundamental, negative, and uneven (Acta Math., 1906,
PP- 260-279), as the root of congruences (mod 4, 8, 16, ...), Lerch put D=D,D,D,
. « .Dm, where the D; are relatively prime discriminants, and put A=|D|, A¢=|D;|.
All possible products D’=D,D,,... D, and their complementary products
¢’=D,,,D,,,...D,, are formed and A’ ig written for |D’|; also, we let

F() =2 0uD), it ’<0; =0 it D'>0,
(I, Q") =1[1-(D’/q)], q ranging over the distinct divisors of Q’; and (D’,1)=1.
Then
(2) 16(8) - 5 3%=3(0", )F (D),
where 3*s denotes the number of those of the integers s=1, 2, ..., A which satisfy
(D«/s) =1 for all D; simultaneously.

For example, when m=2, D,=—p, D;=+¢, p and ¢ being primes, p=3, ¢g=1
(mod 4), then the last formula becomes

4 2
Ho-1) (=) - - Sve=a1(-pp) + [1-(£)] Zar(-p).
Since 3 (p—1) (¢—1) is_EO (mod 4) and Cl(—p) =1 (mod 2), we have
C1(—pg) =1—(g/p) (mod 4).

Lerch also obtained congruences for C/( — pgr) modulis 8 and 16.
In Ch. IV, a complicated Kronecker relation in exponentials applied to
Lebesgue’s®® class-number formula (1) gives finally the following result:

4x
P Cl(—A,)-Cl(—A;)

_ ® @® ""Al ) (—A,) . . emuri + g 2mumi
=Va, ,,,E._,“El (m n /° - 2m

5 45 ()
+VE 3 3 (52)(Z22)e(e+en/om),
in which s= —2mnwi/(Aw), t=numi/(Asw), while u, o are complex variables,
the imaginary part of o is real and, in the complex plane, « is in the interior of the
parallelogram with vertices at 0, 1, 14+o, . Lerch specializes the formula in several
ways. For example, for A, =A,, u=0, =1, it becomes

[Cl( -A)]’: #;/—A § (.:A) %ﬂ e-smr/A,

T n=1 n

where ®, (k) is the sum of the divisors of %.
 H. Holden,*® in the usual notations*** for the cyclotomic polynomial, wrote

4X,=4X,X,=Y*+pZ* H=k(-p)/[2—-(2/p)].

280 Mesen%er Math., 35 1908, 73-80 (first paper).
281 Gauss, Disq. Arith., Art. 357.

12
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For p a prime of the form 4n+3>0, he found, putting h=h(—p),

W, @ (&), =-vieo(2)pr, (2L)  =(-piws(2)2le=0 g,

@, @ (%), =P (%32),. . =23

=]

1 1 .-
(6), (6) 3= —23—5 =iVpH, EIH, —3 = ( ),v,,h
a, >0, <p, (a/p) =1, (ﬁ/p)=_1, r=¢2ri/p,

The fifth formula had been obtained in a different way by V. Schemmel.?®? The
fifth and sixth are true also when p=4n+-3 is a product of distinct primes.

Holden,?®® by a study of the quadratic residues and non-residues, transformed the
Schemmel-Holden formula (5) above into

) [q-(l)]ﬂ (g—1) z( )+(q 2) z”(%)+...+“"lz’m(_“_),

p /9 (¢-2yp/q \ P
o [ (@a=an 5 ()00 F (a0 E ) e

where ¢ is any positive integer relatively prime to p; and the last series terminates
with the last possible positive coefficient. If g=3 and ¢g=4, (8) becomes

/8 /4 /2
- (P)]m=25(5). s1=s%(5)+ %(5):
p a=0\p o \p p/4\ P
the latter?®* being Dirichlet’s®® formula (5,) ; for, the first or second term of the

second member vanishes according as p=8n+3 or 8n+7.
When ¢=2, 3, 6 successively, (8) becomes three equations which yield

z=2%(3)/{1+(3)+(5)-G)}
and which also lead simply to expressions®*® for

/6
0®= % (-"-) 1=r=s6,
(r—1)p/6 \ P

in terms of H. When g=2, 4, 8 successively, (8) leads to linear expressions for H
in terms of the distribution of quadratic residues and non-residues in the first four
of the octants of p.

When ¢=p—1, (7) yields Dirichlet’s*® formula (6,).

By taking ¢=2, 3, 4, 6, 12 in (8), a table is constructed which shows an upper
bound for 4 when p="7, 11, 19 or 23 (mod 24), a8 b = (p+5)/1R if p=7.

282 Dissertation, Brealau, 1863, 15: Schemmel,®5 (6).

288 Messenger Math., 1906 102-110 (second paper).

284 Cf, Zahlentheone, Art- 108, ed. 4, 1894, 276.

285 Cf, Remarks by R. Dedekind 127 in Maser’s German translation of Disq. Arith., 693-695.
Cf. L. C. Karpinski,2é Jour. fiir Math., 127, 1904, 1-19.
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Dirichlet’s*® formula (6,) is transformed into

H=i(p-1)(p-®)~2" 3 [Vp], p=3 (mod 4).

Holden?*® multiplied each member of (7) by (p/q). The result for g=4 or ¢=2,
p=3 (mod 4), is reduced to

e (S)ex(552), [(2)oma(8) x(552)
Hence )
h::(-1)i<»~l><—;}-), p=3 (mod 4),

n odd, n<p. He found eight similar expressions for h including the cases of
determinants — D, where D=4m+3, 2(4m+1), 2(4m+3) is a product of distinct
primes.

Holden?®®" for the case p=4n+3, a prime, put

( m 1 ) 1 ™ ™ (p-2)m

T ) S Ter T Tae Y Ixe Tt e

where o is a primitive root of 27-*=1, g is a primitive root of 2#*=1 (mod p), and
r is a root of 22=1. Then (6) becomes:

(o, 1) =(2)vF .

A study of the new symbol gives
r-1)
hi= 3 ( )H‘(P 1) —2x.), bh= 2(1,)’\#:
“=

where A, is the number of positive integral solutions k, I = 4 (p—1) for a given p of
the congruence kx +1=0 (mod p), and b is the number of quadratic non-residues

<3p of p. Similarly,

h*=— 2 (w/P) Aa
a=1

Holden®®® in a treatment similar to his first paper?® obtained from his own
transformation?*®

7l =8~ (~1)ieVpoT

of the cyclotomic polynomial, six expressions for 4. For example, if p is prime,

(5. =~vivpe-aa{1-(5)} (B)._=-(2) %
according as p=3 or p=1 (mod 4).

286 Mesasenger Math,, 1906, 110-117 (third paper).
287 Messenger Math.,, (2), 36, 1907 37-45.

288 Jbid., 36, 1907, 69-75 (fourth paper)

“’qu.r Jour. Math , 1903, 235.
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Holden?®* removed the restriction of his second paper?®® that g be relatively prime
to p. He put p=nP, g=nk), where P and Q are relatively prime, and found that,
if p=4m + 3 is free from square factors, then for any positive integer n,

3h [1+(%)] =a,+az+a;+..., %h[l-—(%)]:a,z+a‘+a,+...,

where a, (0<r = n) is the sum of the quadratic characters of the integers between
(r—1)p/(2n)+1 and rp/(2n). As above,*® he found that }(p—3) is an upper
bound of h for p=3 or 15 (mod 24).

Holden,?** by a modification of his second paper,®*® obtained, when p=4n+1 is
a product of distinct primes, Dirichlet’s*® formula (5) ; also writing

/4 n
om 4 ()
n=(r—-1)p/q p

with ¢ prime to p, he found in the respective cases ¢=8, ¢=12,
_(2\ h e 3
. a1+a4—<p>—§, a,—asg ‘L[l"‘(;)]h.
In particular,

q=8, p= 8n+ 1, h=a,—0a;; p=8n+5, h=ay—a,:
q=12, p=RUn+ 1, h=a,—0,=0,—0,=—2(a;+2a,);
p=24n+ 5, h=2R2s=—2(a.+as);
p=24n+13, th=a,=a;= —a,= —a,;
p=R4n+17, h=2(a,—a,)=—2(az+2a,).

E. Meissner®®? supplied the details of the arithmetical proof by Liouville®® of a
class-number relation of the Kronecker type.
G. Humbert,**® following Hermite,*® wrote

A =ISGUNOf(AN+3), 4N+3=(2m+1)(2m+4p+3) -4,
0
=0, =1, =2, ...; m,p=0,1,2, ...,

and recalled that the exponent of g has a chosen value as often as there are quadratic

forms
= (2m +1)2*+4pzy+ (2m+4p+3) y* = az® 4+ 2bzy + cy?

satisfying the conditions ¢>a, |b|<a, a and c¢ uneven, b even. By means of the
modular division of the complex plane, he set up a (1, 1) correspondence between the
principal roots of these forms and those of the reduced uneven forms of determinant
— (4N +3). Hence f(4N+3) =F(4N+3).

Similarly Humbert employed & and (° to mean the same as $C and }+3D in
the notations of Petr.?*

200 Messenger Math., 36, 1907, 75-77 (Addition to second paper 288).
291 Messenger Ma,t.h 36 1907, 126-134 (fifth paper).

292 Vierteljahrs. Naturfors, Gesells. Ziirich, 52, 1907, 208-216.

" 208 Jour. de Math., (6), 3, 1907, 337-449.
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A new class-number relation analogous to Kronecker’s® (VIII) is deduced by
equating coefficients of g™+ in the identity

2e7/o, (V) g OF (89-+7)

=45 1_+—é’ﬂ"" [qi(mu)'( —1)imm-1 4 qj(am-n'( - 1)}(m-1) (m—-m] .

2o (2¢+ )F[sN (2z+1)%]= —28<s,-?-s)

where 2N =283,, 8<8,, 8 and 8§, positive and of different parity.
Similar treatment leads to relations of the Kronecker-Hurwitz type?** such as

3 (~DmOF[EN+4— (2m+1)]=3(~ D)0,
m>

The result is

a ranging over the solutions of 2N +1=a2%+2b%, 2>0.
Four class-number relations of Liouville’s'®” first type are obtained, including two
of Petr,**® and also

8(— 1)"[2( 1)™(2m+1)F (4N +1— (2m+1)’]——2z( )d’+2(a’ ),

in which 4N+1 at+4b%; a>0; 4N+1=dd’, d < d’; the term in wh.lch d=d’
is divided by 2.

New deductions of five of Petr’s?®® class-number relations of Liouville’s®®? second
type are given (pp. 369-371).

Like Petr,**® by recourse to transformations of order 2 of theta functions, but
independently, Humbert obtained class-number relations involving the forms z®— 2¢*,
including Humbert’s (57), which is a slight modification of Petr’s?*® (1) above, and
including Humbert’s (52), which is Petr’s®**® (2) above.

A geometric discussion, analogous to the one above in which Humbert evaluated
=, now shows (pp. 385-8) that for a negative determinant —M, M =3 (mod 8),
there is a (8, 1) correspondence between the proper and improper reduced forms.
The corresponding well-known relation (Dirichlet®) is similarly established for
M=" (mod 8).

To prove a theorem of Liouville,’® Humbert finds (pp. 391-2) in Liouville’s
notation that, for a determinant— (8M+3),

Sa(a’ —a) =23 (2mym, + 2mym]’ + 2mim] —mi—m[*—m]"),
where a and @’ = a are the two odd minima of any odd class, while m,, m’, m!’
denote the first uneven minima of the three odd classes corresponding to a single
even class, and where summation on the right is taken over the even classes. But
the right summand equals 8M + 3, whence
Sa(a’—a)=8(8M +3)F(8M +3).

294 ,, Kronecker,12¢ Monatsber. Akad. Wiss. Berlin, 1875, 230; A. Hurwitg,202 Jour. fiir
Math., 99, 1886 167-168.

295 Cf 262 (I;g)zpravgr Zesks Akad., Prague, 9, 1800, Mem. 388. In Humbert’s memoir the two
are . .

296 Rogpravy ceské Akad.25¢ Prague, 9, 1800, Mem. 38.

397 Jour. de Math.,107 (2) 12, 1867, 99. The five are numbered (40)- (44) by Humbert.
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To obtain class-number relations in terms of minima of classes, Humbert equated
the coefficients of ¢g"*! in the identity

4 =§q""a,,.[1—2g’ﬂ+...+2(—1)ﬂq’W+...],
where
Am=q 43¢ +...+(—1)"1(2m—1)g @MDY = 12: (—=1)mg™.
The coefficient in the first member is
,2,, (—1)=vF (4N + 3 — 422 —4y?).
In the second member, 4N +3=4m?— (2u—1)2+4+8mp, (m=1,p>0, 1 =p=m);
and the coefficient is 3 ( —1)#*-2(2x—1). When
4N+3=(2m+2p—2p+1) (2m+2p+2u—1) —4p*

is identified with ac—b? the negative of the discriminant of form (a, b, ¢); ¢ and ¢
uneven; ¢>a; a>b; b=0; the latter coefficient is

23(— 1)Ko} (0—a) =3 (= 1)VE (b — ) (— 1) 00,

where the summation on the right is over the proper classes of determinant— (4N +
3), and py,pe(p1 = po) are the two uneven minima of a class. '
Similarly, from .e%,6 Humbert obtained

43(—1)°F[ 4N —42?— (29 +1)?] =23p(—1)1tatmtd)
summed over all pairs of integers z, y, where p is the even minimum, u,, p, the odd

minima of an odd class of determinant —4N.
By equating the coefficients of ¢¥ in the identity

— 4o/ (—q) e/ 6,=8% 1m'_ 2qj_m +83m? 1—2;— [1+2¢7+...+2¢ V7,
we obtain the class-number relation

(—1)¥ 3 (=1)P(AN—4h=1)B(4h+1) =753,
A0

where ®(n) is the sum of the divisors of n, and p is the even minimum of an odd

class of determinant —4N.
Similarly, from the expansion of (®3i4, it is stated that

s I[4N—1—(4h+3)] B(4h+3) = A3,
120 4
where I(D)=F(D)—3F,(D), and F,(D) denotes the number of even classes of
determinant — D.
Five more new class-number relations involving minima include
8 E F[8M +3— (4h+3) ]y (4h+3) =3v,(vs—v,),
A0
in which ¢(n) denotes the sum of the divisors <Vn of n; the summation on the
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right extends over the even classes of — (84 +3); and », v, vs; are the three
minima of a class, v, S v, = v,.

To obtain class-number relations of grade 3 of the Qierster*s-Hurwitze" 18¢
type,*** Humbert employed the fundamental formula of Petr**® and Humbert,5

(1) 7,6,H,0,H?/®*=2H,(=, \/E)fq‘“"*”/°F(8v+ 7)
—4?‘.q*<"'+1"-[(2m-1)q'i"""1" + (]3m—5) g™t | leos(2m+1)z.

By setting 2=0, and equating coefficients of ¢¥, we obtain

() 0=3F[8N~ (3m+1)2] —2%(5,~3),

2N =83,, 8, even, & odd, 8281, m arbitrary.

In (1), we put z==/3 and use the formula for ®(3z,¢%). In the resulting
identity we equate the coefficients of ¢¥ and use the fact that the number of solutions of

8N=(22+1)*+ (2y+1)2+3(22+1)+3 (2% +1)*

is 163d’, where d’ ranges over the divisors of N which have uneven conjugates and
which are not multiples of 3. Whence, for N = —1 (mod 3), the final result is

—383d’=23F[8N— (3m+1)*]cos(2m +1)x/3— 43 (8, —8) cos (3, +8) x/3

in which 2N =83,, so that cos(3,+8)w/3=4. This result combined with (2) gives,
for N=—1 (mod 3), the relations®®* (p. 418):

SF[8N—9(2+1)*]=3d, 3F[8N— (6p1)*]=—3d'+23(¥—3),

summed over all integers p, p, where d” is a divisor of N which has an odd conjugate
and 8’8=2N, 8,>3, 8, is even and 3 uneven. Corresponding results®! are obtained for
N=0,1 (mod 3).

Transformations of the third order yield also, for N=6I+1 (p. 431),

2ZG(N—9) =15 A+33d,

summed over all integers v, and all divisors d of N, where G(m) is the number of
classes of determinant —m, and .4, is the number of decompositions of N into the
sum of 4 squares in which 3 of the squares are multiples of 3.

Humbert evaluated such sums®*** as SF(N —9*), with N arbitrary; but it is done
with less directness than by Petr.®*® New expansions lead to such relations®®* as

2(—=1)"F (24N —1—-24m*) = —Sy(—1/y) (—1) ¥,
48N —-2=2"—6y*, y>0, z>3y;

63(—1)"F, [24N+1—6(6m+1)’] =_x3 (%) (z—3y),

24N +1=2*—6y? y = 0, >3y, each summed over all integers m. Terms in which
y=0 are divided by 2.

208 Cf, Klein-Fricke,17 Elliptische Modulfunctionen, II, 1892, 231-234.

299 Cf, Petr,252 formula (1). .

800 Numbered (10) in Humbert’s memoir. .

801 Humbert gave the results also in Comptes Rendus, Paris, 145, 1907, 5-10.
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Humbert®*? gave five new class-number relations involving minima®'® of the classes.
H. Teege®** partly by induction concluded that, when P=8n+3 is a product of

distinct primes,

SR (2)ar (D) av0161200vE, F(8)a-"T(2) a0,
1 \P a+(P+1)/4 P a>0. e+ a\P o= 1 \P a>
These combined confirm, in view of Dirichlet’s?® formula (6), Gauss’ conjecture
(Disq. Arith.,* Art. 303) that the number of negative determinants which have a
class number % is finite for every A.

K. Petr*®® recalled that the number of representations of any number N by the
representatives (Dirichlet,”® (2)) of all the classes of positive forms az®+ bzy + cy®
of negative fundamental discriminant D is 73(D, d), summed for the divisors d of
N, where the symbol (D, d) is that of Weber®® for the generalized quadratic char-
acter of D. Hence,*" if D< —4,

(1) 3 3 eowa'=23gV(3(D,d))+h, |gl<L,
lase 2,
case ny z,y=0, =1, =2,...; N=1,2,3, ...,

where % is the number of positive classes of D.
By methods of L. Kronecker®®® he obtamed

L] L]

{7 (am3+d. %) — —47 {71 (am3+bmn+cnd) /D
(2) n=2_m ﬂf—w e‘l’ T(am mn+on®) rv i 2 —i e i1 (am’ ¢ s
where 7, = —1/7. Next, by the use of theta functions, he found
—D—1 @’ (kr/D, ) .2
D, k) — 7 =4m N/IDI(5(D, d)),
3) 2 ) @ (kr/D, 7) 2 ¢VPIG(D, )

d is any diviser of N. Now (1), (2), (3) imply

Dk @ (kr/D,7) _o 26234bey+or®) /D __ Qg
&) 2D.B) G oy =mEET

2 Y=L 3 3 giestvera® _ghai,

T Clzy

where r,= —1/r and ¢,=e"*". For the same transformation r,=~1/r,

*(kr/D, * (k/D, 1,)
(5) 20,0 e i+ QU] = L300 R,

k=1,2,..., —D—1. By useof (5), we get

. k —D y
(6) 2t [—h+§ o (D, k)] —9% VT D 2,,2,, g2 losvevrar®

=Lione(L, ) /@(%, n).

302 Comptes Rendus, Paris, 145, 1907, 654-658.

308 Jour. de Math., (6), 3, 1907, ’393-410.

304 Mitt. Math. Gesell, Hamburg, 4, 1907, 304-3

808 Sitzungsber. Bshmische Gesells. Wiss. (Math -Natur) Prague, 1907, No. 18, 8 pp.
808 Algebra, ITI, 1908, § 85.

307 Cf, H. Pomcaré Jour, fir Math., 129, 1905, 126.

808 Sitgungsber. Akad. Wies. Berlin, 1885 II, 761.
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Now the right member of (6) is the product of 1/7 by a power series in g,. Hence
the quantity in brackets in (6) is zero (Dirichlet,’® (1)). For, otherwise (6) would
imply that r= —=ti/log g, could be expressed as a power series in g, which converges
for all ¢, such that |¢,|<1. Moreover, the comparison now of the two members of
(6) in the light of (1) gives Lebesgue’s®® formula (1) :

_ -1 ok
h= =g 3D, kot T

An alternative form of (6) is the following:

m{-hu% (D.%) }= 1 {2k =D+#3(D, k)cot xk/D}.

The last two class-number formulas above follow now elegantly when r is regarded
as a variable occurring in an identity.

H. Holden®*® applied the method of his first paper?° to a product p=4n+3 of
distinct primes, and stated the four possible results including

(22),_.=- (-0me(0) 112

He generalized the method of his fourth paper**® from primes p=4n+3 and 4n+1
to products of primes, and gave the four possible formulas including

p=dn+1, (g; = (=1,

where m is the number of integers between p and 3p, and prime to p.

H. Weber®® in a revised edition of his book on Elliptic Functions modified his
earlier discussion?'¢ of class-number to apply to Kronecker forms,»™ in which the
middle coefficient is indifferently even or uneven. He also (§ 85) replaced the
Legendre-Jacobi-Kronecker symbol**® (D/n) by (D, n) which he redefined and gave
details (§896-100) of Dedekind’s**™ solution of the Gauss* Problem.

M. Plancherel®'! extended certain researches of A. Hurwitz*'? and M. Lerch?'® by
finding the residue of CI(D) modulo 2™, where D=D,D;...Dn and D, D,, D,,
<.+, D are fundamental discriminants. He deduced Lerch’s formula®*

m A m
(1) §¢(A)-%§*s=z : (D,D,...D,,A, ... )P(D,D,...D,),

a=1l r,...y g
where A=|D|, A¢=|Dy|; (D, @) =1 (1—(D/q), g ranging over the different prime
factors of @, and (D, 1)=1; P(D) = CL(D) if D is <0, P(D)=0 if D is >0;
and 5* denotes that those values s only are taken which satisfy
' (D,/8)=(Dy/s)=...=(Dm/s)=1.

809 Messenger Math., 37, 1908, 13-16. )

810 Lehrbuch der Algebra, Braunschweig, III, 1908, 413427,

311 Thesis, Pavia, 1908, 94 pp. Revista di fisica, matematica, Pavia, 17, 1908, 265-280, 505-515,
585-506; 18, 1908, 77-93, 179-196, 243-257.

812 Acta Math.,288 19, 1895, 378-379. .

818 Acta Math., 30, 1908, 260-279; Mém. présentés par divers savants 3 '’Académie des sc.,
33, 1906, Chapter IIT of the Prize Essay.378

#1¢ Acta Math.278 30, 1008, 261. Lerch,:™8 (2).
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Hereafter A; are assumed to be primes. Then 3¢(A) =0 (mod 2™2). But
o.D,,...D,, 4, ... A, ) =0 (mod 2™?).

a+l

It follows that
P(D,.lD,’. .. D,_) =0 (mod 2*), P(D,D,...Dn)=0 (mod 2™*).
The latter for D<0 is the rule derived from genera (cf. C. F. Gauss, Disq. Arith.,
Arts. 252, 231; L. Kronecker, Monatsber. Akad. Wiss. Berlin, 1864, 297; reports
of both in Ch. IV). Thus (1) implies
P(D,...Ds) E;M;(Al. ..Am)
m —]
+3 3 (D,‘. ..D,., A,

a=1 7y, ..., 7g a a+1

...A )P(D, ...D,) (mod 2m).

For a negative determinant D= —p,p,. . . Pam:1¢19;- - - gn, Where p, ¢ are primes >0
and —p=¢=1 (mod 4), this leads to
() Cl(=pi1p2- . -PomeraG2- - - Gn)
am+1
E%pfl ?‘((—l)ﬂpr,pr,' . 'prﬂl “Prypy 0 " Pmaafe- - - qa)
$(Pr,---Pr,) (mod Zomems),
where the symbol ( | ) is defined by the recurrence relation
(D,D,...Ds|Dayy. . .Dm)
m—a—1
= 3 E(DI...DGD‘)“”‘...D‘)GH” Ap‘”“”.--.Apm)'(Dl...Da,Dpwu oo Dp'ﬂ_”'),

u=0 p
and by the formula
(Da|DgDy) = (DaDg, Ay) (Da, Ap) + (DaDy, Ag) (Da, Dy) + (Da, AgAy).
He disposed completely of the new special case m=5 by (2) as in the following
particular example:
m=5, D,=—p,, Dy,=—p,, Dy=—p,, D,;=q,, Ds=gq,,

(B)=()=-()=x (G)=()=-()=~

The result in this case is

Cl(D)=2(1—¢) (1—e) [1—(—4/0)]
+2(1—a&) [2(1—gm:) + (1—p) (1—(—4/0))] (mod 32),
where
m=(0/0s), 1.=(2:s/P1), m=(P/P:); p=(4/q2), o=n+n+ns

For D=D,D,D;...Dm, |Do|=8 or 4, he obtained analogues of (1) and finally
congruences (mod 2™) for C1(D). He noted that Cl(—4¢1¢s...gm) =0 (mod
2m+1) if each ¢;=1 (mod 8). '

G. Humbert?®'® obtained formulas which express new relations between the minima
of odd classes of a negative determinant —n and those functions of the type y(n),

815 Jour. de Math., (8), 4, 1908, 379-393. Abstract, Comptes Rendus, Paris, 148, 1908, 905-908.



CHap. VI BINARY QUADRATIO ForM Crass NUMBER. 181

x(n) of the divisors of # which occur in the right member of Kronecker’s® class-
number relations. Thus were obtained alternate forms for the right members of
old class-number relations.

E. Chatelain®® obtained the ratio (see the Gauss* Problem) between the num-
ber of properly primitive classes of forms of determinant p°D, p a prime, and the
number of determinant D. As the representatives of the first, he chose the type
(ap?, bp, ¢) with ¢ prime to p; as representatives of the second, he chose the type
(a’, ¥’, ¢’) with ¢’ prime to p. Then between the i (p*-I) forms (a, b, ¢) and the
h(D) forms (a’, b’ ¢") he set up a (¥, 1) correspondence by means of a relative
equivalence given by the unit substitution (345), 8=0 (mod p). Similarly he found
the ratio of the number of classes of the two primitive orders of a given determinant.
His proofs are similar to those of Lipschitz.**

M. Lerch®'” gave two deductions of

A-1/_A\ k=1

3 (——) 3 (—1)/k=4(1—2)K*—K,

k=2 k a=1
where —A is a negative uneven fundamental discriminant, K =2+"1Cl(—A), e=
(2/A). Here, if A=3, K=4. The second and more elementary deduction rests on

Lerch’s?¢° formula (3).
He deduced several formulas which he had published earlier,®® including

a-1/__
) (—A)tml’ﬂ'=(-1)i4\-14—\—/_K K, A=0 (mod 8).
h=1 h h’ T

K. Petr®*® reproduced his®**® discussion of 1907; and, by equating coefficients of
g" in the expansion of doubly periodic functions of the third kind, obtained
Schemmel’s®® formula (4) ; also the number & of primitive classes of the negative
fundamental discriminant — D =D,D, for D;>0and =4n+1:

h=— . Ek (Dy; ,) (D, kz)‘k,‘k,’
1 3

where k:=0, 1,2, ..., |D¢|—1; ¢=1, 2, and where &, =1 or 0 according as k,/D, +
k,/D,>0 or <0, and (D, k) is the Weber symbol.22°
Similarly, for —D= —D,D,Ds, a negative fundamental discriminant,

k
h==3(D, k) (Do) (Du k) -E(g + 37+ 7),

where k¢=1,2, ..., |Di|—1;1=1, 2, 3; and E(—a)=—E(a)—1 if a>0. These
two formulas are special cases of a formula of M. Lerch on p. 41 of his prize essay.*”
See Acta Math., 29, 1905, p. 872, formula (16). Cf. Lerch,*” (1).

J. V. Pexider® for the case of a prime p=8u+3, wrote r and p respectively for
a quadratic residue and non-residue of p, and combined the obvious identity

(1) 2r+3p=3p(p—1)
with Dirichlet’s'¢ formula (3), viz.,
(2) Sp—3r=2p,

316 Thesis, University of Ziirich, 1908. Published at Paris, 1908, 79 pp.

317 Rospravy Geské Akad., Prague, 17, 1908, No. 6, 20 pp. (Bohemian).

818 Ler?iz, Acta Math,, 30, 1908, 237, formulas (36)-(39). Chapter III of Prize Essay.278
319 Cagopis, Prague, 37, 1908, 2441 (Bohemian).

820 Archiv Math. Phys. (3), 14, 1908-9, 84-88.
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where 3\ is the number of properly primitive classes of determinant —p. The
result is

= %1_ ig,__?_gp_ L‘l

PP 2
According to M. A. Stern, if p is a prime 4p+ 3, there exists an integer o such that
(3) 23r—3Sp=op.

From (1), (2), (38), we get 3A=3(p—1) —20. This result compared with Dirich-
let’s** class-number formula (3) shows that o is the number of quadratic non-residues
of p which are <3p.

For a prime p=8u+7, (2) holds provided now A=h(—p). Hence by (3),
h(—p)=3(p—3) —2, where x denotes the number of the quadratic non-residues
of p between 0 and }p. Dirichlet’s’* formula (3) combined with the last result
shows that

B=x+3(p+1), A=R+3(p+1),

where A and R are respectively the number of positive quadratic residues of p less
than 3p and p, and B is the number of quadratic non-residues <3p.

A. Friedmann and J. Tamarkine?®?* in a study of quadratic residues and Ber-
moullian numbers, replaced %b—3a in Dirichlet’s'* formula (3) so that for p a
prime =3 (mod 4), the latter becomes Cauchy’s*® class-number congruence (1) in

the form?*?
W(=p)=[2= (%)] (=14 2Bipays (mod p).

M. Lerch®® found that, for P a prime, ‘

21!'0- 1
_ 16G-Pr+y —__
T cot 5= (—1) Vid
where a ranges over all positive integers <P prime to P such that (a/P)=1. Cf.

Stern.?!)
" @. Humbert®** introduced a parameter ¢ in the 6é-function, and considered

H(z+a) and ®(a). Then, by Hermite’s®® method, he found that

+o
3 (—1)%cos 2ka 3 cos 3 (my—m,)a=(—1)¥2d cos da,
k=—w CI(4N +8—4k2) d

where m, and m, are odd minima (m, = m,) of a reduced form of negative determi-
nant — (4N +3—4%?), and d is a divisor of 4N +3 not exceeding its square root.
For a=0, this becomes Hermite’s®® relation (5). For a=1m, it becomes
T (- 3 (——2-—)= (—1)~:d(1) ,
b= ClaN +3—16k'5) \ 3 (My—m, ) d

where (2/d) is the Jacobi-Legendre symbol. If N is uneven, this is Kronecker’s®
relation (VII).

321 Jour. fiir Math., 135, 1908-9, 146-156.

322 Mém. Institut de France, 17 1840, 445; Oeuvres (1), I11, 172,

828 Encyclopédie des sc. math., 1910, tome 1, vol. 3, p. 300
82¢ Comptes Rendus, Paris, 150 1910, 431433,
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P. Bachmann®?® supplied the details of Liouville’s® arithmetical deduction of a

class-number relation of the Kronecker type (cf. Meissner®®?).

M. Lerch,*?¢ by a study of Kronecker’s'™ generalized symbol (D/n), transformed
the left member of Lerch’s®¢® formula (3), for a negative fundamental discriminant
—A, and m not divisible by A, and found that

@ "E(54)E(R)=1[e-0{1-(3)}

-{1—(%)}] K, E=201(-a).
30502 (3)) .
Then by formula?¢® (4), we have

D /A 1— —2 2
3 <a. )ta—-[n 2e+—’2i+€-—2——(2—€)K]K, €=(K>’

a=1

Put

1g =

Ms

Since h(—A) = (2—¢) K, we have, for A=2n+1,

D/ _A\. _[(A-1 h
3 (a )t“_< p) _h)—2—'

a=1

Similarly for A=4P,
A — ma
(= 1) 1)(P)t¢_K(2P 1-2K), i='3 {e(58) - 2£(pe) ).

a=1 m=1

For a negative prime discriminant —A, A=4k+3, (1) implies:
h(—4a)= 2 ( 1)fa.

L. E. chkson,”" by a method similar to the method of Landau®® in the case of
Gauss forms, showed that for P>28 no negative discriminant —P=0 (mod 4)

could have a single primitive class.
For P=3 (mod 4), P with distinct factors, there are obviously two or more

reduced forms. Hence, if there is only the one reduced form [1, 1, }(1 +P)], then
P=1p¢, where p is a prime =3 (mod 4) and e is odd. But for p>3 and ¢ > 3, a
second primitive reduced form is [}(p+1), 1, (#*+1)/(p+1)]. For P=3 e 5,
a second primitive reduced form is (7, 3, 9) or [9, 3, i(3°"+1)] Hence beyond 27
we need consider only primes P. We set

Ty=3[(%+1)*+P]=To+j(j+1).

For any integer m and any T, there is some Ty, 0 = 7 = $(m—1), such that Ty =T,
(mod m). From this lemma and by indirect proof it is found®*® that there is a single
reduced form of discriminant — P if and only if Ty, T4, T, ..., Ty are all prime
numbers, where 29+ 1 denotes the greatest odd integers = VP/3.

328 Niedere Zahlentheone, Lelpzlg, 11, 1910, 423-433.

826 Annaes scient. da Acad. Polyt., Porto, 6 1911, 72-76.
827 Bull Amer. Math. 8oc., (2), 17 1911, 534-537.

828 Cf, M. Lerch 262 Math. Annalen, 57 1903, 570.
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When P=7 (mod 8) and >7, T, is even and >2, and hence composite. A
detailed study of P=3 (mod 8) =8k—5 shows that for all P>163 some 7' is com-
posite except perhaps for k=3¢ and t=>5/+12 or 51+ 13. With this result and by a
stencil device Dickson showed that no P under 1,500,000 except P=3, 4, 7, 8, 11, 12,
16, 19, 27, 28, 43, 67, 163 could have a single primitive class.

M. Lerch?®®® obtained the chief results of Dirichlet by simple arithmetical methods
and reproduced the deduction of several of his?¢* 2’” own labor-saving formulas.

E. Landau®*® established Pfeiffer’s!®® asymptotic expression for K(z) =31=3H,
where H, denotes the number of classes of forms az®+28zy+ yy* of negatlve deter-
minant —n. Let Hyy be the number of non-equivalent reduced forms of determinant
—n and with |8|=v. Then for a given n, in each reduced form y = a = 2, and
v= Vn/3. Thus

z Vn/3
K(z)=3% X H,= 3 (H,,o+ E H,,,)
ﬂ

n—l =0

=S H,+ 4 Hy,= 2 Haot z R(z, v).

n=1 v=1 n=8p2
But H,, is the number of solutions of ay=n, y = a. That is, if T(n) is the number
of divisors of n, Hao=3T(n), if n is not a square; but Ha,=#{T(n)+1},ifnisa
square. Hence

() 3 Ho=i3 T(n)+}{Vz] =iz loga+ (0~ Da+0(V3),

where C is Euler’s constant (=0.57721 ...) and O(k) is of the order'*? of %.
For a given v>0, Landau evaluated
R(z,v)= 2 Hy»,

n=8p2
by noting that R(z, v) is the number of solutions of
ay=vV+z, ySaS,
each solution being counted twice when y>a>2v. Hence B(z, v) is the number of
lattice points in the finite area defined by these inequalities in the ay-plane, lattice
points in the interior and on the hyperbolic arc exclusive of its extremities being

counted twice. The resulting value of

'LR(z,v)

r=1
combined with (1) now gives

K(2)= 2 nei— 2 +0(at log 2).

If S¢ corresponds to K, but refers to classes having o and y both even, the result
obtained is

S (2) = fgai— % +0(z log z).

829 Cagopis, Prague, 40, 1911, 425-446 (Bohemi
830 Sitzungsber. Akad. Wiss. Wien (Math -Phys ), 121 II, a, 1912, 2246-2283.
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Landau,*®* by a study of the number of lattice points in a sphere, found that if C
is the number of solutions of ¥*+ v+ w*=n,

3 C,=4mel+0(at),
n=1

where*” only the order of the last term is indicated and e is a small arbitrary positive
quantity. But by Kronecker® (XI) above, if F(n) denotes the number of uneven
classes of forms az®+Rbzy+cy® of determinant —n, then C,=8F(n), if n=3
(mod 8) ; Ch=12F(n), in all other cases except n="7 (mod 8).

In u®+v*+w?=1 (mod 4) evidently

vwiv:w=1:1:0,1:0:1,0:1:1 (mod 2).

Hence
2F(n)= a:+0(a:*“), n=1 (mod 4).

This holds also for n=2 (mod 4) ; but
2 F(n)= a:*+0(z*"), n=3 (mod 8).

n=1

J. V. Uspensky,*? by means of lemmas of the types of Liouville’s,’® gave a com-
plete arithmetical demonstration of each of Kronecker’s® classic eight class-number
relations. See Cresse.®™.

J. Chapelon®® obtained a new identity derived from transformation of the 5th
order of elliptic functions and with it followed the procedure of Humbert.®** He
added to Gierster’s'®® list of class-number relations of the 5th grade two new ones and
gave relations also for

SF(4N—2%), z=6 (mod 10); SF(4N—2%), z= =1 (mod 10);

and for 3F (N — 252*) summed over all integers z, where N=5#N’=0 (mod 10), and
N’ is not divisible by 5. He gave®® 24 class-number relations for SF(N —z%) and
H(N—2®) which are characterized by various combinations of the congruences
N=+2, +4 (mod 10) with =0, =1, =2 (mod 5). These 24 relations include
Gierster’s relations of the 5th grade.’® The right hand members of Chapelon’s class-
number relations in these two memoirs are all illustrated by the following example
for N=2 (mod 10):

SF(N—2') =§3d"—§3 (- 1) @' +33(-1)4(d, -d),

z==+1 (mod 5), where d’ is any divisor of N and N=d,d with d, = d (see
Chapelon’s thesis®¢).

G. Humbert,®®® after giving an account (Humbert!®® of Ch. I) of his principal
reduced forms of positive determinant D, proved that for D=8M +3

3(—1/8)f(a— b)) =237(2k+1), B=[b|—}(a+0),

281 Gottingen Nachr., 1912, 764-769.

882 Math. Sbornik, Moscow 29, 1913, 26-52 (Russian).
838 Comptes Rendus, Paris, 156 1013, '675-677.

83¢ Jour. de Math., (8), 8, 1907, '431.

835 Jbid., 1661-1663

336 Compws Rendus, Paris, 157, 1913, 1361-1362.
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where f(z) is an arbitrary even function ; the summation on the left extends over all
principal reduced forms (a, b, ¢) of determinant D; and the summation on the
right extends over all decompositions,

8M+3=(2k+1)24 (2K +1)2+ (2K”+1)%, Kk, ¥/, k” each =0,

of 8M 43 into the sum of three squares. When f(z) =1 and we employ the known
value (cf. Kronecker’s® formula (XI)) for the number of decompositions, we have

F(8M +3)=43(-1/8).
If f(z) =22, we have
$(8M +3)F(8M +3) =%(—1/B)2B(a+c).

G. Rabinovitch®*®* proved that the class-number of the field defined by V —d,
where d=4m —1, is unity if and only if 22—z+m(z=1, ..., m—1) are all primes.
Fewer conditions are given by T. Nagel.3¢®

G. Humbert,*® by Hermite’s method of equating coefficients in theta-function
expansions, found that, for all the negative determinants — (8M +4—4%?), in which
M is fixed, the number of odd classes for which the even minimum is not a multiple
of 8 is the sum of the divisors of 2 +1. Similarly for determinants — (8M —4%?),
the number of these classes is 2(8+38,) the summation being extended over all the
decompositions 2M =838,, 8 odd, 8, even, 8<8,. Also, by Hermite’s method com-
bined with the use of an even function (cf. Humbert®®*¢), he**® obtained the following
formula for the number F of odd classes having the minimum and the sum of the
two odd minima =0 (mod p), p arbitrary:

S(—1)"F(4N+3—4*) = (—1)¥3d,

r<, =, >0, and for h arbitrary, r is =k (mod p), 4N +3=pdd,, with pd<d,, and
d, = +4h (mod p).

*F. Lévy®®® discussed the determination of the number of classes of a negative
determinant by means of elliptic functions.

J. Chapelon®® gave an outline of the history of class-number relations of the
general Kronecker® type and listed Gierster’s'®® relations of the 5th grade. Ex-
amples will be given here merely to characterize each of the six exhaustive chapters
of the thesis.

Chapter I contains theorems on the divisors of a number. Let N=24N’=5°N"=
2s5°N’”’, N’ and N”’ prime to 2 and 5 respectively; N=d,d, d, = d; d’ any divisor
of N; and, let #=3d'(d’/5), HB,=3(—1)¥d"(d’/5), @ =3(dr~d)(d,+d/5).
Alsolet N=da,d>VN,a<VN. Then

2[(5)+(5)]e=il1+o(5)] #-1

8868 Jour. fiir Math., 142, 1913, 153-164; abstr. in Proc. Fifth Internat. Congress Math.,
Cambridge, I, 1913, 418-421.

8360 Abh. Math. Seminar Hamburgischen Universitit, 1, 1922, 140-150.

337 Comptes Rendus, Paris, 1568, 1914, 297.

338 Jbid., 1841-1845.

839 Thesis, Ziirich, published A. Kiindig, Geneva, 1914, 48 pp.

340 Thége, Sur les relations entre les nombres des classes de formes quadratiques binaires,
Paris, 1914, 197 pp.; Jour. de 'Ecole Polytechnique, Paris, 19, 1915.
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Chapter II gives, in Hermite®-Humbert?®® notation, lists of standard transforma-
tion formulas for the ®-function and expansions of ®-functions and #-functions.

Chapter III presents fundamental formulss for the transformation of the fifth
order of ®-functions. In

®(5u, 57) =C, IO (uxm/5), 1=0,1,2,

C, is found to be 7°/7 where 7=%(¢®) and n=7(g) =3 o(—1)mgrembs,

Chapter IV deals with the representation of a number by certain quaternary
quadratic forms. In (p 90)

a' L =3 ML _gy M

T 1—gm i—gm cos 2mz,
put z=w/5 and z=2/5 and subtract. Equating coefficients of ¢g¥, we get
(1) [6 A (U) — #(2U)] =10 B + 28,

where _#(N) and .« (N) are respectively the number of decompositions (in
which the order is regarded)
AN=(2z+1)*+ (2y+1)*+ (22+1)2+5(2t+1)2,
4N=(2z+1)*+5(2y+1)*4+5(22+1)2+5(2%+1)*.

Frox;l another expansion it is similarly found that

) —3 M+ 3 A =5"(N""/5)2823¢/ (6'/5),

summed over all divisors ¢’ of N’””. Then by (1) and (2),
A(N) =3[1+5"(N"/5) ][5 B+ ]

Suppose that N is even. Since for a fixed value of z, F[4N—5(22+1)*] is the
number of positive solutions ¢, u, v of t*+u*+v*=4N—-5(2z+1)* (p. 118),
(8) 3 F(AN—5(22-+1)%) = s sl (N) = F5[14 5" (N"/5)] (5B + B)).
z=0
This is a special case of Liouville’s’®" (4).
In terms of functions like ¢ and _¢; above, Chapelon found in Ch. V expres-
‘sions for

SF(SM—4—2°), zF(@’—i“—‘i’) 2[«'(8” —2! ) SF(N—2%),

25
N—22 N—22
se(i5), sov-en, 5(%58);
where z=bo+k or 10c=+k, k constant; E(N)=F(N)—H(N), J(N)=F(N)+
3H(N).

In Ch. VI, Chapelon found sets of relations equivalent to each one of Gierster’s!®®
relations of grade 5; and added large sets of new relations, the sets being dis-
tinguished by the residue of N modulo 10. He (p. 171) proved Liouville*¢ (1).

H. N. Wright** tabulated the reduced forms az®+ 2bzy+cy® of negative determi-
nant —A=D for A=1 to 150 and 800 to 848. The values of b, ¢ occur at the inter-

841 University of California Publications, Berkeley, 1, 1914, No. 5, 97-114.
13
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section of the columns giving @ and the row giving A. For a given a, the reduced
form occurs in periods, each period covering & values of A ; and each period having the
same sequence of b’s. For a given D, the a’s are found among those for which there
is a solution of =D (mod a). For the case of A without square divisors, he wrote

r u 0
A=T1IEk, a=ThETIESs, N
0 (1] 1

where k and k are primes; ho=2, 8;>1 and the k”s are those odd k:’s which in a have
exponents >1. Let v be the number of distinct factors k” of a; let A be the greatest
value of v for any a. Then for the given D, the number of reduced forms with

46 = VA is found to be

3 (—1) Va 2) Al+1PP. D)
3oz [0 () +2 (Ve (3) )
where ¢ is the ¢ product formed by taking v factors ¥”; P, is a positive odd
integer, Pe a positive even integer, both = VA; (D/P,) is a modified Jacobi symbol
and if P.= P27, P, odd, then (D/P.) = (D/P})(D/2"), where (D/2r) is defined
so that 14 (D/2r) is the number of solutions of z*=D (mod 2).

The few remaining possible values of o which are >VA and = V4A/3 or
= #[~1+2V1+3A], according as @ is even or odd, are to be tested by the most
elementary methods. Examples show the advantage of this whole process over the
classic one of Dirichlet,?® (5).

E. Landau®? investigated the asymptotic sum of Dirichlet’s series®

2 (az®+Rbzy+cy?)t,

in the neighborhood of s=1 for a form of positive determinant D. (For D<0, see
Ch. de la Vallée Poussin, Annales Soc. Sc. Brussells, 20, 1895-6, 372-4).

L. J. Mordell*** announced the equivalent of two serviceable identities of Pet;
in theta-functions. For, Mordell’s Q and R are respectively Petr’s C and 4-D. By
specializing the arguments in the identities and equating coefficients of like powers
of g, Mordell found new representatives of five types of class-number relations such
as Petr®®® 258 gnd Humbert?*® had deduced.

K. Petr®*® combined C. Biehler’s®*® generalized Hermetian theta-function expan-
gions, which Petr had used twice?* 2% before, now with W. Goring’s**’ formulas
given by the transformation of the third order of the theta-functions. He obtained

gix expansions similar to the following®®:

{73

3 o m-1
B,=0,0!2 (gz)(%)(%) = 75 +BO,(1) =4 33 2k cos 2mn/3,

in which ¢= ¢*t7, and B is found® to be 837 ¢F(N), where as usual F(n) is the

342 Jahresbericht d. Deutschen Math.-Vereinigung, 24, 1915, 250-278.

848 Messenger Math., 45, 1915, 76-80.

344 Rozpravy eské Akad. Prague, 9, 1900, No. 38 (Petr 252).

345 Memorial Volume for the 70th birthday of Court Councilor Dr. K. Vrby, 1915; Rozpravy
Geské Acad., Prague, 24, 1915, No. 22, 10 pp.

848 Thesis, Paris, 1879.

847 Math. Annalen, 7, 1874, 311-386.

848 Cf. G. Humbert,208 Jour. de Math., (6), 3, 1907, 348.
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number of odd Gauss forms of determinant —n. On expanding @,(}), it is found
that the coefficient of ¢¥ in B, is
—4(3dy —3d,) +23(d,—d,) — 63 (df” — dP)
+12[F(N)+2F(N—9-12) + 2F(N—9-2%) +...],

summed for the divisors d of N; the subscript A on d denotes that the conjugate
divisor is odd; the subscript 1 denotes that the divisor agrees in parity with the
conjugate and is = VN ; but, if it = VN, it is replaced in the sum by $VN. Also,
N=d,d,; N=d? d}, d\”+dy'=0 (mod 3). This includes the case N odd and =1
(mod 3) which G. Humbert®*® had failed to provide for in a direct way.

Similarly in
si=som(;)o(5) /(3).

the coefficient of ¢¥/® is

821;'(&_%”"_iiﬁ) —33(dP—d®),

where the subscript 1 has the same meaning as before, d® —d®=0 (mod 3) and
where =1, 2, 4, according as N=1, 4, 7 (mod 9). Alternative expansions of B,
and B; were obtained by Petr with indication of a method of determining in them
the coefficients of ¢V and ¢"/® respectively in terms of divisors of N and the number
of integer solutions of 2*+y*+2?+9u*=N and 2*+ 9+ 922+ 9u* =N, respectively.
The class-number relations thus resulting were given by Petr in the next paper.

K. Petr®® completed®® the deduction of the following class-number relations.
For N arbitrary,

F(N)+2F(N—9-1*) +2F(N—9-2%) +...
=3[3dr +3dQ —43d® 4 3 (- 1)E-D+IGTFDg] .

summed over the positive odd numbers z, y satisfying 322 +y*=4N, such that y is
not divisible by 8. [Petr in this and all the following formulas of the paper
erroneously imposed the latter condition also on z.] The upper index  indicates
that the sum of the corresponding divisor and its conjugate is =0 (mod 3).

Again for N arbitrary,
' F(N)—-3H(N)+2[F(N—-9-1")—3H(N—-9-1*)]

+2[F(N—9-2*) —3H(N—-9-2%)]... = —}(3d—3d,)
—«}(EZ“" —Edf’)) +2Ed§°)+<}( — 1)*"‘"“*‘“”9:,

where d agrees in parity with its conjugate divisor of N, and d, is odd.

For N=1, 4 or 7 (mod 9), the two following relations are given:

2F<N - (99].::0.)__’) = 3y — §3d; + A (—1)3E-DHOTV,
k
e )
= — A (30—3d,) +$3d, + A3 ( — 1)ie-DHi07Dg,

in which a=1, 2 or 4 according as N=1, 4 or 7 (mod 9).

849 Jour. de Math., (6), 3, 1907, 431.
850 Rogpravy eské Acad. Prague, 25, 1916, No. 23, 7 pp.
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In equating coefficients of ¢¥ in the identity®® B,, Petr on his page 2 of the present
paper employed the identity

204 (}) =183zghte™ ¥ (-1 )ie-D+ixD,

and failed to observe that z may be =0 (mod 3). So he introduced an error in the
denotation of all the resulting class-number relations of the paper.

L. J. Mordell*** deduced arithmetically the first class-number relation of his
preceding paper®® in the form
(1) F(m)—2F(m—1%) +2F(m—2%) —...=3(—1)}ad4g,

where d is a divisor =Vm of m and of the same parity as its conjugate divisor a;
but when d=V'm, the coefficient d is replaced by 4d. Mordell considered the number
of representations of an arbitrary positive integer m by the two forms

(*®) S+nt4n(2+1)—r*=m,
(3) d(d+28) =m,
2>0, —(n—1)=r=n, t=0, d>0, 0.

Then, if f(z) is an arbitrary even function of z,
(9 3(—1)"f(r+s) = —25(—1)%f(d)

where the summation on the left extends over all solutions of (2), and the summation
on the right extends over all solutions of (3); but, when 8=0, the coefficient 2 is
replaced by unity. Now take f(z)=(—1)° Then (4) becomes S(—-1)t=-23
(—1)%4d, But for a given s, Mordell*** found that the number of solutions of (2)
is 2F (m—s*). Hence we get at once the above class-number relation (1).

Mordell®*®® illustrated his®4® method by writing

) n’ezntw

f@=2 “1rg=

and proving that
’ o (=24, 2 Eg) 3 R
(1) — ) = 3 g USRI 2 iy,

-

where r=0, =1, =2, ..., =(n—1),n;¢=0,1,2, .... But corresponding to each
set of values n, r, f, there is a reduced quadratic form®*: :

nz®+2rzy+ (n+2t+1)y°

of determinant, say, —M. Conversely to each reduced form (a, 0, a) of determi-
nant — M, there corresponds one solution, and to every other reduced form of
determinant —M, there correspond two solutions, of the equation M=n?—7*+
n(2¢t+1). Hence the right member of (1) is 235 (—1)*F(M)qw When f(0) is
given its true value, and ¢ is replaced by —g, and 6, by 1—2¢+2¢*~2¢°+..., the

851 Messenger Math., 45, 1916, 177-180. See a gimilar arithmetical deduction by Liouville.%®

852 Messenger Math., 46, 1916, 113-128.
858 And so this e&xpsnsion (1) suggested to Mordell his®s! arithmetical deduction.
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equating of coefficients of ¢* yields his*** relation (1) ; which is equivalent to Kro-
necker’s® (III), (VI), and is identically Petr’s*** relation (II).

Replacing f(z) by ¢(z) =f(x)0(2+£) /6o (), where £ is an arbitrary constant,
Mordell obtained the equivalent of Kronecker’s (I), (II), (V). By the use of
x(2) =f(2)66, (22, 20) /600 (z), he obtained a class-number relation involving an
indefinite form®®¢ in the equation 2®*—2y?*=m. By the use of f(z)0y, (32, 3w) /04, (),
he found (cf. Petr’s*®® formula (3) above) that

F(2m) —2F(2m—3-1%) +2F (2m—3-2%) — . .. = (—1) ™3z,
P-3=m, 5>0, —}(z—1)<y=<ie.

Replacing f(z), a8 initially used, by

Fl@)= 3 qeie/(1—g"), n odd,
he obtained
8[G(m) +2G(m—12) +2G(m—2") + . ..] = —63a+43b+23(—1)°,

where & denotes a divisor of m which is = V'm and agrees with its conjugate in parity,
but if a=V'm it is replaced by a/2 ; b denotes a divisor of m whose conjugate is odd,
and ¢ a divisor of m whose conjugate is even. Kronecker’s® (IV) is the special case

of this formula for m odd.
@. Humbert,®® in a principal reduced form (Humbert'®® % of Ch. I), (a, b, ¢) of *

positive determinant with >0, put B=b—4}|a+c|, and, by Hermite’s method of
equating coefficients in -function expansions,®® found that
-1 -1 -1
zl(_)= F(4n+2), E’(——):-zF sn+5), 3()=2
() =eF(en+2), 3(F (8n+5), 3(Z)=2F(8n+1),

where 3! extends over all the principal reduced forms of determinant 4n4-2 with a
n
and ¢ odd ; 3* extends over all the principal reduced forms of determinant 8n+5 with
»
@ and c even; 3 extends over all the principal reduced forms of determinant 8n+1

vﬁth $(a+c) even. ,
From the first of the three formulas is deduced the following: Among the principal

reduced forms (a, b, ¢) of positive determinant 4n--2, the number of those in which
b—3}|a+e¢] is of the form 4k +1 diminished by the number of those in which it is of
the form 4% —1 is double the number of positive classes of determinant — (4n+2).
By denoting by H,(n) the left member of the first of these three formulas, for
example, and summing as to the argument 4M+2— (28)2, Kronecker’s classic

formulas® give
H,(4M +2) +2H, (4M +2—2°) +2H, (4M +2—4°) +... =2 (4M +2),

where ¢¢(n) is the sum of the odd divisors of .

854 Cf. K. Petr, Rospravy &eské Akad., Prag, 10, 1801, No. 40, formula (1) of the report *%8;
also G. Humbert, 38 Jour. de Math., 65, 3, 1907, 381, formula (57).

355 Comptes Rendus, Paris, 165, 1917, 321-327.
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L. J. Mordell**® recalled Dirichlet’s® formula (2). Whence®” if |r|<1,
= (D\_*
o3+bry+cy® — —_
(1) : 3 _A+1k§1'(k)1_7,‘,

e, bczy

summed for all pairs of integers z, y>0, =0 or <0, and for representative forms
of negative discriminant D; while (D/k) is the generalized symbol of Kronecker'™
and A is the number of classes of discriminant D. We set r=6**‘* and write (1) as

®) $(w) =A+x(v).
When () is evaluated in terms of f-functions, () becomes:
v
D »1D\ ¥ (?)
0 (%)

@ s@=a+ o= {rw+ 2='56(3)} 1@=Z2 (5 )
n

v

where 6(v) =6,,(v). Now?®®
o(-2)=yme(s) 1(-2)=v570)

Hence when o is replaced by —1/w, (2) gives Kronecker’s'™ formula (5,) for the

class-number.

E. Landau®* wrote ¢ for the fundamental unit 3(7+ VDU) and by means of
Kronecker’s'™ class-number formula (3), obtained an upper bound of log ¢/ VDlog D
for very great D by noting that K (D) = 1 and finding an upper bound of the sum of

the Dirichlet series in that formula.
E. Landau®®® wrote h (k) for the number of classes of ideals of the imaginary field

defined by V —Fk. Let 8 be any positive number. If there are infinitely many nega-
tive values —k® of —k (k™ <k®<...) such that

k(%) <K,

then, for every real o>1, EPDSE®? for every v exceeding a value depending on
3 and . Given any w>1, if we can assign ¢, depending on o, such that,

h(k)<cVk/logk
holds for an infinitude of negative values —k® of —F, then ke >k for every

y=1. Known facts are proved about limits to (k). He?® derived inequalities

relating to h (k). :
G. Humbert®®* let m, and ms be the odd minima of an odd Gaussian form (g, b, ¢),

and H(M) be the number of odd reduced forms of determinant —M for which m,

356 Messenger Math., 47, 1918, 138-142.

357 Obtained independently by Petr,305 (1).

858 COf. Mordell, Quar. Jour. Math., 46, 1915, 105.

s58* Gottingen Nachr., 1918, 86-7.

850 Gottingen Nachr., 1918, 277-284, 285-295 (95-97).
360 Math. Annalen, 79, 1919, 388-401. .
361 Unpublished letter to E. T. Bell, October 15, 1919.
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or msis =0 (mod p), p being a given odd prime; and if simultaneously m,=m,=0

(mod p), he let the class count 2 units in H (M) ; then, when N=0 (mod p),
S(=1)*H(N—n®) +3(—1)"H(N—n*)=—23(d/p) (—1)de+a,

where the first summation extends over all integers n=0 (mod p), the second over

the positive integers # not =0 (mod p), and the third over all decompositions

N=dd’, with d=0 (mod p), d<d’ and d, d’ of the same parity. The class a(z*+y*),

when a=0 (mod p), counts here as one unit in H(a?).

Let ¢4 (V) be the number of classes of positive odd Gaussian forms of determinant
—N, for which the minimum p is = 2h; if p=2h, the class counts for % in ¢ (N).
Then for N odd, positive, and prime to 3,

$o(N)+2p: (N+3-12) + ...+ (N+3-h%) +...

=1 @)+ G310+ 730

where ip the second member, the summations extend over all divisors d of N. In the
first member, ¢, certainly equals zero when & is >3 (N+1).

Similarly, N being odd, let ¢.(XN) be the number of classes of positive even forms
for which the minimum p is = 2h; if p=2h, the class counts } in ¢1(N). Then
we have

$o(N) +2¢,(N+2-12) +2¢, (N +2:2%) +... + 2, (N +2R*) +. ..

1[/-2 1 —2 1 p) 1 N 6
=+ [(F)- 512D+ 13(0)+ 5[+ (3)]2(2),
where, in the second member, the summations extend over all divisors d of N;

(6/d) =0 if d=0 (mod 3), and N’ is the quotient of N by the highest power of 3

that divides N.

And similarly,®? let ya (M) be the number of reduced odd Gaussian forms (g, b, ¢)
of determinant — M for which simultaneously a = 2k, a+c—|b| = bh; if in these
relations, there is a single equality sign, the form counts } in ya; if there are two
equality signs, the form counts 4. Then, if N=7, 17, 23, or 33 (mod 40),

Yo(N) +2¢ (N+5-12) +... +2n(N+5-2*) +...=3(—5/N)3d(—-5/d),
the summation extending over all divisors d of N.

Class-number relations occur incidentally in Humbert’s papers 18, 23, 24 of

Ch. XV.
L. L. Mordell*®® deduced his®*** formula (1) from the identity

b eﬂut*-z'rta z 1 .
o)on(:t, ‘")J_ao -6—2?‘:T dt=f<:, —_ —(;') +uof($, w),
where the path of integration may be a straight line parallel to the real axis and
below it a distance less than unity, and where

. +o ( — 1)}(-—1) q}n’enﬂa
e e

362 Deduced by Humbert from his own formula (7), Comptes Rendus, Paris, 169, 1919, 410.
868 Messenger Math., 49, 1919, 65-72.
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By applying Kronecker’s® formula (XI) to the right member of formula®** (1) and
integrating the left member, Mordell obtained the relation®*¢ (3). But by applying
the identity

000(0, —1/0) =V —1w 05 (0, »)

to the right member, he found
1 1 =« F(M)
242 +2 1 (n+a)? =2x* 2 [4F(M) 3G(M)]6'2“"/" 4a E (aa_,(_Mz)z

L. J. Mordell*** announced without proof the formulas:

teTiv

O | e dt_—2EF(n)q"+ Y —wEF(n)q’,‘+i03o(0 o),
@ | M a=3(-1F -1 gen+ 2 vIRE (—)mFma,

where B (i0) <0, g=¢7*¥, g, =¢*¥/», Proofs were given elsewhere.**® By integrating,
he deduced from (1) the relation,
4F (M) —3G (M)

1,3 1
(3) g;z+§zm)—z=-—4«ﬂ“(ﬂ)e"""i+2a2 @1y

where R (a) >0, a arbitrary.
E. T. Bell**® proved that

(1)  m=4k+1, Ny(m)=6[e(m)+43g1(m—p*)}] S
(@)  metki8, Nim)=SS8i(m-s)t }f‘°dd<\/"*-

where N;(m) is the number of representations of n as the sum of 3 squares; ¢(n) =1
or 0, according as n is or not a square; and ¢(n) is the excess of the number of
divisors 4k+1 of n over the number of divisors 4k+3. He®® then stated that
elementary considerations yield

) m=4k+1, Ny(m)=6[¢((m)+23¢(m—4a%)],

0! modd,  Ny(2m)=12[¢(m) +236(m—2a%)],

(5) m odd, N3(2m) =123¢(2m —pt),

(6) narbitrary, Ny(n) =2[e(n) +2¢(n) +43¢(n—a?)],

where m, n, a are positive mtegers, p is any positive odd integer, and where z is
as always >0 in 3¢(z). A comparison of (1), (2), (3), (4), (5), (6), with the
well-known relations (Kronecker,* (XI); Hermite,®® (7))

y m=4k+1, Ng(m)=12F(m); Ng(n)=12[2F(n)—G(n)],
™ {m=8k+3, Ny(m)= 8F(m); Ny(2m)=12F(2m),

864 Quar. Jour. Math., 48, 1920, 329-334.
868 Quar, Jour. Math 49, 1920 45-51.
s¢é Quar. Jour. Math., 49, 1920, 46-49.
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where G(n) denotes the total number of classes and F(n) the number of uneven
classes of determinant —n, gives immediately

m=4k+1, 2G(m)=§(m)+23¢(m—4a?),
m=4k+1, 2G(m)=e(m)+43¢{(m—p?)},
m odd, G(%m) =¢(m) 4 23¢(m—2a®),
m odd, G(%m) =3¢(2m—p?),
m=8k+3,  F(m)=3&3(m—u")},
12F (n) —6G (n) =e(n) +2¢(n) +43¢(n—a?).

Similarly by comparing (%) with seven recursion formulas®®’ such as
m=4k+1, Ns(m)=6%{3(m+1)}—3N;(m—8t),

in which {;(n) denotes the sum of all the divisors of n, and £>0 an arbitrary tri-
angular number, he obtained the seven following recursion formulas for class-
number:

m=4k+1, 2G(m)+23G(m—8t)={{}(m+1)},

m=4k+1, 2G(m)+43G(m—4a?)={(m),

m odd, 4G(2m) +43G (2m—8t) = (2m+1),

m odd, G(2m) +23G(2m—4a®) =L (m),

m=8k+3, F(m)+3IF(m—8t)=%{}(m+1)},

m=8k+3, 4F(m)+83F(m—4a®)=¢(m),

6E(n) +123E (n—4a®) =4(—1)"A,(n) —e(n),

in which A, (n) =[2(—1)*+1]¢{(n), where {{(n) is the sum of the odd divisors of
n; and in which E(n) =2F(n) —G(n). The last of these relations is equivalent to
Kronecker’s® formula (X).

L. J. Mordell,**® starting from Dirichlet’s?® formula (1)

T h(—m)=Va 3 i(‘_”)

rodd T r
and allowing for the improper classes, proved that

® N 5 aed 7/ N B0 (@) s — i
8§F(n)q =3 [\/—i(a+bi)]’ —z[o°o<c +gw)] s g=e d )
a+bow

where the real part of 4w is <0; the radical is taken with positive real part; the
summation is carried out first for a=0, =2, +4, ..., and then for =1, 8, 5, ...,
in this order; (a/b) is the Legendre symbol; but if =0, =1, we replace (a/b)
by 1. Also d is any even integer, ¢ any odd integer, satisfying ad—bc=1. He also
proved that F(M)/VM=f(1) —3f(3) +#f(5) — ..., where f(n) denotes the num-
ber of solutions of £=M (mod n). Formulas of the same type are also given in
which F(n) is replaced by G(n).

E. T. Bell,**® by equating like powers ¢ in the expansions of functions of elliptic
theta constants, showed that the class-number relations of Kronecker, Hermite and

867 Bell, Amer. Jour. Math., 42, 1820, 185-187.

68 Messenger Math., 50, 1020, 113-128. .
869 Annals of Math., 28, 1921, 56-67; abstract in Bull. Amer. Math. 8oc., 27, 1921, 151.
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others may be reversed so as to give the class-number of a negative determinant
explicitly in terms of the total number of representations of certain integers each as
a sum of squares or triangular numbers. :

Bell,*” by paraphrasing identities between doubly periodic functions of the first
and third kinds, obtained three class-number relations involving a wholly arbitrary
even function f(u)=f(—u). Let ¢(n)=1 or 0 according as n is or is not the
square of an integer; let F'(n) and F;(n) denote the number of odd and even classes
respectively for the determinant —m, n=0. The first and simplest of the three
similar relations is

’ 4 4 4
2((0’) [f(\/:l_dll) _f(-\/?_*_dll)] +22I {f(,d_;_—s _d'/) _f(.d_;-_é_ +dll)]

cari-spin +(52) 1059

the 3, 3’ extending over all indicated positive integers o’, ..., d, 8 such that, for B8
fixed,
B=3 (mod 4), B=a’+2m" =d'8 +2d"8"
(o/=3d’¥, m"”=d"8"’), and B=d3, d<VB;
o’=1 (mod 4), d’<Va’; B—4r*>0.

Interpreting results obtained by putting f(z) =0, [z|>0, f(0)=1 in the three
relations, it follows that the totel number of representations of any prime p by
zy+yz+2z, with z, y, 2 all >0, is 3[G(p) —1] where G(n) =F(n)+F1(n); that
the like is true only when p is prime ; that there are more quadratic residues than non-
residues of the prime p=3 (mod 4) in the series 1, 2, ..., 3(p—1); and so for
p=1 (mod 4) in theseries 1,2, ..., }(p—1).

1f f (z) =1 for all values of z, the first relation gives Hermite’s® (3) : SF(8—4%)
=3¥,(B), where ¥,(n) is the sum of the sth powers of all the divisors >Vnofn
diminished by the sum of the sth powers of all the divisors < Vnof n. For f(z) =22

the first relation gives: v
323r°F (B—4r*) =¥5(B) +B¥:(B) —32N (48),

the 3 extending over all integers r such that §—4r2>0, and N (4?) is the number
of representations of 48 in the form

mi+ mi+mi+mi+2mi+2mi+2mi+2m]

for which the m¢(§=1, 2, ..., 8) are odd and %0, and precisely 0, 2 or 4 of m,,
M, ms, M, in each representation are included among the forms 8%+1. The paper
contains a table of the value of F(n), n=1, ..., 100,

E. T. Bell** obtained 18 class-number relations which are similar to his®™ three
above and which form a complete set in the sense that no more results of the same
general sort are explicit in the analysis. By specializing the arbitrary even functions
which occur in these formulas, he stated that all the class-number relations of

870 Thoku Math. Jour., 19, 1921, 105-116. .
271 Quar. Jour. Math., 1923(?) ; abstract in Bull. Amer. Math. 8oc., 27, 1921, 152.
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Kronecker and Hermite and certain of those of Liouville and Humbert are obtained
as special cases.

L. J. Mordell*? ghowed that the number of solutions in positive integers of
y2+sz+2y=uis 3G(n). Itisshown essentially by Hermite’s*® classical method that
z+y=1 (mod 2) for 2F(n) of the solutions; z+y=2 (mod 4) for F(n) of the
solutions; and z+y=0 (mod 4) for 3G(n) —3F(n) of the solutions, where always
a solution is counted 3 if one of the unknowns is 0. In particular, if n is not a per-
fect square, z+y=1 (mod 4) for F(n) of the solutions, z+y=3 (mod 4) for F(n)
of the solutions. Particular cases had been given by Liouville®® and Bell.?"°

G. H. Cresse®™* reproduced J. V. Uspensky’s®®® arithmetical deduction of
Kronecker’s® class-number relations I, IT, V and supplied some details of the proof.

R. Fricke®™ (p. 134) obtained and (p. 148) translated®’® a result of Dedekind*™
in ideals into a solution of the Gauss Problem* (Cf. Weber®’?). He reproduced and
amplified (pp. 269-541) Klein’s theory of the modular function.’** He denoted
(p. 360) by W the substitution o’=—w/n and by Ty(n) that sub-group of the
modular group o’ =(aw+p8)/(yeo+38) for which y=0 (mod 7). The fundamental
polygon'** for the group I'y(n) is called the transformation polygon T's. Fricke
found (p. 363) that in T's, the number of fixed points for elliptic substitutions of
period 2 among the substitutions of I'y(n)-W is Cl(—4n) if n=0, 1, 2 (mod 4)
and is Ol(—4n) +Cl(—n) if n=3 (mod 4).

Finally it should be noted that the class-number may be deduced®”® from the num-
ber of classes of ideals in an algebraic field since there is a (1, 1) correspondence
between the classes of binary quadratic forms of discriminant D and the narrow
classes of ideals in a quadratic field of discriminant D (Dedekind?® of Ch. III). For
the class-number of forms with complex integral coefficients, see Ch. VIII.

872 Az§et. J(la;xr.l sI)\giﬂ:h., Jan., 1923. Abstract in Records of Proceedings of London Math. Soc.,
ov. 17, .

878 Dedekind in Dirichlet’s Zahlentheorie, ed. 4, 1894, 639.

374 Annals of Math,, 23, March, 1922.

878 Die Elliptischen Functionen und ihre Anwendungen, II, 1922.
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