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MINIMA OF FUNCTIONS OF LINES*
BY

ELIZABETH LeSTOURGEON

A function of a line or functional F [\ (x)] is a function having as its argu-
ment an arc defined over an interval e =2 =b. It may be regarded as a
generalization of a function F (N, ++-,\,) of a finite number of variables
Ai(2=1,---,n), the index ¢ with the range 1, 2, ---, n being replaced by
the variable = with the interval ¢ = @ = b as its range. It is the purpose of
this paper to consider some properties of a functional of this kind which has a
minimum value at a particular arc Ao (z) . As in the case of a function F (};),
(¢=1,-.-.,n), this involves the notion of derivatives or differentials of
the first and higher orders.

Fréchet has defined firstt and second} differentials for a function of a line
F (X\) in terms of which the difference F (Ao + 7) — F (\o) may be expressed,
when \o(z) + n (=) is a variation of \g(z). The first differential is a so-
called linear functional L (%), and the second is expressible in the form
B(n,n), where B (u, v) is a bilinear functional in the independent arguments
u(z), v(x). Riesz has shown§ that a linear functional can always be
represented as a Stieltjes integral '

L(n) = [ n(2)du(a),

and Fréchet has deduced an analogous formula for B (7, ) ,

d
mmw=f[wwww%m%w,

in terms of a double integral which is a generalization for two dimensions of
the simple Stieltjes form.

* Presented to the Society, October 30, 1920.

+ M. Fréchet, Sur la notion de différentielle d’une fonction de ligne, these Transactions,
vol. 15 (1914), p. 139. This article will be referred to as Fréchet I.

+ M. Fréchet, Sur les fonctions bilinéaires, these Transactions, vol. 16 (1915),
p. 232. This article will be referred to as Fréchet II.

§ F. Riesz, Sur les opérations fonctionelles linfaires, Comptes Rendus, 149, p. 974
977; Démonstration nouvelle d'un théoreme concernant les opérations fonctionelles linéaires,
Annales scientifiques de 1’école normale supérieure, vol. 31
(1914). The first article will be referred to as Riesz I; the second, as Riesz II.

Trans. Am. Math. Soc. 24 367
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The definitions of Fréchet apply only to functionals and differentials having
continuity of order zero, which means in the case of F (\) that the difference
F(Xo + 1) — F(X\) approaches zero with the maximum of |7 (z)| on the
interval ab. The continuity of F (\) is, on the other hand, of order one when
the difference approaches zero only if the maxima of |n(z)| and |7’ (z)|
do so simultaneously. The integrals of the calculus of variations have con-
tinuity of this latter type, and it was desired to have a theory which should
apply to them as a special case. It is shown therefore in the following pages
that differentials L (%) and B (%, n) with continuity of order one are ex-
pressible in the forms

b b
L(n) =j: n(x)du(x)+£ 7 (2)dus (),
b b b b
Bonm =[ [1@1@dup@n+2 [ [ 10 @) dueta )

+£bfabn’(x)n’(y)dzuf(x:y)-

If the functional F (\) has a minimum at A, then it is proved that » and u;
must satisfy an equation of the form

uy () —jju(:c)dx =hkx+1,

where k& and I are constants. Furthermore, under restrictions which are
explained in §§ 4 and 5, a necessary condition for a minimum analogous to
the Jacobi condition of the calculus of variations is deduced. -It is proved
that when F (\¢) is a minimum the equation

fa[u(y)duq(y,x)+u’(y)d,r(x,y)]
_j:fa[u(y>dup(x,y)+ur(y)d,q(x,y)]dx__.ka

can have no solution u(z), except u(x) = 0, vanishing at z =a and a
point 2 = 2’ between @ and b.

These results are deduced in §§ 2 and 5. In §§1, 3, and 4 the necessary
definitions of differentials are given and their properties discussed. The
interpretation of the results of the paper for the integrals of the calculus of
variations is given in § 6. '

1. LINEAR FUNCTIONALS AND FIRST DIFFERENTIALS
If € =[] be a class of arcs in the plane representable in the form

y=M\2z), a=zxz=b,
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then we mean by the functional operation F ()\) a real, singlé-valued function
of the curve \ such that to every >\ in the class  there corresponds a real
number F (\).

If \o is of class C™ * then by the neighborhood ()} of order n is meant
the totality of arcs \ of class C™ satisfying the inequalities: -
IN(z) = ho(2)] <8, IN(2) =No(@)] <8, -+, A (2) =P (x)| < 8.
Consider now a class € containing all arcs in a neighborhood (Ay)} of an arc A
of class C™ . A functional F (X\) is said to have continuity of order n at \q
if for every e there exists a & such that the inequality

[F(A) —F(No)| <e

holds whenever \ is in (Ao)j.
A functional L () is said to be linear in a class  if for some constant 4

it has the following properties:t
(1) L(ka1+02)\2) =01L(>\1) +02L()\2),
@ L =4-M(),

whenever A1, Az and ¢ A1 + ¢z N2, with ¢;, ¢2 constants, are in £, and where
M (\) denotes the maximum value of |[\|. In the class &, of arcs \ continuous
ona = z = b a functional L (\) which has the property (1) and is continuous
with order zero will also have the property (2).] F. Riesz§ has shown that
such a functional is always in the form

L(\) =ju‘b)\(x)du(:c),

where u () is of limited variation on the interval ab, and the integral is
taken in the sense of Stieltjes.

THEOREM 1. Let %, be the totality of arcs N which are of class C' on the
interval a =x =b. If L(\) has the linear property (1) and is continuous
with order 1 in R, it 13 always expressible, indeed in an infinity of ways, in the
form

) L(\) ='£ )\(x)du(x)+£ N(z)du (z),

where u (z), w1 (x) are functions of limited variation on a =z = b.||

*AnarcA(z)isof classC™Wona =z =b, if A (z), N (2). .A® () exist and are
continuous on this interval; it is of class D™ if A (z) is continuous and consists of a finite
number of ares of class C», Cf. Bolza,, Lectures on the Calculus of Variations, p. 7. The are
will be said to be of class D if it is bounded and has a finite number of discontinuities of the
first kind.

t Riesz II, p. 10.

1 F. Riesz I, p. 974.

§ Ibid., pp. 974-977. See also Riesz II, p. 10.

|| C. A. Fischer, Note on the orde? of continuity of functions of lines, Bulletin of the
American Mathematical Society, vol. 23 (1916-7), pp. 88-90.
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For, from the hypothesis that \ is of class C”, we may write
Az) = f N(x)dz +X(a).

By the property (1) of a linear functional,
. .

L) = L(fl’(x)dx9+ L()\(a))}.

The first term on the right of the equality is linear and has continuity of order
zero in the class of all functions A’ (z) which are continuous. Hence with

the help of the theorem of Riesz,
b b
L()\)'=f N(z)du (x) + f A(z)du(z),

where u (z) is defined by the conditions,
u(a) =0, u(x) = L(1) for a<z=b.

The infinity of ways is evident from the fact that » (x) and u; (x) may be
altered by a constant; but there are even more representations as will be

indicated at the end of § 2.

Fréchet* has given a definition of a differential of a functional F (\) defined
on the class ¥, of functions A (x) continuous on ¢ =& =b. According to
this definition a functional F (\) has a differential at A, if there exists a linear
functional L (AM) such that for every arc Ao 4+ AN in

F(ho+ A\) — F(ho) = L(AN) 4 (AN) - M(AN),

where M (AM) is the maximum of [AN| on a =z = b, and € (A\) is a func-
tional which approaches zero with M (AN). It is an immediate consequence
of Fréchet’s definition that F (\) has continuity of order zero at o, a property
which is not possessed by the functionals occurring in the calculus of varia-
tions. The following definition is however applicable at least to the func-
tionals defined by the integrals of the calculus of variations containing only
first derivatives.

DErFINITION 1. Let A be an arc of class C' on a = x = b and F (\) a func-
tional defined at least in a neighborhood (No)s. Then F(N\) is said to have a
differential at No if there exists a linear functional L (AN) with continuity of
order one, such that for all arcs No + AN in (No)s,

2 F(No+ AN) — F(No) = L(AN) + €(AN) M1 (AN).

* Fréchet I, p. 139.
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M, (AN) is the mazimum of the values of |AN| and |AN'| ona =2 =D, and
¢ (A\N) is a functional which vanishes with My (AN) .

The linear functional L (AX) is always expressible in the form (1), according
to Theorem 1.

2. THE FIRST VARIATION OF F ()

It is proposed in this section to study the properties of the first variation,
in other words the first differential, of a functional F (A\) which has a minimum
or maximum at a particular \g. For this purpose we shall be concerned with
(1) an arc \o of class C’ on the interval z, = 2 = ,, joining the two fixed
points (21, ¥1) and (%2, y2); (2) a functional F (N) defined in a neighborhood
()\o,)é of order one of o, which has a differential of the kind described in § 1
at the arcAo; (3) the totality R of all arcs of class C” joining (&1 y1) with (3 y2)
and lying in (o).

DeriniTION 2. The functional F (\) is said to have a mintmum at No in
the class  if there exists a neighborhood of order one of No in which F (\) = F (M)
for every arc \ of R. ’ ‘

Consider the special one-parameter family of arcs

y =Mz, a) =\(2) +an(z),

for which 7 (z) is of class ¢’ on z; = z = 22 and 7 (1) = n(22) = 0. These
will all be in € for sufficiently small values of a, and the value of F(\) on
any one of them is from formula (2)

F(\(z,a)) = F(N) +aL(n) + aM(n)e(en).

Then will follow readily
Lemma 1. If F (\o) 18 a minimum according to the definition given above, then

3) L) = [ndut [

must vanish for every function n (z) of class C’ on x, x; such that
7(2) = n(z) =0.

We shall next determine a necessary and sufficient condition that the sum
of two integrals of form (3) shall vanish as described. Since the value of a
Stieltjes integral is unaltered if the function of limited variation is changed
at a finite or denumerable infinity of points between z; and ;, and since the
discontinuities of a function of limited variation are denumerable, we may
take u(z), w1 (z) to be regular* for z; < z < z2; that is, at every point
between 2; and xz, 2% () = u(z + 0) + u(z —0).

* Fréchet 11, p. 217.
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According to a well-known property of a Stieltjes integral,*
L) xy
@ [Tr@duie) = n@)u@) — @) - [ u@)dn),
n xy

and since n () is of class C’ it follows readily from the definition of a Stieltjes
integral that the last integral is also expressible as an ordinary Riemann
integral

f:’u(x)n'(x)dm.

oY

Furthermore one may prove without difficulty the relation

[r@u@is = [Tr@a [ u@a,

so that with the help of the values n(z1) = n(22) = 0 the expression for
L(n) from (3) may be written in the form

® [ @@ @) = [ 1)),
where B B :

4(x) = u(x) —-fzu(x)dx.

Let as, B1, az, B: be any four points of the interval z; 2, such that
n<a<pfi<ar<pP:<uz, Br—ar=F — a.
Let & be a positive number such that '
nn<ai—h<pri4+h<as—h<B+h<uz.
Define a continuous function 7’ (2) by the conditions
n"(z) =0 for c;i=Sc=a1—h, fi+h=2=as—h, o+ h=x =,
n(z) =1 for a1 =z =B,
7 (z) =—1 for ap =z = Bs,

and the condition that #’ (z) is linear in the remaining parts of the interval
21 2;. Then the function

n(z) =j:n'<z)dm

is of class C’ and has 9 (1) = n(2;:) = 0.

* T.-J. Stieltjes, Récherches sur les fractions continues, Annales de la Faculté
des Sciences de Toulouse, vol. VIII (1894), J. 72. .
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The substitution of 9’ (z) so defined in the expression (4) gives

hfl_h(x—al-{-h)da-l-f dd—th“(z—ﬂl—h)da

al
Bs+h

_._fh(x—a2+h)da f d12+h (¢ — B2 — h)da,

and this must vanish for every choice of a;, 8, a2, ﬁ2 , h satisfying the con-
ditions described above if F (\) is to have a minimum at \o. The trans-
formation (4) applied to this expression gives, after some simplification, the
necessary condition for a minimum

B1+4 ay
hf 4(z)de — h

1 Ba+h 1 2
ﬁ(x)dx=zf 4(z)d -3 A(x)dex.
a1—h B2 ag—h

If we apply the mean value theorem to each of the above integrals and take
the limit as % tends to zero we obtain

(6) 2(B1+0) —f(ar —0) =4(f2+0) — 4 (az — 0),

where a4, B1, as, B; satisfy the restrictions described above.

By the definition of 4 (z) its discontinuities are identical with those of
u; (z) and are therefore denumerable. Select oy arbitrarily between z;, and
2 and let a; > a; be a value at which 4 () is continuous. If in the equation
(6) we let B, and S, approach oy and «; respectively, it follows that

(a1 +0) —4(a1 —0) =2(ag +0) —2(az—0).

The second member of this equality is zero by the hypothesis that 4 (z) is
continuous at o;. Hence

Aoy +0) — 4(ay —0) =0,

and the same relation holds for u; () whose discontinuities are coincident
with those of #(x). Since oy was an arbitrarily selected poimt between
z; and a2, and since ; (z) was taken to be regular, it follows from the above
that u; (z) and also 4 (z) are continuous everywhere between x;, and z., so that

equation (6) may be written
4(B1) — 4(a1) = 4(B2) — 4(az).

The function 4 (z), being continuous and of limited variation for z; < «
< 2, has a derivative everywhere except on a set of points of measure zero.*
Let oy be an arbitrarily selected point on &, z; and let a; > oy be a point
where 4 (z) has a well defined derivative. The differences 81 — o;and 82 —
being equal we may write

* Vallée Poussin, Cours d’analyse infinitésimale, 3d edition, vol. I, p. 275,
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4(B1) —d(en) _4(B) — ﬂ(az).

ﬂl"‘al ﬁ2"a2

)
If we let 81 — a1, B2 — a2 in such a manner that 8; — as and 8; — a; remain
equal, the right member of (7) tends to a limit and the left member therefore
approaches the same limit. Hence we have the result that 4 (z) has a deriva-

tive everywhere between z; and z, and that this derivative has a constant

value,
@ (z) =k, 2 <z < 2.

We are now able to prove that 4 (z), and therefore w; (), is continuous
also at the points z; and z;. To do this, consider the equation

f'q'(x)da(x) - 0.

Since 4 (z) is discontinuous at most at x; and z, and is linear between these
values, this equation may be written \

7 (21) [ (21 +0) — 4 (21)] + v’ (22) [4(22) — G (22 — 0)]
+4 [ (2)dz =0,
or, since 7 (21) = n(a22) =0, ° A
7 (21) [4(21+ 0) —4(21)] + v’ (22) [2(22) — G (22— 0)] =0,

a result which must be true for every n (z) of class C’ vanishing at x; and ;.
Hence it follows that

a(z1+0) = d(z), B(z—0)=1a(z),
and that the same relation holds for u; (). We have accordingly proved

LemMa 2. If u(z), wi(x) are of Limited variation on the interval z, z,
and regular for z; < ¢ < z,, and if the integral

®) | f:[n(x)du(z) + o () dur (2)]

vanishes for every n (z) of class C’ such that n(x1) = n(x2) = 0, then a rela-
tton of the form

9 A(z) = w(z) —-fzu(x)dx=ka:+l

must hold everywhere on the interval z, 2, k and 1 being constants.

Conversely, if the last equation 13 true the integral (8) vanishes for all functions
n () with the properties just described.

The converse follows readily by substituting 4 (z) = kz + ! in the for-
mula (5).



1920] - MINIMA OF FUNCTIONS OF LINES 365

It is interesting also to find the additional conditions on % (z) and u,; (z)
which must hold if the expression (3) for the functional L(7) is to vanish
for all functions 5 (x) of class C’ on the interval z; 2;, whether or not the
conditions 7 («1) = n(2:) = 0 are satisfied. The necessary condition of
the lemma just proved must be satisfied in this case also, and the relation

analogous to (5) now is

[Ctn@) (@) + 7 @) du @] = 1@ u@ R+ [ 7 (@)die)

=(n(@)u(@ Btk [ (2)de = (2) lu () + k] —n (2l () + 1.
This last expression vanishes for every n(z) of class C’; hence we conclude
that .

= —u(x?) = —u(21),
and it follows from the relation (9) that
wi (1) = u(x+0) —u(ay),

(10) ,
w (22) =u(zs —0) —u(a,).

By the preceding arguments we have therefore arnved at the following

theorem:
TeeorEM 2. If F (No) be a mazimum or minimum according to the condi-

tions described in Definition 2, then the functions u (x) and ui (z) occurring in
the first variation

[ 1@ du(@) + 7 (@)du ()1

must satisfy the relation
ur () —f u(z)dx = kx + 1.
o

If F (o) be a maximum or mingmum with respect to the values of F (\) for all
arcs whatsoever of class C’' on z, = 2 = z; lying in a nezghborhood (No)’, then
the additional conditions

up (1) = u(z1+0) — u(ay),

ui (2g) = u(xz — 0) — u(xe)
must be satisfied.
In relations (9) and (10) we have the conditions that integral (8) shall vanish

for all %’s of class C’ on z; 2. Consequently, if we have two representations
of the same linear functional,

fx'[ndu+n’du1]' and r[ndv+n’dm],
£ z
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then 4 — v and u; — v, must satisfy the conditions that

r[ﬂd(u —9) 47 d(u — )]
e Jn
shall vanish for all 9’s of class C’ on z; ;.

3. BILINEAR FUNCTIONALS AND SECOND DIFFERENTIALS

For the purpose of discussing further the conditions which characterize a
minimum of the functional F (\) we next introduce the notion of a second
differential. The basis of the investigation is found in the paper of Fréchet
on bilinear functionals.*

If N(z), n(y) are two continuous functions defined on the two intervals
a=z=b, c=y=d, then according to Fréchet, B(\, u) is & bilinear
functional of \, u if it is a linear functional of \ for a fixed u and a linear func-
tional of u for a fixed N\. The bilinear functional B (\, u) so defined has
continuity of order zero simultaneously in A, u and it has also the property
that there is a constant P such that

[BON,w)| = PM(N)M(p).

By use of the theorem of Riesz on linear functionals Fréchet derives a
representation of a bilinear functional by means of two iterated Stieltjes
integrals. He then shows that each of these iterated integrals is equal to a
double integral of the form

BOuw = [ fxmu(y)dmx,y)
— lim 3 M (2w () Asi p (2, 9),

=0 i=1 j=1

where the values z; (¢ = 1, ---, m) are the division points of a partition of
the interval @ = 2 = b of norm §, the y; (j = 1, ---, n) are division points
for a similar partition of ¢ =y = d, and where A;; p(z,y) is the second
difference

Aiip(z,y) = p(2:y;) — p(@im1, ¥5) — (i, Yi1) + D (21, Y51) -

The function p(z, y) is of limited variation with respect to the set (z, y)
and with respect to  and y separately, the total variation with respect to
the set (z, y) being defined as the upper bound of the expression

|Z}Zei€}Ai:‘P(9’, ?l)l,

where ¢;, ¢€; are of arbitrary signs but in absolute value equal to unity.
* Fréchet II, pp. 215-234.
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THEOREM 3. If N\, u are of class C' on the intervals ab, cd and if B(\, ) is
linear and continuous with order one in each variable when the other 1s fixed, then
B (X, n) s expressible in the form

B0uw = [ [M@n@idnpte ) + [ [N @0@)at @)

+ [ [ @w @@+ [ [V @w@dar@ ),

where the functions p, q', ¢’ , r are of limated variation with respect to x , y together

and with respect to each separately.
By hypothesis X and p are expressiblé in the form

A (z) =fax>v(x)dx+x(a), w@) = [ Wy +ue).

Then by the properties of B (X, ),

Boww) =B( [ V@i, [(wwrdy)+B( [ V@), ue)

+B(M@), [w @)+ BO@),u(e)).

Since the first functional in the right member of the equality is linear and
has continuity of order zero in \’, u’, the second in \’, u, the third in A, p/,
the fourth in A, u, we have by help of the Fréchet theorem the desired form
for B(A, ).
. A definition of a second differential will now be given which is somewhat
different from that of Fréchet.* Consider an arc Ao (z) which is of class C’
on the interval ; = 2 = z,, and let F (\) be a functional which is well defined
for all arcs N of class €’ on z; z; and lying in a neighborhood (\o); of order
one of Ao.

DEFINITION 3. The functional F (N) will be said to have a second differential
at N if there exist a linear functional L (N\) and a bilinear functional B (N, p)
having continuity of order one for all arcs N, u of class C’ on x, x; such that

Fo+1) =FO) +L(n)+B(n,n) + M(1)e(n)

for every arc \o + 7 of class C' in a neighborhood of order one of No.  The symbol
M (n) represents the maximum of |n|, |n’| on the interval x, 2, and €(9) i3 o
functional which-vanishes with M (7).
If we consider in particular a family of arcs of the form
¥ =N () +an(x)
* Fréchet II, p. 232.
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where 7 (z) is of class €’ on the interval z; z; and 5 (21) = n(22) = 0, then
F(N\o+an) — F(N) =aL(n) +a2B(n,n) + o M*(n)e(n),

and the following lemma can readily be proved.
Lemma 3. If F(\o) i3 a minimum in the sense described in Definition 2,

then the conditions
L(n)=0, B(n,7)=0

must hold for every function n () of class C’ on the interval x, x, having

n(21) = n(x) = 0.

4. THEOREMS CONCERNING INTEGRALS OF STIELTJES AND FRECHET

The theorems of the preceding sections on linear and bilinear functionals
presuppose that the arcs considered are continuous. In the study of the
second variation which follows it has been found convenient to introduce
arcs which have a finite number of discontinuities of the first kind on the
interval z; 2, and to consider linear and bilinear funectionals defined for such
arcs and expressible as integrals of Stieltjes or of Fréchet. For this purpose
it will be necessary to show the existence of the integrals under the new hypo-
thesis and to prove the validity of certain relations, some of which have
already been proved for the original definitions of the integrals.

TuEOREM 4. If a(x) is continuous and of limited variation on the interval
ab, and f (z) s of class D, then the integral

[ #(=)daz)

ex1sts.
This is a special case of a theorem of G. A. Bliss.*
TaeoreM 5. If a(z) is continuous and of limited variation on ab and f (x)

1s of class D, then the integral

[ a@ )

a

exists, and the relation

* 4 necessary and sufficient condition for the existence of a Stielijes integral, Proceedings
of the National Academy of Sciences, vol. 3, pp. 633-637, November, 1917.

W. H. Young states and proves this theorem for a monotonic function « (z) in his paper
On inlegration with respect to a function of bounded variation, Proceedings of the
London Mathematical Society, ser. 2, vol. 13 (1914), p. 133. Young states
but does not prove the theorem for a double integral for an arbitrary function of 2 variables
of limited variation in the paper, On multiple integration by parts and a second theorem of the
mean, ibid., vol, 16 (1917).
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[ 1@t + [ a@ @ @) = £3)ad) - fa)aa)

holds.*
THEOREM 6. If f(x) 13 of class D’ on ab, and

4@) = [a(a)de+ 4 (a),
where a () s of limited variation on the same interval, then
[r@iae@ =i@a@r - [f@)da).
By definition,
[[r@aa@ =tmTr ) 14 - A,

If the discontinuities of f/ (z) are among the division points of the interval ab,
and the points £ are properly chosen, the right member of the above equation
may be written in the form,
A (xk) — 4 (xk_l)

Tk — Tp—1

um;[f(x,,) — f(@r—1) ]
= lim;[f(xk) ~ f(xe1)] - on,

where o is a value between the maximum and minimum of «(z) on the
interval 2,y 2. It is easily shown that the expressions

Zk:ak[f(xk) —f(@e-1) 1, ;a(fk)[f(zk) — f(2e-1) 1,

in which a (&) is the value of a(x) at an arbitrary point in the interval
Zx—1 2k, and ar a number which lies between the maximum and minimum
of a (z) on the interval, both approach the same limit, so that

[ 7@ - [ a@ i@

From this last equality and the relation of Theorem 5 follows the desired
relation of the theorem.
Consider a function p (z, y) which is
(1) continuous on the square S:a =z =b, a =y = b;
(2) expressible in the form

* For a proof of this theorem see G. A. Bliss, I'ntegrals of Lebesgue, Bulletin of the
American Mathematical Society, 2d series, vol. 24, No. 1, pp. 1-47; H.
E. Bray, Elementary properties of the Stielijes integral, Annals of Mathematics,
vol. 20 (1919), p. 185. ’
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p(z,y) =[p1(x,y)dx+p(a,y) =j: pe(z,y)dy + p(=,a),

where p1(z,y) and ps(z, y) are both of limited variation in y uniformly
with respect to z, and in Z uniformly with resepct to y .

The function p: (z, y), for example, is of limited variation in z uniformly
with respect to y when there is a constant 7 such that the total variation
of ps (z, y) with respect to z on the interval ab is less than V for every y onab.*

Consider a subdivision of § into rectangles by abscissas z; (¢ = 0,1, - -+, m)
with zo = @, 2 = b, and ordinates y; (j = 0,1, ---,n) withyo = a,9. = b,
and let A;; p (z, y) represent as before the second difference

Aijp(z,y) = p(2y;) — Pp(iyim) — P(&im1, ¥5) + P (@1, Y1) -
" LEMMA 4. The function p is of limited variation in the sense that the sums
>r, Xr|A;p| have a common upper bound P for all subdivisions of S of

the type described above.
If the lemma is true the function p is evidently of limited variation in the

weaker sense of Fréchet also.
To prove the lemma write

Z‘ZJZIAWI E lez(x.,y) —pz(z.-l,y)ldyfV(b—a)

Iljl'

. TueoreM 7. IfN(z), n(z) are of class D on a = x = b the integral

(1 [ r@w@iapew

18 well defined in the sense of Frechet.
Consider a sum

o= ;X(Ei)#(m)Ai:‘P,

where £; and 7; are arbitrarily chosen values in the intervals #;1 z; and y;—1 ¥;
respectively. The sum of the terms of o belonging to a single row of rectangles
has absolute value less than

S [ pa e, 9) = palan, 0)ldy 2 IV (95 =9 5m0),

Vi1
where M is the maximum of the values of |A(z)| and |u ()| on ab, and the
sum of the terms of several rows is therefore in absolute value = M?Vw,
where w is the sum of the width of the rows. The same property is true for
columns. :
* H. E. Bray, loc. cit., p. 180.
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Let r and § be the number of discontinuities of A (z) and x(y) on ab re-
spectively. Then the discontinuities of the product A () u (y) occur on r lines
parallel to the y-axis and on ¢ lines parallel to the z-axis. If the intervals
21 2; and y;—, y; all have lengths = 28, the sum of the terms of & corre-
sponding to rectangles containing points of these lines of discontinuity will
have absolute value not exceeding (r + s) M2V2§. Furthermore, since
M(z) and u(y) are of class D on ab, the norm § can be chosen so small that
the oscillation of the product A (z)u(y) in the rectangles containing none
of its discontinuities will be less than e.

Consider now a sum ¢’ formed by subdividing the intervals z;_; z; and
¥j—1 y; which were used to form o. Then

o — 0’| =eP +4(r+s) M2 V5.

For the first term on the right exceeds the absolute value of the difference of
the parts of ¢ and ¢’ belonging to rectangles containing no discontinuities
of N(z)u(y); and one half the second term exceeds the absolute value of
the sum of the remamlng terms of either o or o’

If two sums o and o’ of norm & are given, a thlrd sum ¢’ can be formed by
using all of their division points, and its rectangles will be subdivisions of
those of o'’ as well as those of 0. From the preceding paragraph it follows
that the difference : ,

7= 0" = Jo =] + |0’ = o"]
can be made less than ¢’ by taking the norm & sufficiently small. It follows
readily then by the usual arguments that the limit of ¢ as  approaches zero

exists.
THEOREM 8. If )\(x) and u(z) are of class D on the interval ab the two

integrals

@ [r@a [ swdrey, .fu(wd,,.fx(x)‘dzp(x_,y)

exist and are equal to the integral (11) of Theorem 7.
Since p (z, y) is continuous and of limited variation in y, the integral

6(z) =fu(y>d,p(x,y)

surely exists for every value of z.* It is to be proved first that it is also a
continuous function of #. For this purpose, let the discontinuities of u(y)
on a =y = b be enclosed in a set of intervals ax B (k =1, ---, 8) of total

* See Bliss, A necessary and sufficient condition for the existence of a Stieltjes integral, Pro -
ceedings of the National Academy of Sciences, vol. 3, pp. 633637,
November, 1917.
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length less than e, and let By = @, aey1 = b. Then

e41 ax [

B
1 6@ =2 [T uwdp@n +Z [ s@d .

=1q;
Each term of the first sum is a continuous function of x according to a theorem

of Bray,* and the second sum has an absolute value less than M Ne, where N
is the maximum of |p;(z,y)| in S. For we have the relations

fyjpz(x, y)dylé N(y; — yi1),

Yi-1

lp(x,y;) —p(e,yim1)| =

and hence

8

>

=1

Bx s
f u(y)dyp(w,y)‘égMN(Bk — ar) < MNe.

The continuity of ¢ (x) follows readily from the properties of the sums in
the expression (13).
" The function ¢ (x) is also of limited variation,{ so that by the theorem of
Bliss cited above the integrals (12) exist.

It remains to show that the integrals (12) are equal to (11). For a suf-
ficiently fine z-partition,

a9 [ @@ - SAE 8 — ¢ ]| < 2.
But ’

(15) SN 8 (@) — 6 (zen)] ~ [ ) do(@) =0,
where

p = LN 2 (2,9) — p(zin, 9)]

is continuous and of limited variation. The integral in (15) exists and for a
sufficiently fine y-partition

[ h@o) —jz;;u(m)[p(yj) — p(51)]

By adding (14), (15), (16), and writing p out in full, we have

(16) < ¢/2.

<e€,

f,. M) dg (2) = DA (&) w(n) B2 (2, 1)

which proves the theorem.
- TeEOREM 9. If p(z,y) 13 of limited variation in y uniformly with respect

to x and 7 (y) 18 continuous, then

* Loc. cit., p. 180.
t Fréchet II, p. 229.
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fj:n(y)dup(x,y)dx=fn(y>dyf:p(x,y)dx.

If  represents the maximum oscillation of #(y) on the intervals y;—1y;,
then

=wV.*,

j: n(y)dyp(2,y) —gn(y})lp(x,y;) - p(z, yi1)]

Consider the relation

U'fn(y)d,,pu,y)dx— azgn(y})[p(x,yj)—;P(x,yi~1)]dx‘

f[fam(y)dup(x,y) —gn(y})[p(z,y,.) - p(x,yj;l)]}dx!

é'[.fn(y)dup(x,y)

—gn(y})lp(ﬂc, yi) — p(x, yi1)]

dz = oV (b —a) = ¢/2,

or,
ffﬂ(y)dw(w,y) —gn(y})[[p(x,yj)—p(x,yj—l)]dx =¢/2.

It is true further that

[ [y

—gn(y})f[p(x,yf) —p(x,y,-—l)]cleé /2.

[ [rwae - 10a [ p@

and since these integrals are independent of ¢, we have the desired equality.
TaeoreM 10. If 9 (zx) i3 of class D' on ab and p, g, r have the properties

described for p, the integral
a1 1(n) = [ [ 1)1 (@) dayp+ 207 @) desg 1 (231 () deyr)
23 well defined and a function n (2) of class (" can be chosen so that

m(a) =n(a), m®d)=n(), |[I(m)-—I(n)]<e,

where € i3 an arbitrarily assigned postitive quantity.

* H. E. Bray, loc. cit., p. 179.
Trans. Am. Math. Soc. 25

Hence,

=e,
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Let the corners of the curve 5 (z) be rounded off to form a function 7, ()
in such a way that each interval in which 7 differs from #; has length less
than 25. Then the portions of S in which the products 7 (z)n7( y) and
n1(2) 1 (y) differ consist-of strips of width 25 parallel to the z-axis and to
the y-axis. If the numbers of strips parallel to the two axes are r and s re-
spectively, then the proof used in Theorem 7 shows that the integrals

[[r@rwdp, [ [m@n@dyp

differ by less than 4(r +s) M?V5. A similar argument applies to the
second and third parts of (17), and since 8 is arbitrary the theorem is estab-
lished.

In the sequel we shall be interested in the solution u of a linear functional

equation of the form
(18) L(u;z) = kx+1,

where k, I are constants. The functional L (u; ) is supposed to be single-
valued when % (£), z are given, and linear in the argument «. We wish to
study some properties of this equation when it has a unique solution for
each k, 1. )
TreoreM 11. If L(u; x) = kx + I has a unique solution u(zx) of class C’
for each k, 1, then the equation L (u;x) = O has only the solution u = 0, and
there exist two linearly independent solutions uy, us of the original equation such

that the determinant
L' (w;2) L' (u; )
L(ui;z)  L(us; )
18 different from zero.

By hypothesis the equation (18) has a unique solution for each k, l and
therefore a unique solution for & = 0, { = 0. But from the properties of a
linear functional it is clear that » = 0 satisfies the equation L (u; z) = 0, and
therefore this equation has only the solution w = 0. Let u; be the unique
solution of (18) for k = 1, 1 = 0; u, the solution for k = 0,1 = 1. Then

L'(ui;z) L' (ups )| ll 0
L(w;z) L(ugsz)| Jo 1
Conversely, we can prove
Taeorem 12. If L(u;x) = 0 has only the solution u =0 and if w1, uz
are two solutions of L (u; ) = kx + 1 such that the determinant
L' (uw;z) L' (up; )
L(uyz) L(us;2)
is different from zero, then the equation L (u; z) = kx + | has one and only
one solution for each k, 1.

v
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Let ki1, I, be the constants corresponding to the solution u;, and ks, I, the
constants corresponding to the solution u;. Then

L' (up;2) L' (ug; ) ky k., _
L(uy;;2) L(ug;2) krx+ 1l kezx+1l,

Hence the equations

ky ke
l1 lz

+0.

ciki+ e ks =k,
Clll +02l2 =1

.can be solved uniquely for ¢; , 2, and u = ¢; uy + c2 u, satisfies the equation
(18). Moreever it is the only solution because of the hypothesis that
L(u; ) = 0 has only the solution u = 0.

5. THE SECOND VARIATION OF F ()

The purpose of this section is to study the second variation of a functional
F(\). To this end we shall be concerned with

(1) An arc Ao of class €’ on the interval z; = 2 = , joining the points
{x1y1) and (22 92) .

(2) A functional F()\) defined on all arcs of class C’ in a neighborhood
(No); of order one, and having first and second differentials at \o as in §3,
with p, ¢’, ¢/, r having properties described for p in §4. The functions
p and r may be taken symmetric without loss of generality.

At the end of § 3 it was proved that if F (o) is a minimum then the second
differential B (7, 7) must be positive or zero for every function 7 (z) of class
C’ on the interval z; z; such that 7 (1) = n(a2) = 0.

We shall now consider the problem of minimizing the second variation.
“To this end we compute the first differential of B (7, 7). Written out in full,

a9) B("’")=~£~L [n(2)n(y)deyp(2,y)

+ 29 (z) 0 (y)deyq(z,y) + 0" (2)0" (¥)dayr (2, 9)],

g(z,y) =50d(y,2) +¢"(z,9)].
If we give to 7, n’ the increments {, {" and compute the first differential
.of (19), we obtain ‘

‘where

2f[r(x)dw(x) + ¢ (2)dn ()],
where .
w(z) =j; (n(¥)dy (2, 9) + 7 (D dya (2, 1)1,
20) :
w1(2) =L (1(¥)dyq (g, 2) + 7' (W) dyr (2, 9)].
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From the results of § 2 it follows that if a function 5 () of class D’ with
n(x1) = n(x2) = 0 minimizesthe expression (19) for the second variation it
must satisfy the equation

L(n;x)Ewl(x)‘—f w(x)dx = kx + 1, = =2.

EN

We make the following hypotheses on L (7; x) which is defined for every

n(z) of class D’ on x; x:
(1) It has a reciprocal L, (7; z) such that for every 7 of class €’ on @, ,

' LL(n;2) = LiL(n;z) = 9 ().
(2) When 7 is of class €’ so is Ly (n; x) .
(3) There exists a constant A such that.
|L(n;2)| =AM, |L'(9;2)| =AM,

where M is the maximum of |5| and [#’| on &, 2,.
TueorEM 13. If L(n;x) has the properties described above and if F (\o)

is a minvmum then no solution u () of class C’ of the equation

(21) L(u;z) =kx+1

can exist vanishing at x, and a point x\ between z, and x, but not identically zero
between x, and x;, and having v’ (x1) + 0.

We shall first prove the
LemMA 5. If u(z) is a solution of equation (21) with the properties described

in the theorem, then for the function
n(z) = u(z), n=z=ux,

EO, x{éx_f_xg,

the value of B (n, n) is zero.
By Theorem 8 of § 4 the second variation can be written in the form

B(n,n) =fz“n<x>d,fz2[n<y)dyp(x,y)+n'<y)d,q(x,y)1

[T @d [T 7 @) dr )

o

=j:2[7;(:c)dw(:c) + 7' (2)dwi (2)].

Substitute for n () the function defined in the theorem. Then

Bn,m) = [ [u(2)do(2) + o/ (2)den (2)]

x

- w@e@E + [ W@ i@ - [o@e].
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The terms outside the integral sign vanish since u (21) = u(z1) = 0. By
hypothesis u () satisfies the equation (21), and therefore

j:’u’(x)d[wl(x) "‘Ew(x)dx] = ’Cj:’“'(x)dx =k-u(2)’ =0,

which proves the lemma.

Hence the function 7 (z) thus defined gives the second variation the value
zero, and this is the smallest possible value for B (9, n) if F (X\) is a minimum
at o, as has been proved. We can show, however, that in case there exists
such a function 7 (z) making B (7, n) vanish, then there will surely be
others which make it negative. For this purpose write ‘

Bnm = [ [ 1n@)n@)de* + 21 @) (1) duyg
T @) @) deyr) = h [ (@) da

= B*(n,n) = b [ r(a)da,

with p* defined by the conditions,
p*(z,y) =p(x,y) +h(y—=z) for m=y=gz,
=p(z,y) for z=y==z.

If we denote by L*(n; ) the result obtained by replacing in L (7; z) the
function p (z, y) by p* (2, y) we have the relation

I*(n;z) = L(n; 2) — hf:fn(y)dydx-

LemMma 6. For sufficiently small values of h the equation
(22) L*¥(u;2) = kx + 1

has a solution u;(x, h) of class C' on x, @, corresponding to k =1, 1 =0,
and a solution us(x, h) of class C' on x, xy corresponding to k =0, 1 =1.
These solutions are continuous in a domain 2, =z = x;, |k| = 8, and are

linearly independent.
According to hypothesis (1) the equation
(23) L(u;z) =0(2),

where u, v are of class C’ on z; z; has a unique solution u (). If we apply
the operation L, to the members of the equation

(24) L*(u;z) = v(2),
we obtain
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w(e, ) = b ( [ [(uw)dydesz) = Laes2) = 6(2),
or, o ' _
(25) u(z, b) = ¢ (z) + kLl (u; 2),
where L, has the properties (2) and (3) of L; and ¢ () is of class C’. Re-
peated applications of the last equation give the series

(26) u(z,h) = ¢(z) + hl(¢;2) + K Li(¢; z)
+ -+ Li(ds2) &2
By property (2) each term of this series is of class C’. By (3) the terms of

the series formed of the z-derivatives of (26) as well as the terms of the series
itself are dominated by the terms of the series, '

M(1+hA(x2—x1)2+h2A2(x2 —x1)4+ e +h"A"((t2 —$1)2"+ ),

whence it is seen that the two series are uniformly convergent for ; = 2 = »,
|k] = &, when & is sufficiently small.

The series (26) satigfies equation (25) and therefore (24) as we see by oper-
ating on (26) with Ly. To justify this last statement write (26) in the form
% = 8, + r,, where s, is the sum of the first n terms. Then

|Ly(u) — Ly (3,)] = |La(ma)| = €.

Also (26) is the only solution. For if there were two solutions, their differ-
ence ¥ (z) would satisfy the equation

@7 Y(z) =kl (Y5 2).

This equation can have no solution other than ¢ = 0 for » = when 4§ is
sufficiently small. For the functions A" L;(¢; ) in (26) tend to zero if
|k| =6; but if ¥ (x, k) satisfies (27) all these terms are identical with
¢ (x) = 0, and therefore ¢ = 0.

These results together with Theorem 11 of § 4 prove the lemma.

LEmMMA 7. If equation (21) has a solution u(x) as described in the theorem
then for sufficiently small values of |h| the equation (22) has a solution u(z, h)
with similar properties.

Let u () be the solution of (21) with constants k, I. - Then by Theorems
11 and 12 of § 4 it is expressible in the form -

u(z) = kuy (z,0) + lus (2,0).

Since u (z) vanishes at x; it may be that both u; (21, 0) and . (21, 0) are

zero; in which case
u(z, h) = kui(z, h) + s (x, k)

is the desired solution. If u;(;,0) and uz (21, 0) are not both zero, then
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u(x) = kuy (21, 0) + luy (21,0) =0,
k:l=—wu(x1,0):u(21,0);

w(x, ) wu(z,h)
ul(xl) h) u2(x1, h)

is the solution demanded. For, from the hypothesis that »’ (z;) is different
from zero it follows that u; (z; — 8) and u; (27 + &) will have opposite signs
for a sufficiently small 6. The same will be true .of uw(z; — &, k) and
u(x; + 6, k) for sufficiently small |k|. Hence u(x, k) for such values of A
will surely vanish at least once between x; — 6 and z; + 8. The value zx
below can be selected as the first zero of u (x, k) after z; — §.

To prove Theorem 13, choose 2 > 0, and

or,

and
u(z, k) =

n(z) =u(z, k) for m=z=am,
=0 for an=a =,

where 3, is a zero of u(x, h) between z; and 2;. Then

B(n,n) =B*(nom) = b [ ri(2)dz=—h [ w(2)dz <0,

1

since B*(n, n) = 0 for the 5 just chosen. Finally, if B(9,n) <0 for an
7 of class D’ it will also be less than zero for an arc of class (" as is seen by
applying Theorem 10 of § 4.

6. APPLICATION TO THE CALCULUS OF VARIATIONS
The purpose of this part of the paper is to interpret the foregoing results
in the case of the functionals of the calculus of variations.
For the simplest problem of the calculus of variations the functional ¥ (\)
has the form

(28) F(A\) = fx’f(a:,‘)\,)\’)dx.

We have seen that the functions % (z) and u; (z) occurring in the expression
(3) of the first variation of F (\) are not uniquely determined by the F (\),
since the integrals are unaltered if % (z) and u;(z) are each increased or
diminished by a constant; hence we are at liberty to assign to them an arbi-
trary value, say zero, at a particular point of the interval z;z;. We may
then make % (z) and u; () vanish at x;. If for the functional F(X\) in
(28) we define u () and u, (z) as follows:

29) u () =fo,\dz, us () =j:fydx,
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then the expression (3) for its first variation assumes the familiar form

f (f,\77+f,\'77 )de.

We have derived as a ﬁrst necessary condition for a minimum of F (7\) the
relation
@' (2) =k,
where

i(x) = wm(x) —ftu(a:)dx.

1

For the functions in (29) this condition is equivalent to the relation

—fﬁh=h
xy

which upon differentiation leads to the Euler equation

d
fA _ﬁf)\' =0.

Since the function u () defined in (29) is continuous the conditions (10)
on % (z) and u; (z), which were found to hold if the first variation vanishes
for every 5 (z) of class ¢’ whether or not n (1) =1 (:cg) = 0, become the
transversality conditions

far (@1) = fu (@) = 0.

Let us next consider the second variation B (7%, n) of F(\) when F()\)
is given by (28). Again, the functions p, ¢, r, occurring in B (7, ) are not
uniquely determined by F ()\), for the value of the double integral (19) is
unaltered by the addition of an arbitrary function of 2 alone or an arbitrary
function of y alone. The functions may therefore be chosen identically zero
for a particular value of x and a particular value of y. Define the function
p(z, y) by the conditions

Y
p(z,y) =f Pdy for m=y==w,
(30) '
dey for T=Y = aq,

where P = f,,, and make similar definitions for ¢ (z, y) and r (z, y) in terms
of Q@ =fu and R = fy,, respectively. The functions p, ¢, r so defined
have all the properties assumed for p in § 4.

If the functions defined above are substituted in the expression for B (7, )
the double integral (19) is reduced to the single integral
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[ForP+om @+ R,

The first member of the equation

(21) L(n;2) = w1 (x) — fxw(x)dx=kx+l,

xn

where w, w; are defined by the relations (20), assumes for the p, g, r in (30)
the form :

a(2) — [(w(@)de = [ M@)QW) ~ (e =) P)]dy
' o + 7' (1) [R(y) — (= — 9)Q(y)]dy}
- [ - n1ew - Pw)]
’ — R'(y)}dy + 1 (z) R ().

Accordingly, the equation (21) reduces to a Volterra integral equation of the
first kind and has therefore a unique solution for every »(z) of class (',
provided R (z) # 0. The properties assumed for L(%;z) in § 5 are here
justifiable. Equation (21) differentiated twice gives the Jacobi differential
equation,

7(2)Q (2) = P(2)] + (7 (2)R(2)] = 0.

7. THE CHARACTER OF THE OPERATION L (u; )

The analog of the Jacobi condition of the calculus of variations which
has been obtained as a second necessary condition for a minimum of F () is
expressed in terms of a solution of the equation

[T daw, o) +v @) r )
21 v= -
—L“fh [u(y)dyp (2, y) + 0 (y)dyg (2, )] dz = kz + 1.

The first member of this equation is a linear functional L (u; ) and with the
help of the theorems of § 4 is expressible as a Stieltjes integral. Theorem 6
and the conditions u (x;) = u(x;) = 0 enable us to replace the two integrals

%)
f w (y)dyr(z,y), fu’(y)duq(w,y)
by the integrals
xg X9
—f u(y)dyr(2,9), —f u(y)d, q2(x,y),

x 1
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where 73 (z, y) and ¢; (z, y) have the properties defined in § 4. Now apply
Theorem 9 and we see that equation (21’) reduces to the form

[awa K@y =+,

E2 1

where
-K(x,yﬁ=q(y,x)—-n(x,y)—x/u[p(x,y)-w(x,y)lin

If the only discontinuity of the function r; (x, y) occurs on the diagonal
of the square S and is there equal to R (z), the equation will have the form

-C

Q) [“urd, K2, 9) - R@)u@) = ke + 1,
xy

where K1 (z,y) is continuous and of limited variation in each variable uni-

formly with respect to the other.

We can show that the integral in (31) represents a transformation which
has the property of complete continuity.* A transformation is said to be
completely continuous if it transforms a bounded sequence into a “com-
pact”’ sequence, that is, into a sequence such that every subsequence of
itself contains a further subsequence which is uniformly convergent. A neces-
sary and sufficient condition that a bounded sequence {¢.} be compact is
that for a positive e there exists a é such that for |z — 2’| < & and for all ¢,
the inequality /
|¢n(x) - d),,(.’l?,)l <e
holds.{

Let {u,} be a bounded sequence of continuous functions such that |u.| < G.

The integral
() = [ u(d Kz, )

is a continuous function of z.] The total variation with respect to y of the
function {K;(z,y) — K1 (2, y)} is the upper bound in the set of continuous
functions u (y) of the expression§

Ixau(y)du[Kl(x: il/) - Kl(x,’ y)]
M (u)

* F. Riesz, Ueber lineare Funktionalgleichungen, Acta Mat hematica, vol. 41:1
(1916), p. 73.

1 C. Arzeld, Sulle funzioni di linee, Memorie d. R. Accad. d. Scienze di
Bologna, ser. 5 vol. V (1895), S. 225-244. F. Riesz, loc. cit., p. 93.

t H. E. Bray, loc. cit., p. 180. .

§ F. Riessz, Sur certains systtmes singuliers d’équations intégrales, Annales scien-
tifiques de 1’école normale su périeure, vol. 28 (1911), p. 43; Fréchet II
p. 217.




1920] MINIMA OF FUNCTIONS OF LINES 383

But on account of the continuity of ¢ (z) this last expression may be made
less than ¢/G by taking |z — 2’| < 8. Hence the total variation with respect
toyof {Ki(z,y) — Ki(a',y)} isless than ¢/G for [z — 2’| < 8. We have
then the relation

|¢n(x) - ¢n(m')| =

flzun(y)du[Kl(x,y) —Ki (2, 9)]| <e.

F. Riesz discusses in his article on linear functional equations referred to
above the inversion of a transformation of the form E — A, where E is the
identical transformation and A is a completely continuous transformation.
The results of his article are applicable to the equation (31) if R (x) # 0.
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