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ON CERTAIN LOCI PROJECTIVELY CONNEGTED WITH
A GIVEN PLANE CURVE

BY

A. M. HARDING (a Fayetteville, Arkansas, U. S. A.)

1. Introduction. The projective theory of plane curves may be based on
the following interpretations due to II alp h en, and systematically developed
by Wilezynski (‘). Let y,,9,, ¥y, constitute a fundamental system of so-
lutions of a linear homogencous differential equation of the third order,

L]

) v 4+ 3p, v+ 3,y 4+ p,y=0,

and let us interpret y, , ¥, , y, as the homogeneons coordinates of a point P,.
As the independent variable ¢ assumes different values this point will
describe a curve C,:

¥ =y{?), (=1, 2, 3),

which shall be called an integral cnrve of (1). Each of the two semicovariants
2=y - py and p=y" + 2p, ¥ + py of (1) assumes three values,

z =y +n9,
(2) (= 1) 2’ 3)’
pi=9"r+20 ¥+ P %

() Wilezynski, Projective Differential Geometry of Curves and Ruled Surfaces. Leipzig,
Teubner, 1906, p. 60, Hereafter referred to as W.
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according as we substitute in it for y the fuuctions y,,y,, y,. Thus the ex-
pressions (2) determine two further points P, and P,. If P, is not a point of
inflection the three points P,, I>,, P, will form a non-degenerate triangle,
which may be used as a local triangle of reference for the purpose of studying
the projective properties of the integral curve in the vicinity of the point P,.
The unit point of our local system of homogeneous coordinates may be chosen
in such a way tbat the point determined by the expression

T=2Yy + T2 '+ Lo

shall bhave the homogeneous coordinates x, , x,, x, in the local system.
Wileczynski has shown how to determine the coordinates of certain
points and lines which are connected  in invariant fashion with the given
point P, of the curve C,. Most of these are connected with the theory of the
so-called eight-pointic nodal cubic. But Wilczynski used a specialized
system of local coordinates for this purpose, a fact which makes it rather
difficult to make specific applications of his formulae to special curves. We
shall, in this paper, determine the coordinates of these same points without
specializing the local coordinate system. We shall. moreover, consider certain
other points and lines, primarily those which are connected with the theory
of the osculating anharmonic curve. These have been mentioned before, but
they have nover received adequate attention. We shall then study the loci
and envelopes generated by these various points and lines as the point P,
moves along the curve C,. .
At this point I wish to express my indeptedness to Professor E. J.
Wilcezynski, under whose direction this paper was written. His patience,
kindness and encouragement have been important factors in its preparation.

3. The specialized coordinate system. The specialized local coordinate system
used by Wilczynski is obtained as a result of the following considera-

tions. It is always possible, by means of a trasformation of the type y:_—_)\(t)g./,
to reduce equation (1) to the semi-canonical form (')

®) v+ 38,y +P,y=0,
characterized by the absence of the second order derivative, where
P,=p,— ", —P

(4)
Pz =pP;— 3p1P1 + 21)3‘ ""'p”p

() W., p. 16.
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If now we make the transformation (%)
(5) =g,
this equation reduces to
dy dy
(6) — e8P, == - Py =0
dt' *dt ’ '
where
- 1 2
b= (&’)"[P“’— 5"} ’
| — (—&,T[Pu — 3P, —p L ‘.’pm‘] ,
and
" ﬁ &/I
S =

) ete., 7]:?7 o

There are certain combinations of P, , P

3
remain unchanged, except for a factor

(55

, and of their derivatives which

, When we make such a transfor-
mation of the independent variable. Such combinations are called relative in-
variants. The simplest of these are

3.
63:P3_'2'P27
(7

6, = 66, 6", — 7(6',) — 27P, 6%,.

All other relative invariants are functions of 6,, 6 , and their successive J a-
cobians () The following Jacobians will be used in this paper:

* 6, = 36, 6/, — 80', 6,
(8)

8,, = 36, &', — 166, 6, ,
6,-=6,0,— 40,0, ,  6,=36,6, —206,6,
*) w., p. 20.

®) W., p. 33.
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It is frequently of advantage to have explicit formulae for these, in terms of
6, and its derivatives. For this reason the following formulae are here set
down :

o, = 66,6, — 80", 68", — 54P, 6, &', — 27P’, 62,
6, = 186% 0", — 726, 6, 6" |- 56(%,)" 4 54P, 02, 0/, — S1I”, 6%, ,
0, = 186%, 60, — 360, 6, 0", - 96(0,)%0", — 720,(6”) |- 54P, 6%, 6, 4
-+ 108D, 6,(67)F — 1891, 62, — 81P", 6%,
b, = 186%, 6O — 10867, 6, 6", - 3846,(6',%6", —- 726%(8" )2 — 224(6' '+
+ 54P, 67, 6", — 108P, 682(6)* + 135P', 6%, 6, — 81P", 6.,

We shall also need the following absolute invariants :

63 6,6 62, 6,
(9) kzﬁT:; p.::e—:—j-; v:-——esx‘“; o:-—ewsz"

We shall assume throughout that 6, is not identically equal to zero, that is,
that the curve C, is not a conic ().

Since z and p, as defined by (2), are changed by every non-linear trans-
formation of the independent variable, we may think of (5) as a transform-
ation of coordinates from one local triangle of reference to another. In parti-

cular, we can so choose §(t) that E: 0. Then equation (6) becomes
(10) — +P,y=0,

which is known as the Laguerre - Forsyth canonical form of (1). If we
assume that the original equation (1) is in the Laguerre-Forsyth
form, we have the following values for the relative invariants :

6, =P 6, = 18P%,P"", — T9P P/ P, 4 56(P"),

3 — L3
(11) 6, = 6P,P", — T(P",), ote.

els — 6P3A[)lll3 —_— 81)/31)//3.

——

() W., p. 6L
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3. The osculating conic and cubic. By makins use of the special triangle
of reference which corresponds to the Laguerre - Forsyth form of the
equation. Wilczynski has shown that the equation of the conic and cubic
which osculate the curve C, at the point P, are, respectively, (*)

¥, —2ex, =0,
7[15P,P"", — 20", D", — 567E%) Q,(x) 4 20[6P,P"; — T(P")*] () = 0.
where |
Q,(x) = b(*, — 2x,x,)(P'w, — 3P.x,) + 12D,
Q,(x) = b(2*, — 2ax,)(21P 2, — P x,) — 42P% 2’ — 14P P’ 2",
These equation may be written in the form

P .9 —
r, — 2w, =0,

7|567P% — 2 (6P,P"", — sp'sp"z,)] Q,(z) + 20 [ 6P,P", — 7(P’3)2] Q) =0,
where
Q,(2) = 5(a?, — 22,0, Pz, — 3P.x,) + 12P%a°
6P,Q,(%) = 5(2%, — 2x,3,) [iﬁl’aP"a — (P )& wy TP e, — 126P23x‘] +

| 252P% 2,2%, + 84P%LP" 2P,

Making use of (11), we obtain the following equations for the osculating
conic and cubic:

@, — 2rx, =0,
(12)
7 [5676“3 —2 O’R] Q,(x) -+ 208, Q,(x) =0,
where
Q@) = 5(2%, — 2z,2,)(8 &, — 30,7, 4 126°2°,,

66,Q,(z) = 5(2*, — 2w, (8,7, + 7(6")’x, — 1266°x,] -
+ 2526 x,0°, |- 846%.6" 2%,

() W., p. 64.
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We now raise the question: what do these equations become when the
local coordinate system is not specialized? Wilczynski has given us the
answer only in the case of the conic. Let us assume that the coordinates of
a covariant point, referred to the special local coordinate system, are
x, =f0,,0,,0,0,..,
(13) 2, =f,0,, 0, 8,8,..,

x, = f0,, 8 a0 0,

where 6, , 6, §,, ete.,, are defined by (11), and see if we can find the coor-

dinates ’7_4 , x—.“ 5;, of the same point referred to the general local system.
After making the transformation (5) it is found that (!

y=yv,

(14) 5:—&17(z+ny),

1 1
b= w[r +n~+(§u + 571)?/]
Whence

-

y+a,z+ 0= [w—rg,n +1 (ul— "l)]./—f-{ 7+ ,~qu+

T

-

1 —
+(€;‘)§'%P,

[0}
—'ZET{ [-’1/"]/ + T2 + w:;pl ]

where
ne. ’, ”‘41_ 1 1 2\
wx,z(f:)lfl—&“'l%“n §P+§"I L)

, —
or, = £, +nw,,

wr,— Ly

() W., p. 59.
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Since =z, , @, , «, refer to the special system, we have P,=—0 and

(&,)2 P2 == — § !J..

Hence the equations of transformation from the specialized to the general

local system of coordinates are

wr, = EP e, + e, + 3 Lie — @y e,

+1]m_3,

&
u
s

oL, = x, .

For a covariant point the terms involving v must disappear and a power
of & come out as a factor. We are thus led to the theorem : If the coordinates
of a covariant point, referred to the special local coordinate system, are given
by (13), the coordinates of the same point, referred to a general local coordinate

system, are

— o w 1= v & 0 &
x:j‘(ﬂs,ﬁa,08,68,...)+§12f3(63,63,08,63,...),.
i;:fz(qyé—;?é;??x’"')’

;'—;.:fs(é;7 .(7376;7?37"')7

where
. 3—
03:: 3 ’_§P2’
5, = 66, 07, — 7(9,) — 27F, .

Tence, in order to obtain the general equations corresponding to (12) it
is only necessary to take the general values of t,he relative invariants as

defined by (7) and (8), and then replace z, by x, ———Px The equation of

the osculating conic and cubic then become
7, — 2zx, + P2’ =0,

(15)

-
7 [5676“3 -3 e'g] Q,(z) + 200, Q@) =0 ,
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where
Q(2) = 5(2*, — 2z, + P2*)(0 2, — 36,2, | 122°2°
Q(x) = 5@?, — 2w, + Pa® )0, 4 6P 62, —210,x,) 4 426% 027, - 216,6° 2%,
If 6,=—= 0 the osculating conic has a double point at I>,, and its equa-
tion is
(16) 5(@*, — 2w, + P )0, — 30,) | 126°2° — 0.

However, if 6, == 0, this last cubic is still of special interest and has been
called by Wilezynski the eight-pointic nodal cubic, or, in his more recent
terminology, the penosculating nodal cubic (!).

4. The canonical triangle. By means of the osculating conic and the eight-
pointic nodal cubic the canonical triangle has been defined as follows (3): One
vertex i at P, and one side i8 the tangent at this point. The second side is the
inflectional line of the cight-pointic nodal cubic. The third side is the polar of
the point of interscction of the other two with respect to the osculating conic.

It is easily shown that the three points of inflection of the eight-pointic
nodal cubic are given by the three irrational invariants

3 b
) ‘ , 46 , o 1/48
(%,)° - 9P, 8, 4 66,6 :5“’&‘/?3J y + [6039 2+ 180”3“)&]/ “‘f}z +- 186%p 5
k=1, 2, 3),

8o that their coordinates, referred to the triangle P, P,P,, are

3___
1/48,

a® = (O 4 0P, + 68, [/ 2,

3
46,
2" = 60,6, 4 186w, |/ = k=1, 2, 3),

g:a“‘) = 186%,

(1) Bull. Amer." Math. Soc., April 1916.
® W., p 86
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where o, , ®,, o, are the three cube roots of unity. These three points lie on

the inflectional line whose equation is
(17) 18620, — 60.8"2, - [(8",)F — 9P |r, = 0.

The equation of the tangent to the integral curve at I, is o, = 0. This
line meets the inflectional line in the point B whose coordinates are

x,=306, , x,=—0.

x, =0, ,
The polar of any point (¢, , &, , #’) with respect to tge osculating conic is
—a' w4, 4+ (P, — @' )r, =0,
so that the polar of the point B is
300, — 0/ r, = 0.
This line meets the inflectional line in the point C whose coordinates are

o, = () 9P, , x,=000, , = 186%,

Ience the vertices of the canonical triangle are defined by the cova-

riants
A7 "0 =Y,
(18) B, C, =0y -+ 36z,

C, C,=[(0V)" 4+ 9P 0%, Jy -+ 666"z |- 186°%p,

and the equations of the sides are
BC,  186(z, — 60.0°x, - [(0)F — 9P, v, =0,
(19) CA, 30x, — 62, —0,
AB, ' v ,=0,
fhere the point A is the same as I,

From the form of equation (16) we see that the double point tangent of

the eight-pointic nodal cubic are uefined by the last two equations of (19).

Harding 2
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Hence we may define the canonical triangle in terms of this cubic alone. I'wo
of its sides are its double point tangents and the third is its inflectional
lines.

It will be found that the inflectional line of the eight-pointic nodal cubic
is tangent to the osculating conic at the point C. That is, two sides of the
canonical triangle are the tangents from B to the osculating conic and the
third is the polar of B with respect to this conic.

If C, is not a conic the independent variable may be chosen in such a
way that 0, — 1. The coordinates of the point B then reduce to (0 , 1 , 0).
That is, P, coinecides with B. Then P, is at some point D on the line CA.
Hence there must be some point on CA whose coordinates, under the agsump-
tion 6, =1, reduce to (0, 0, 1). It can be shown that this point is defined
by the covariant

’ : 1 /
(O, -+ 9P + 3 O ly + 60,0" |- 180%p.

For some purposes it is convenient to use the canonical triangle as tri-
angle of reference ('), but it must not be confused with the triangle P,P.P,.
In general, the two triangles have only one vertex, P,, and one side, the
tangent at P,, in common. The canonical triangle, being defined by covariants,
is not changed by any transformation of the independent variable in (1). Its
position depends only on the properties of the curve at P,. The latter, being
defined by semi covariants, is changed by every non-linear transformation of
the indepeﬁdent variable in (1). In particular, if the given equation be tran-
sformed to the Halphen canonical form, i. e. P, =0, 6,=1, P, will co-
incide with B and P, with D. The triangles then have two vertices and two
sides in common,

However, if all the points of C, happen to be coincidence points, i. e. if
0, — 0, and equation (1) is written in the Halphen canonical form, the
points C and D will coincide and the two triangles will be identical for all
values of .

5. The envelopes of the sides of the canonical triangle. As the point P,
moves along the curve C,, the sides of the caneonical triangle will envelope
certain curves. We now propose to find the point where cach side touches
its envelope. Of course we know beforehand that the envelope of the side AB
is the curve O,.

() W., p. 82
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Differentiating (2) and reducing by means of (1), we find

Y=y,
(20) §d=—=Py—pr-top,
’ 1 ’
p=— <62 + 5P 2)3/ — 2Pz — p,p.

Suppose ¢ is increased by an infinitesimal 3¢, The points A, B, C will take
the positions A, , B, , C, defined by the expressions

y+ydt=01—poty 4 dt-z,
(0, - 0”8ty - y'ot) -+ 3(0, - 0,80)(= -} 2'3¢) = [0, -+ (08, — 0", p, — 3P0,)3t]y -
- 130, 4 (46", — 36,p,)3t|e - 30,8t-p ,
| (07 4 9P, 0%, - (207,67, 4 9P’ 0% - 18DP,0,0")3¢t |(y -~ y'd¢t) |-

- 60,07, -~ 36(6", - 606,07.48¢t] |2 - 2'3t) - (1867, + 366,0,3t)(p - p'dt) =

=[O + 9P,0%, - 3207,6", - 12D 0.0", — p (0", — 9P 0%k — 186°{dtly -

4 (60,87, - 36, - 14(6",)* — 666", p §dtle - [186% 4 (426,0", - 186% p,)dt|p ,
where all terms of order higher than the first have been neglected.

We are now in a position to write the equations of the sides of the
triangle A B,C,. In order to find the point where the line AC touches ibs
envelope we must find the point of intersection of AC and A,C,, and then
find the limiting position of this point as 0¢ approaches zero. We find, for
the line AC, the point E, defined by the covariant

(21) L(07)* 4= 9P0%, — Oy +- 60,02 - 180%p,
and for the line BC, the point E, defined by the covariant

(29)  [(6,76, - 9P,6%0, -+ 1086”07, Jy - [60,6',0, - 3240 ]z - 186%0.0.

1t is easy to verify analytically that each of these expression is a covariant..
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If the coordinates of our collinear points are written in the form

Py=(ha, +ky, , hr,+ky, , hax, 4+ ky,), (t=1, 2, 3),
the anbarmonic ratio of the four points is given by

RN

If now we take the points A, C as (2, ,x,, &), (4, Y, ,¥,) we find ()

k

1 1

h, k

h, & h 4 ;

3 3

h, k

1 1

-

h, k

4 4

h, k h,

(23) (P D,P,P) = :
o h:! k2

ki

4 4

(C,A,B,,D =4.
It will be seen that the points E, and E, coincide with B and C, respectively,

if, and only if, 6, = 0. Hence (®), a necessury and sufficient condition that the
locus of each of the vertices of the canonical triangle should be at the same
time the envelope of one the sides which ends thore, is § = 0.

6. The differential equation of an associated curve. As the point P, moves
along the curve C, every point, whose coordinates r, , x,, r,, referred to the
moving triangle of reference, are given as functions of ¢, will describe a cer-
tain locus. We sball speak of this locus as being associated twith the given
curve C,. Its points correspond to those of C, in a definite fashion, corresp-
onding points being determined by the same value of ¢. The associated curve
may be considered as an integral curve of a certain linear homogenecus dif-
ferential equation of the third order. We propose now to find this equation.
The computations involved might be simplified by taking I’,—0. However we
prefer to consider the general case.

Under certain conditions the point associated with P, may remain fixed,
or it may move on a straight line. These exceptional cases will be excluded
for the present. Let the required differential equation be

(24) 48, 7+ Bt ot =0,

We wish to determine r , »,, r, as functions of ¢ so that a set of funda-
mental solutions of (24) will be given by

T, =Ty + T2 4 epi, t=2, 2, 3),

() W., p. 66.
® W., p. 10.
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where y, is a set of fundamental solutions of (1) and 2, and p, are given

by (2).
The point P, which is associated with P, is defined by the expression

t=ay + x2z -+ x,p.
If we differentiate © and make use of (20) we find
(25) vtpr=uy+uz+up,
where
, 1.
U —x, — szz—(e:t + SP 2)‘1’31
(26) U, = ‘”,2 + @, — 2Py,
w, =2, + «,
Differentiating again and reducing by (20), we find
(27) t" + 21)41:, +_pzt — 'L"y + vgz + v:;p ’
where
’n ’ 1 ’ ’ 3 ’
v, =" — 2P, — 2|6, + P, )¢’y — (6, + 5P, Jv, —
6' 1 ” 2
- :1+5P2_2P2x3’
(28 : =a” 2z’ 1P’ 2Pz 6 5P’
\ ) b, =T, -xy — P oLy — 3+§ 2%y

v, =", + 2a', + » — Py,
A third differentiation gives

v 4 3p 7+ 3p, T Fpr=wy 4wz + wp,
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where
424 7’ € 1 ’ 17 . 3 ’ 7
20‘-—$ "_3P2x2"‘3 e.;“{—:;[)?af,!—d 6“—}-—61)2-7;2—

1 p. : ’ ] 1244 ’
- 3(6,3 + 51)"3_21)lz>w,3 - (6':1 + %1)”2)% - (6, 3“" 9 p”,— 6p,P 2)“"3 ’

5
(29) w,=2a"’, 4 32", — 6Px”, — 6Pa’, — 3(63 -+ ;P'2>w’3 —

3
— 3Pz, — 2(6'3 -+ 51)"2)'”37

) N Qa0 . ’ ’ A
w, =", 4 32", 4 32’ — 3P&', — 3P,

There is one important property of the quantities u,, v, , w; of which we shall
make use later. They are linear in z;, 2, , 2", , 2"".. Hence, after they have
been found for the points (x,® , 2,* , ) and (x® , 2, , 2.®), it is very easy
to calculate their values for the point (z, , z,, ;) where z, = ax,V 4 bx,® , if
a and b are constants.

We now have a system of four linear equations in y, 2, p. Eliminating
Y,2,p, we obtain the desired differential equation

(30) v +3p, v 4 3p, ' + pyr] — 37" 4- 2p, ¥ 4 pyr] +-

+ 62|t, '|_ Plr] - 6:;‘: =0 ’

where
x, © = x &, T,
(31) So=tu, uw, wl, O =|u u, uy,
v, v, v, w, W, 1w,
x, ®, u U, U,
8, ==, & Ul, =2 v, v
w, w, w, w, w, 0,

It is interesting to note that the coefficients of & , 8 , 8,, J,, if written
in terms of y instead of r, would be semi-covariants of weight 3, 2, 1, 0,
respectively.
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It will be shown later that J, venishes identically only when the locus
of P is a straight line or a point. Since these cases have been excluded, we
have, as the solution of our problem,

. . d
’.37’1 = (}p, R — 9

60

o 3
(32) 3r, = 3p, — 2p, 6—‘ -+ FL R
0

0

3 5 @
Y= — P 5 P — St
3 3 2 80 182 8 ’

0

where the right members depend only on the independent variable ¢

7. The calculation of &,,0,,8,,d,. In most cases the calculation ef &, is
fairly simple, but when wy try to find the other three the work becomes
rather complicated. Hence it is desirable to have a method for determining
the last three determinants from the first one.

From (26), (28), (29), we find by differentiation
1 ’
¥, =u, + P, |6, + §P‘.’ x, ,

A : ¢
wz—uQ_xi+2P2w:x?

. —u

3 2 %oy

1.,
'11’4 =, + Pguz + (63 + EP 2)“3 - P2m4 ’

2

(33) ', —v,—u, + 2P,u, — Py, ,

’

Wy =v,—u, ' — Py,

1, 1
v, =w, + Pp, + (63 -+ 5P 2)173 — 2P, + (03 + L—,P’g)w‘ R
1 ’
,vlz =10, — 7, + 2P2'p3 -_ 2P2’N2 — 03 + §P 2 )%y

1
v, =w, —v, . — 2P, — (03 + §1”2)::73 .
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Differentiating &, with respect to ¢, we obtain

’ ’ ’ -
a, &, X, l x ox, ‘ X, @, @,
’ ’ ’ ’ 1
o=\ 1w w, w || W, W ow,
’ ’ ’
/”l v? 13 l Ui v? Q‘l I v i v 2 v 3

After making use of (33) the right member reduces to

[ L@ S | e wow | a o w
S, +| u u, w, || fw) fw) fi0) |4 , w |,
RN I R I ORI ON

where
1 >
f((‘r) — Pg""‘z’i— 63 + él )

f#) = —x 2P, ,

If the last three determinants are expanded ad added it is found that all the
terms cancel. Hence 3, is the derivative of &, with respect to the independent

variable t.
It is evident that 3 , 5, , 9,, &, are connected by the following relations:

w9, — 0,3, + w8, — 2,8, =0,
10,0, — v,9, + u,3, — x,8, =0,
w0, — v,8, + u,0, — x,5, = 0.
From the first two we obtain
(2, — w2, 8, — (v,8, — v,x,) 8, — (W&, —— 0,x,) 3, ,
(34)

(@, — um) 3, = (v,u, — v,u,) 8, — (u, — wu,) 3,
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and from -the last two
(ux, — wr,) 8, = (v,0, — vyx,) 8, — (10,0, — 2w0,r,) 3,y
(35)

(g, — ugry) 8, = (vu, — v,) 8, — (wa, — wn,) 3, .

It will always be possible to determine &, and &, from at least one of the
equations (34), (35). The only apparent exception is in the case where

UL, — U, == W T~ T, = 0; i. e Uyt U U, =T, 0T,

But this requires g, == 0, which has been excluded. Henee we may find
8, by difterentiating &,, and then 3, and g, from the above equations.

8. The invariants of the differential equation of an associated curve. The
calenlation of the invariants of (24) may be greatly simplified by means of
the auxiliary equation

(36) 6" -3y, 6" 4 3y,6" |- y,6 =0,
Where
8‘ &" - 6.’!
(37) ~3q|—'—6:7 3q‘3——6:.' —q:{—a_‘)

Substituting (37) in (32), we find
n=n-Fa,
(38) r, =P, 2P g, + ¢y
¥, =P, + 3P, 4, + 3p, 4, + ¢
"Let
R,=r, — ¢ — 7, , R, =», — 3r.», + 2r° — 0",
Q=9¢—¢—¢ , Q=¢—3949+2¢ —q".

Then from (38) we find

R,=P,+Q, ’ R, =P, 4+ Qy;
Harding 3



and finally

(39) (b:x == 03 + '1'):: ?
where
3, EI
q).‘l - R:: '_‘ § R p) ’ 'P:; == Q:x - E Q 2

9. The tangent to an associated curve. Liet us denote by ', , P, the points
defined by the expressions wy 4 w2 --up, vy -+ v,2 -+ v,p. Then, if C; denctes
the curve which is described by the point Pg, it us clear from (25) and (27)
that P, is a point on the tangent to C; at P, and P. is some other point
in the plane. Hence the equation of the tangent to Cp at P>, referred to the

moving triangle of reference P, P.,, is

(40)

where x, . x, , r, are the current coordinates.

10. A new transformation, and digcussion of the simplest case in achich it
is periodic. We have seen that the two points ., P, which are associated
with P, to form the standard local triangle of reference, are detined by the
semi-covariants (2). Now the curve described by P, ix anintegral curve of (24)
in the case x, =0, x, =1, x, == 0. Hence, associated with P,, are two points
P, P ., defined by

o2 Py
=1 +4nrrc,

p,=r1" 4 2r7" 4+ rz,

which, together with P,, might form a triangle of veference for studiyng the
properties of the curve deseribed by I, Let us investigate the conditions
under which these two triangles are identical.

For the point P, we find

2, =0 , w=—P, , v,=—P, , w=—FP,,
r,=1 , u,=0 . 0,=—=2P,, w,=—3r,,

=0 , wu,=1 y 0,=0 y w, =0,
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Hence the differential equation of the curve C, is

(41) P 4 3p, by — P - (3p,P, — 2p, P

+ (#,P, — p,P’y — 2P,P’, 4- 3P, P)c = 0.

Substuting the values of ', ,» ,r, from (25), (27), (41). we find

L ‘
¢ =— Py — 31332 +vp,
2P,
pp=— Py —2Pz— —{E p.

Hetiee, a necessary and sufficient condition that I, and P, be defined by

2, and p,, respectively, is that

(42) P,-=0 , P, = constant.
It is clear that (42) implies 6, = 0.

It we consider the point P, it can be shown in like manner that (42) is
a necessary and sufticient condition that the points P, and P. be defined by
2, and p,, respectively.

If we think of (2) as « transformation achich carries P, into P, and upon
repetition into P, , then (42) is the condition that this transformation be of period
three. That is, three successive applleations of this transformation will carry
the point P, into P,, P,, P,.

If these conditions are satistied, equation (41) and (1) are identical.

Hence C, is projective with C,. The same thing is true sf the curve C,.

Hence a modified form of Halphen’s theorem: (') If 6, =0, and only
in this case, the independent variable moy be chosen in such a way that each
vertex of the triangle P, P P, shall describe « curve of coincidence points as well
as P,.

11. The condition that an associated point shall remain fired. As the point
P, moves along the curve C,, the triangle of reference, P,P.P,, continually
changes its position and shape. Thus, if the point P_ is detined by the ex-

pression

TI=xY a2 P,

() W., p. 70.
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its coordinates, x, ,x,, x,, referred to the movivg triangle of reference, will
be variable if it is a fixed point of the plane. We propose to find the condi-
tions which the functions &, , x,, , must satisfy in order that Pp be a fixed

point.
Since I, is a point on the tangent to Cp at Pp, a necessary and sufficient

condition that P remain fired is that its coordinates satisfy the relation
(43) U DU, U T=X X, Ty,

which may be written in the form of a system of linear homogeneous diffe-

rential equations of the first order
¥, =or -+ P, +<6 —l—~l”>

(44) ¥, =—x +ou -+ 2P, ,
X, = —x, + ox,,

where o is an arbitrary functior. of t. In this case the determinant 4, must
vanish for all values of v, , v,, v,

It is interesting to note thdt if we put v, =z, it follows from (31)
that 8§, =3, =0, 8§, =  3,. Equation (25) and (30) then both reduce to

v+ (p, —o)r=0.

12. The condition that an associated point shall move along a straight line.
It is clear that, if the path of Ip is a straight line, the point P, must lie on
the tangent to C. at P, for all values of the independent variable. Hence,
if an associated point does not remain fired, a necessary and sufficient coudition
that its path be a straight line is that its coordinates satisfy the differential

equation

x, x, X
(45) Oy = u u, u [=0
vV, v,

13. Applications. We shall now make some applications of the pre(,edmg
theory to a few of the points which are covariantly connected with the curve

C,- We shall assume in each case that 6 == 0; that is, that the curve O,
not a conic.
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The point B, which is the second vertex of the caponical triangle, is

defined by the covariant

0y + 387,
We find
x, =0, u, = 6", — 3P9,,
x, = 36,, u, = 44’
z, =0, u, =36,
b, == 0" — 362 — 6P, — gp'ze3 ,
v, = 56”7, — 6P, ,
v, =70,
w, == 6% — 126.6" -— 9P, 06", — %}1"26’3 '_g P 0,

w,= 60", — 18P0, — 9P’,0,,
w, = 126",

The condition (43) requires 8, — 0. Hence B cannot remain fixed. The
equation of the tangent to the locus of B is

(46) 18023, — 60,8, + (V') — OP0%, — 0, ] x, = 0.

It is easily shown that this line meets CA in a point which is defined by the
covariant

[0, + 9P, 4 6,]y | 66,6'2 |- 186%p.

Hence, tbe lines BA , BB, and BC form a harmowie pencil with the tangent to
the locus of B.



It will be found that
28, =10, — 540% ’ 20,3, = 0, + 8073,
602382 = 70’11016 - 8[3630”:; - 7(0’:1)2] 80 ’
(47)
18638, — — (1500”7, — 18P0°, — 28(V" ] 0, +
+ 2[1802::’)'”3 - 108030,:50”3 + 112(0,3)3 ‘l— 18]?2"230’3 - 27[),2033] 80‘
Hence the second vertex of the canonical triangle will describe a straight line
if, and only if, p. — 54 = 0. It may happen that p. — 54 = 0 for certain values
of the independent voriable ¢. These values of ¢ will give the points of in-
flection of the locus of B. The differential equation of the locus of B may

now be found by substituting the values of 8,8, ,3,,d, in (30).
From (37), (38), (39), we find ’

2012 024 T 40% om 150"1 of.m 40():’46

54D, — 540, -— — 4 >
(48) 5 3 54 3 03 ()33(,"2 _ 54043) ! 033(012 . 54043)2 (‘33(0‘2 _ 54643)3’

A necessary and sufficient condition that the locus of B be a conic is obta-

ined by equation ®, to zero.
The point C, which is the third vertex of the canonical triangle, is de-

fined by the covariant

[(0,) + 9P.0% ]y - 60,02 +- 180

We find
o, = (0 P52, o =200, R 12P00, — 186,
x, =600, : u, = 6, 4 1407,
x, == 1807, w, =42 00",

v, == 20707, 207 ) — 966%Y, 4 BPHN", - 6D, 4 36105, — OO0,
b, = 6036'”3 -+ 226'::')”3 - 18033 - 1201)20:&0’3 ""_ ‘)7P/202:x ’
v, = 480", 4 49V — OP2,,
w0, = 26/,0,9 + 660", — 1446%0”, — 2406,(6,)* - 216P,6,0", +
+ 108P,P’ 6%, — 27P',8,0", — 270(0,)F — 9P”,0.6',,
w, = 60,0, | 306,07, 4 248", — 144650, — 198D6,6”, —
— 198P,(6',F — 180P",0,8", — 27P", 6%,
w, =6, + 486,6"" + 1760,6",.
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The condition (43) requires 6, = 0. Hence C cannot remain fixed. The
equation of the tangent to the locus of C is
(49) 180280 —(66,8',0,—3246°)2,-[(0,)°0,— Y P60, — 103640’ |, —0.
It will be found that

3, = — B, — 1086%(6,, — 546%)

6,5, = — 626, — 108646, - 86,3,

3%y =
(50) 3673, = 6°8,, — 1620046".6,, — 6.6°, — 150".6°6,, |- 54606, —
— §[36,6”, — 11(6°) &, ,
27605, == — 0,,(210°,6, + 546%)(6,, — 540%) - 6.0,(21067,6, - 546) -
696,67, — 238(0°,)|620,, - 108646, ) —- 4[186°6, — 1986,6°67 L 308(8',7|4,.
Hence the locus of € will be a straight line if, and only if]
A 108(p — 54) =0

Then differential equation of the locus of C may now be found from (30).
After computing the relative invariant of weight three as in the preceding
case it will be found that the locus of C is a conic if, and only if,

546, — 108646, - 306,00, — 5946.0,0, — 546%,6°,— 54108638, -+ 567 )+

8742 716 3RU6

(51) + 3(628,, - 1086°0,,) (10620, -+ 106s o+ 0406‘ — 270646.6,.18, —

®42

— 40:6%6

%742 + 1086‘3 ,u)q = 0.
The point D is defined by the covariant

1
(0, -+ 91)._)023 -+ 3 6, ly -+ 66 9'3 -+ 1867 50

We find
3, == 60,0", — (0,7, u, = 0, + (.30’39"3 -+ 36P,0,0", — 546°,,
3, = 186,07, - 3u, = 46, 1 42(8')°,
3z, = 546?,, 3u, — 1266,0',,

3v, = 6", 1 66/,0", -+ (8”2 — 2886°,8", — 4P,0,4-42P,0,0",—10P, (6 —27TP’ 6,67,
3v, = BY', -+ 9000”7, — 546, — 198P.0.H, .

= 26, 4 1380,6”, - 154(0")"
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The condition (43) requires 6, = 6. Hence D cannot remain fixed. The
equation of the tangent to the locus of D is

(52) 1086° 6.2, — 96,6, + 460, — 1626 |r, |
4 1367,6,, 4- 10(67,)2 6, — 126,6”,0, — 48666’ ], = 0.
It will be found that
— 278, =="726,0,, — 300°, | 326°, |- 2.54%046,, -— 54°6%,,

Hence, a necessary and sufficient condition that D move along a straight

line is
(53) 36y — 15p* -+ 16 - 54% — 27 542 = 0.

The line CA touches its envelope at the point E, which is defined by

the covariant
((67) + 9P,6°, — 6,ly + 66,6"2 -+ 186%p.

We find:

@ = (6" + 9P, — 6, w, = — O 266", — 186% 4- 12P,0.0', ,
@, = 66,0, Cu, = 14(0,),
z, = 186, u, = 4266/, ,
b, = — 6, 1 266", - 26", — 9060, - P,6, - 13P,(0)*-1- 63P%5, — 9P,00",,

b, — —-6'8‘ -+ 309'36”3 — 1863{, — 66P2636,3 ’ '

2
v, == 76, 4 105(6%)* 4--207P 5.
The condition (43) requires 6, -} 546', — 0. Hence, a necessary and' suf-
tioient” condition’ tiat K, remmid fiked i8. pr-- 54 = 0: In tlis chse tiie line CA

rotates about this point. The equation of the tangent to the locus of E, is

30,2, — 0,7, =0,
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which is, of course, the equation of the line CA. It will be found that
8, = 2(0,, + 546%)%

Hence E, cannot describe a straight line.
The line BC touches its envelope at the point E, defined by the cova-

riant
[(07,)%0, + 9P,6°6, + 10860, ]y - (66,0.6, - 3246°)z |- 186°,6,p.
In this case we obtain the following results:
(@) A necessary and suflicient condition that the line BC rotate about
a fixed point is

A — 108 | 54) = 0.

(b) The point cannot describe a straight line.
All the cubic which have seventh order contact with C, at P, meet in

the Halphen point ('), which is defined by the covariant
156°,0, — 7566%)° 4- 256°, + 1575P,0°0% |y -+ 2100,0,(58'.0, — 7566%)2 |- 31506°,6° -d.

We find:
(@) This point cannot remain fixed.
(b) A necessary ana sufficient condition that it describe a straight

line is
90, 5ONT |- 26.3%. 5. T4p? - 2287572 83 W - 27 3% 54 T —
— 22735.73.54'323 A2 + 27_3(1.52.76.23 A — 29.3(2.62.77.P2 +

(54)

4 210,3::,.5,78.” — 2“.310.54.75)\%,, -—~3.5%.7 )\2},} + 23.56.7 22y ‘l‘
+ 25.3(_55‘7 )\P‘ZJ —_ 2“.317.78 E 0.

The tangent to C, at I, meets the osculating cnbie again in the point

) W., p. 68.
Harding
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which is defined by the covariant ()

3

(:'(;7 6, — 2’ f)’x)y — 200z,

We find:
(@) This point cannot remain fixed.
(b) A necessary and sufficient condition that it deseribe a straight

line is
20.5% —2%. 3% Huy--24. 37 5. 7. 11v—2.3'-. 5%- 7.1 TOp2-22.312. 5. TPp4-25 5

(55) 4 3.5%.17p? 4 27.3%.5%. 43 — 2%.3". T = 0¢

14. The invariant triangle of an anharmonic cwurve. An anharmonic curve
3

may be defined as a curve along which the absolute invariant )\(: T);"—) is con-
3

stant. It is convenient to divide these curves into two classes as follows ;

3
First elass, where A == ak
. 3"
Second class, » A= -

Associated with each anharmonic curve of the first class is a triangle’
called the invariant triangle, which has the following property. Suppose any
tangent is drawn to the curve. The anharmonic ratic of the point of contact
and the three points of intersection of this tangent with the three sides of the
triangle is constant for all points of the curve. We now propose to find the
coordinates of the vertices of this triangle.

Since the vertices remain tixed as I’, moves along C,, their coordinates
must be solutions of the system of differential equations (44). This system of
equations has oo® solutions corresponding to the oo® points in the plane, any
one of which may be thought of as a fixed point. ITowever, since we are only
interested in covariant points, the only solutions to be considered are those
where xy + z2 -+ 2,0 is a covariant.

Since A is constant, it follows by ditferentiation that 6, and all the sue-
cessive Jacobians of 6, and , vanish identically. IHence the only inde-

1) W., p. 69.



pendent non-vanishing relative invariants of an anharmonic curve are 6, and
f.; so that X is the only independent non-vanishing absolute invariant of an

X

anharmonic curve. Let @, be any relative invariant of weight w. Then

®,
o G,

N
where
3p + 8¢ = w,
will be an absolute invariant, which must be a fuction of A. For the absolute
invariants of any curve are quotients of properly chosen powers of relative
invariants. Consequently, any relative invariants of an anharmonic curve may
be written in the form
D= a0,
where «, p, q, are constants and 3p -4 89 = . Then
o —1 —1 ’ ’
D'y = ab 1 6,74 (pb’, 6, - g6, 6').
J(Ox 5 (bw) = 303 (I),w — "0613 (bm
. [ ’ ’ e
= ab”, 6077"3q 0,6’ — (0w —3p) ¥, 6] =

=aq 6,076,

Hence

(56) J®,, ¢,)=0

for all values of .
Any covariant point which is not on the tangent at I’, may be repre-

sented by
(67) oo+ P, + Py,
where @, and P, are cither equal to zero or to relative invariants of the total

weights indicated, and C,, O, , C, are the fundamental covariants defined by
(18). Our problem is to determine ®, and @, so that the coordinates of the



point represented by (57) shall be a solution of (44). We find, frem (26)

and (57),
x =0 4 9P, + 0. D, 4- D,
xr, = 66.0", 4 36D, ,
(58)
u, =P, + 07, P, 4 0P, 20007, — 3P 6,D | 12P.0.6° — 186°,
u, = 40", ®, + 30,9, 4 - 6, | 14(6")°,

u, = 426.6", 4 36,

Substituting in (43) and reducing by means of (56), we find that the point
will remain fixed if, and only if, ®, and ®, satisfy the equation

P2, —20, — 26, =0,
b, P, — .0, -+ 1086° == 0.
After eliminating ®;, we have
3, — 46D, - 2166° =0,
Dividing the roots of this equation by 66,, we obtain

U]

(59) 1 — A6, =0.
9023 '

Hence a necessary and sufficient condition that the point represented by

(b7) remain fixed is that
b, =66y, , P =186 —0,, (i=1,2,3),

where r, , 7,, r, are the three roots of the cubic (59).
Any point which is on the tangent to C, at P, may be represented by

(60) C, + 4.0,



We ftind

u, == ¢, 0", — 3P0,
(61) x, = 30,, w, = 40", - ¢,

w, = 30,

The condition (43) roquires 0, = 0. Ilence no point represented by a co-
variant of the type (60) can remain fixed as ¢ varies. Thus we have the theo-
rem : There are, at most, three covariant points which remain fized as P, moves

along an anharmonic cwrve. Their coordinates are given by
a0 = 1862 + 66,0" 0, + () +9pr6°, — 6,
(62) A 1,0 = 186, 4- 60,0',,
.'1'3(") =186,
where r, , v, , r,, are the three roots of the cubic (59).

It is known from the theory of differential equation that the three so-
utions (62) will form a fundamental set of solutions of (44) it, and only if,

the determinant

W x, 0 l
_ p (2) . (2) (2)
D x, r, X
. (3) . (3) v (3)
£, &£, £,

does not vanish identically. It will be found that
D = 32464 (r, — 1), — r)(ry — 7).

Hence the three points defined by (62) will form a non-degencrate triangle if,
and only if, the roots of (39) are distinct.
09

If A = 2 the cubic (39) has two equal roots. Hence in the case of an
anharmonic curve of the second class the three points are replaced by two.
This justities our apparently arbitrary division of anbarmonic curves into two
classes depending on the value of A

Let us suppose that the three covariant fixed point (62) are distinet and
denote then by A,, A,, A, They form a non-degenerate triangle and the
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equation of the side opposite A; is found to be
(63)  w, == 180°x, - (18, — 60,07)x, - (t=1,2,3).
- IS0 0% — GO0 |- (0 — OP02, — O e, = 0.

The tangent to €, at I, outs the sides of the triangle A A, A, in the

points
(64) Q= (— 30, -0, 30, , 0). o (i=1,2,3).
The anharmonic ratio of the four points I, , Q,, Q,. Q, is found from
(23) to be
= vy L
(65) r,,Q,,Q ,Q)= gl
2 1
It is evident from (359) that
0
o, A, =0 g, o, -y, = — 601~ y v == — 0,
From these equations we find
G 2 k1)
(66) A= 2 =3 (., i_.,) 5
Hs (h — 21 — 2k)%(k - 1)

Hence, the anharmonic ratio (65) is constant for all points on the curve.
In other words, the triangle defined by (62) is the invariant triangle of
the anharmonic curve.

15. The curves which are associated with an anharmonic curve. We have
seen that the vertices of the invariant triangle are the only points that remain
fixed as P, moves along an anharmonic curve. Let us now investigate the
character of the curves described by the other covariant points in the plane.
Reaves () has studied certain special types of anharmonic curves and has
shown that some of the points defined in the early part of this paper describe
straight lines, while others describe curves which are projective with the given
curve, Ilis results will be found to agree with the general theorem which we
are about to derive.

Since the vertices of the invariant triangle are fixed, its sides will also
be fixed. Consequently the points on the three lines which form the sides of

(1) Annals of Math., Vol. 15, No. 1.
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this triangle move along these lines. It will be shown later that these are the
only covariant points in the plane which describe straight lines as P, moves
along C,.

It will be convenient to study next the points which are not on the tan-
to C, at I,, that is, points defined by the covariant (57). I'rom (58) and (63)
we find that the point P is on a side of the invaviant triangle if, and only if,

(67) 0 = 180202 -+ 30D, - B, — 0, =0, (i=1,2,3.

Let us suppose that 2. == 0. From (40), (56), and (58) we find that the
tangent to ('; has the equation

(68) arx --ax, - ax, =0,
where
, = — 180 | P2, — 2 — 20,
a, = 60D D — Do - 10804 |- 60,07 [D° — 2P — 20 ],
a, = (P, — (07 ) - 9P,0%) [P* — 2P, — 20 ] —
— (b, - 200) [ DD - D, L 10804 ).

Eliminating », between (63), (638), and reducing by means of (59), we

obtain
30,0, 0D, -— 60,0, x, — 2 O[P |0 0 D — 600, — 3o, D], 0.
Dividing by o, we have
(69) 30[P, — 60|, — [P 0, 0, P — 600y, — 30D | x, = 0.
Eliminating «, between (63) and (69), we have
1862 [, — 60,0,] &, - 60,7 ] (07)% - 9%, |- 0 DD | 2, — D [(07)°4 9P -1-0,] v —
—[207(®, - 6) — 108b%] &, = 0.

Hence the coordinates of the points of intersection of (68) with the three
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sides of the invariant triangle are
'rxm — 603"1‘[ (0,:x>2 + 91)2023 + 0,:4(1)4 ‘Jf" (I)xl -+ (I)4| (9':;)2 _f" 9[’2023 + os] +

+ 207 (D, - 0,) — 1086*,,

(70)
2, = — 60,0(60,0", |- 30,®,) | 60,9, D |- 60D |- 0),

) = — 1085, 4- 186°. P, (t=1,2,3).
These points are defined by the covariants
(1) (b, — 60)C, -1 2P, 40, — 30D )C, — (60,D 2, - PO, |- 1086°)C,.
(i=1,2,3).
From (23) we find that the anharmonic ratio of I’ and the three

N .

7'2 — ’l‘l

If P, is on the tangent to C, at P, it is defined by the covariant (60).

If it is also on a side of the invariant triangle, we have

points (70) is

(72) 8,1 = 307, 4 ¢, = 0. (=1,2,3).

Let us assume B, &= 0. Proceeding as above, we find that the tangent
to C, euts the three sides of the invariant triangle in the points defined by

the covariants

(73) O, - 2(h, — 30,00, - (0, — 60,7)C, (i=1,2,3).

We find, as before, that the anharmonic ratio of the four poits is

Ty Ty
Yo7
Thns we are led to the theorem: As P, moves along an anharmonic curve
(a) The wvertices of the invariant triangle remain fized,
(b) The covariant points on the sides of this triangle describe straight li-
nes, and

(c) All other covariant points describe anharmonic curves iwhich are pro-

Jective with the given anharmonic curve.

16. The polar triangle. There is another triangle associated with the inva-
riant triangle which has some interesting geometric properties. Let us denote
by B,, B,, B,, the poles of the lines A, A, A,A , A/A,, with respect to the



)X 33 X
osculating conic. We find the coordinates of B, to be
@, = 186%% — 66,0'r; + (') + 6% —6,,

(74) x,) = — 186, |- 66,6', (i=1,2,3),

x, = 186%,.
The equations of the three sides of this polar triangle are
v, = 186°0, — (18657, + 60,0 )z, + [186%2% - 60.9;r, -+ (6')* — 9,0 — 6o, =0
G=1,2,3)

Thus we see that in order to obtain the coordinates of the vertices and
the equations of the sides of the polar triangle it is only necessary to change
the sign of 6, in (59), (62) and (63). ITence this polar triangle goes over into
the invariant triangle for a curve (71, which corresponds to C, by a dualistic

transformation (*).
The equation of the line A/B; is

18622, — 608", — [186°, — (6')" + 9P,6% — 6,)r, = 0. (i=1,2,3),

These three lines are concurrent in the point B = (8';, 36;, 0). That is,

the two triangles are perspective from B. Hence the points of intersection of

corresponding sides are collinear. If S, denote the points of intersection of

these lines, it will be found that
(16) S, == (— 186%% + (', -+ 9P0% + 6, , 66,6, , 186%). t=1,2,3).

These points lie on the line CA, the polar of B with respect to the oscu-

lating conic.
If the point of intersection of the tangent at P, with the sides of the

polar triangle are denoted by R,, we find
(76) R, = (3637'4' + 6,3 ’ 363 ’ 0), (=1 ) 2,‘, 3),

and the anharmonic ratio of the four points P, , B, , R,, R,, is given by

—r
(Py 9 R2 b I{’l ’ 1{'3) ==

-

Ts =k.
T, — Ty
ettt
(1 W., p. 61,
Harding b
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Although the invariant triangle and its polar give the same anharmonic
ratio at every point of an anharmonic curve, there is a fundamental difference
in the way they are related to the given curve. The invariant triangle remain
fixed as P, moves along an anharmonic curve, while the polar triangle is
continually changing its position and shape. Since »,=—0 only when 6,=0,

the two triangles are always distinct.
It is easily seen that the anharmonic ratio

(P,,Q,B,R)=—1. i=1,2,3).

That is, P, and B are harmonic conjugates with respect to any homologous
pair of points Q,, R,. It follows from (21), (62), (76) that the lines AB,,
A,B,, A,B, are concurrent at E, The lines HQ, , H,Q, , H/Q, are concurrent

in the same point.

17. Anharmonic curves of the second class. The cubic (59) may be written

in the form

27 933 2 ; »-633 9 3° 033 .
o (=T ) )R )=

3° :
Hence, if A =7 the roots are

27 6° o,
(78) r o=, = 2 ry— — 27 -2,
=28, 0 3T o, '

Substituting in (62) and (63), we find that the two fixed points are

8

4 A’/ S5
Al,= (81 o.9% + (07, 4 9P8° —% 6, ,243 %—"- + 669", , 18623> y
8
(79)
, [ 6“?6’3 , . 6, ,
A3:(~—16° + () +9P63+3 o — 243 G2+ 607, 1867
and the equations of the two fixed lines are
y e o 0‘36'3 re_oppe L
u,,—186° 2,43 816——266 2,4 | — 81 +(67,) 9P0—§6u =0,

(80)

60"
o .—186’w~—6(81 + 26, e') 2—{—[16" 2 “—]—(0’3)’——9P202,+g 68]%20.

3
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As P, moves along an anharmonic curve of the second class, the two points
(79) remain fixed, while every covariant point which lies on either of the
lines (80) moves along that line. All other covariant points describe anharm-

onic curves of the second class.

18. The osculating anharmonic curve. If C, is not anharmonic curve, the
points defined by (62) will not remain fixed as the independent variable chan-
ges. However, even in this case, they are still of special interest. Let P, be
a fixed point on the curve C,, corresponding to t=—t, If we make use of the

special triangle of reference which corresponds to the Laguerre- KForsyth
canonical form of the differential equation, we find from (62) and (63),

(81) A, = (186°0%—+66,8'p, 4 ()" —0, , 186, - 66.0° , 186%), (i=1,2,3),

and

(82) w, = 186%, + (186%r; — 66.6" )z, + [186%% — 66,8, (6 — Bz, ,
(i=1,2,3)

where 7, , 1, , r, are the roots of (59) and 6, , 6, are defined by

6,=r, , 6,=6PP",— 1(P)"

3

The triangle A,A,A, will be the invariant triangle of an anharmonic
curve whose equation, referred to the fixed triangle P,P.P,, is (')

(83) u"‘:—"n“2"a—’1u3'|—r:_ 1=0.

If t=1, is an ordinary point for the function P, the three solutions y,,

¥, ¥,, of the differential equations way be expressed as a power series in
t — ¢, which converges for values of [t —¢t,| sufficiently small. We may, wi-

thout loss of generality, take t,—0 sinec, by the transformation
the series may be reduced to this form. Wilezynski (!) has shown that

t—t,=t,

(1) Encyklop. d. math. Wissensch., 11I. D. 4, 8. 206.
3 W, p. 62.
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the three power series are

P. P! I)N . P/”, . P2 .
y‘:]—g—‘:tg——‘i:t‘ 5'“#—- ‘6, 2 ¢ ,
| r 20’ 3p”
(84) yzzt_z"_’ti_ 5'3t5— 6'3te__ .
P 3r’
) 3 45 3 46
=305 61 !

Let

(85) u; = 1862y, --(1867,r,—60,0",)y,--[186%°,— 66,6 r (8", —6, |y,

(i=1,2,3)

where y, , ¥, , y, are defined by (84). If now we express the combination

rg—ry Ty

(86) w1

as a power series in ¢, it will be found that the power series contains no
terms of lower degree than the eighth. Heuce the anharmonic curve (83) has
at P, a contact of the seventh order with C,; that is, it has eight consecu-
tive points in common with it. In other words, it is the osculating ankarmonic

curve.

As P, moves along C, the points A , A,, A, will describe certain loci,
but for every position of P, they will determine the invariant triangle of an
anharmonic curve which osculating C, at P,. Of course when P, passes

39
through a point where )‘:T the three points will be replaced by two, and

the osculating anharmonic will be of the second class.
19. Penosculating anharmonic curves. Let us consider the three points
(87) B; = (186%y% - 66,0, - (0, — w, 186%r, | 669", , 186%) ,

(i:1’273)9
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where r, , »,, 1, are the roots of the cubic

(0]
(88) P———r—+06,=0
. 9623 3 ’
and o is an arbitrary function of ¢ The equation of the three sides of this

triangle are v, =0, where

(89) v, = 186%x, |- (186%r, — 60,0")x, | [186°%r% — 66.6",r, - (0"} — o]z,

The equation of an anharmonic curve, of which B,, B,, B, is the inva-
riant triangle, is

(90) o,y — 1 =0,

Let

(91) v, — 186%y, 4 (186%,r, — 66,07 )y, -+ [186%r% — 66,6y, - (8, — wly, ,
(t=1,2,3),

where y, , ¥, , y, are detined Dy (84). If now we express the combination,

—ry o re—Try T Te
T3 ? —1

(92) v4 '02 3 4

as a power series in ¢, it will be found that the series will begin with the

terms

(r,— 1)1y — 1) PR
1052 71 6,(6, — w)t’.

Hence the anharmonic curve (90) has at P, a contact of the sixth order
with C,. In other words, equation (90) defines a one parameter family of pen-
osculating anharmonic curves. For each value of » we obtain one of the curves
and, in particular, for o = 6, we have the osculating anharmonie.

The values of 6, and 0',, for t=1%,, will be the same for all curves of
the family as for C,, while 8, will vary from one curve to another, being
equal to its value for C, only when ®=—~0, As o varies, the points B; will
describe certain loci whose equations, referred to the fixed local triangle of
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reference, may be obtained by eliminating ® and »; between the equations
2,0 = 186°% 4 60,0 r, 4 (V,)) — o,
(93) x," = 186%r, - 66,0’, , (i=1,2,3),
z," = 1867,

It should be noted that these loci differ from those considered in the
earlier part of this paper in that they are connected with a fixed point P,.
After performing the elimination, we obtain

(%, — 2w,2,)(0' w0, — 304,) + 36%2° = 0.

The three vertices of the invariant triangle will lie on this cubic for all
values of the parameter w. In deriving this equation we have used the special
triangle of reference corresponding to the Laguerre-Forsyth canonical
form of the difterential equation. However, in order to transform to the ge-

1
neral triangle of reference, it is only necessary to replace z, by x, — EPz"’s-

The cubic then becomes
(94) (@, — 2z, + Pa*) (0w, — 30,2,) 4 36°2% = 0.

This cubic bas a node at P, with tangents x; =0 and 6@, — 36w, =0.

That is, it has the same node and the same nodal tangents as the
eight-pointic nodal cubic. It will be found that tbe inflectional line of the
cubic (94) is

(93) . 1862, — 60,62, + [(8)F — 9P,8%]r, = 0.

A glance at equation (17) shows that the two cubics bave the same in-

flectional line.
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