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PLANE NETS PERIODIC OF PERIOD 3

UNDER

THE LAPLACIAN TRANSFORMATION.

INTRODUCTION.

The analytic basis for the projective theory of a net of plane curves as developed
by Professor WiLczynski *) is briefly as follows:

Let the homogeneous coordinates of a point in a plane be given as functions of
two independent variables, # and v, so that

(0 =" v) (k=1, 2, 3).
The equations # = const. and v = const. will then in general give rise to two one-
parameter familics of plane curves which together constitute the net under considera-
tion. This net will degenerate if and only if the determinant

BN

Yoo Yu Ja
D=y 5 s
y(x) y(a) yls)

vanishes identically.
Every parametric representation of form (1) for a non-degenerate net of plane
curves determines a unique system of partial differential equations of the form

yuuza.yu +b)’v +Cy,
(2) Yuw = a’yu + b'y‘u + C,)’,
ym' = a',yu + b"yv + c”y’

of which y"', y, y* are a fundamental system of solutions and whose integrability

conditions are satisfied on account of the assumptions made on y"', y*, y¥.
Conversely, the members y, y® 4 of any fundamental system of solutions

of a completely integrable system of form (2) may be interpreted as the homogeneous

coordinates of a point in a plane, thus defining a non-degenerate plane net. The net

)

') E. J. WiLczyNsk1, One-Parameter Families and Nets of Plane Curves [Transactions of the Ame-
rican Mathematical Society, vol. XII (rg1r), pp. 473-510].
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defined by any other fundamental system of (2) will then be a projective transfor-
mation of this first one.

The system of partial differential equations (2) may be transformed into a cano-
nical form whose coefficients depend only upon the rations of the homogeneous coor-
dinates ', y@, y of the net and not upon their absolute values. Ttis canonical
form may be obtained as follows: If we make the transformation
(3& y = 2(4, v)y,

ere

w
]

A = const. e’
f being defined by the equations
a—l—b':fu’ a'+b”= v)
the resulting system is said to be in its canonical form. We find the following values
for the coefficients of the canonical form ?) of the system:

A:a—% ) B:b’ C=C+%afu+_;-bf‘v_—;_fuu—’é‘j.:’
A= —if, B=¥—if, C=¢+ @fit V= u— S
A" = a”, B" == b“ ——:_ v? C” = C” _;‘a”fa + —%b”.f'u - _;—fvv - _;'f;'

It is easy to verify that ,
A+ B =0, A 4 B'=o,
and these conditions are characteristic of the canonical form.

The coefficients 4, B, C, ... of a system in its canonical form are seminvariants
of system (2). That is, their values are not changed by any transformation of the
form y = Xy where X is an arbitrary function of « and v. It is this fact which proves
that 4, B, C, are functions of the ratios y":y®: y% only. The fundamental cova-
riants ®) of the system (2) are y and
(4) o=y, — by =y, —a'y.

The integrability conditions for a system in its canonical form are

B 44 4+C+ 4B —4"B=o,
B,— B =—C+2B"+4 245
() C,—C'=2BC+ 4C—BC",
A —4' =C" —24°—24"F,
C—C'=—24C+4"C—BC" %)

The transformation of the form
(O) w=U@), v=7V(),
where U and V are arbitrary functions of the single variables indicated, do not alter

) loc. cit. '), p. 476.
3) loc. cit. '), p. 477.
4) loc. cit. *), p. 478.
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the net but merely change its analytic representation. The following seven quantities %)

B — B, (S:C—-B'—zB”+A’B

I A" ' ', ' R

(7) A+6Au’ %:B+6_B_’ @=C+AB’
:An’ @H — ClI_Av__2A!2+AHBl’

are left invatiant (except for a factor) by all transformations of the form (6). Moreover
these seven functions determine the net completely, except for projective transforma-
tions, and are therefore called the tundamental invariants of the net. All other inva-
riants of system (2) are functions of these and of their partial derivatives.

The integrability conditions (5) may be written in the following form °)

36 — A4"B— H—K =o,

: €+ B, —34'B=o,
) €, — K,—3KB + BE" =o,
6"+ Al — 34" B =o,

6 —H —3HA + 4"C = o,

‘in terms of the invariants (7) and the two further invariants

) H=C+ 4B —4, K=C+4B—B,

which, although not independent of the seven invariants (7), are of special importance.
‘In fact they are the only ones which had received systematic attention before the

appearance of Profcssor WiLczyNskI's paper, being essentially identical with the inva-
riants b and % of the equations of the form

6x0y+ ax+ +c‘=°‘

An extensive theory of these equations was begun by LapLace and built up by
Darsoux 7). The geometric interpretations used by DarBoux however were all con-
nected with the theory of conjugate systems of curves on curved surfaces and not at
all with the theory of plane nets.

For given values #, and v, of # and v the quantities y", y*¥, %', defined by
equations (1) are the homogeneous coordinates of a point P through which pass two
curves of the net # = u_, and v = v,, respectively. If we substitute successively the
three values of y in (4) we get three corresponding values p , p,, p, of p which de-
fine a point P, of the line tangent to the curve v = v, at P . In a similar manner
the point P, is defined on the line tangent to the curve u = u, at P . As u and v
vary separately the point P, describes certain curves, thus giving nse to a new net

5) loc. cit. '), equations (21).

%) loc. cit. '), equations (34).

7) G. Darsoux, Lecons sur la théorie générale des surfaces et les applications géométriques du
Calcul infinitésimal, 11° Partie (Paris, Gauthier-Villars, 1889).
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called the first LapLacian transform of the original net. Similarly the net determined
by P, is called the minus first LapLAcian transform.

The tangent to the curve u = const. of the original net at P is at the same
time tangent to the curve v = const. of the first LapLacian transform at P,. Similarly,
the tangent to the curve v = const. of the original net at P is tangent to the curve
u = const. of the minus first LapLacian transform 2t P,. The first LapLACIan trans-
form of the p-net and the minus first Lapracian transform of the s-net both coincide
with the original y-net. We shall not write down the systems of partial differential
equations for the Lapracian transforms except for the particular case which interests
us in this paper ®).

Let us use the triangle P P, P, as a local triangle of reference. More specifically,
we introduce a local system of homogeneous coordinates such that any expression of

the form "
k k
ER A SE N N (k=1,12,3),

will represent a point whose coordinates referred to the local ccordinate system are
proportional to x,, x,, x,, respectively. If we use this coordinate system the equa-
tions of the conics which osculate the curves v = const. and u = const., respectively,
at the point P, have the form 9)

(10) %M:%’x:—l-z}éBiB’xzx;-—-2SBx,x,+q>x;_—-_.o,

N=ix] 4+ 4% x,x +UA"x; —2U"x,x, = o,
respectively, where
o p=6 — 4B 428+ 6B,

p=C" —4U* 2% J 6A' 4,

In this paper we consider a certain class of nets, characterized by the invariantive
conditions € = €” = o. In general these nets are periodic of period 3 under the
Lapracian transformation. We shall study the seminvariants and invariants of such
nets and their osculating conics both for the original net and for those obtained from
it by the LapLacian transformation. We shall show just what the geometric elements
are which determine a net of this kind giving rise to an existence theorem of a very
interesting type.

Finally, we shall study more in detail a special case in which all of the curves
of the net are conics and where the additional conditions H = K = o are imposed.

The author takes this opportunity of expressing his indebtedness to Professor
WiLczynski for the inspiration which led to this subject and for the advice so gene-
rously given during the preparation of this paper.

8) For the general formulz see loc. cit. 1), § 4.
9) loc. cit. '), pp. 503, 504.
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§ 1.

The system of partial differential equations and the invariants for
nets periodic of period 3 under the Laplacian transformation.

If the first LaprLacian transform of the s-net be the g-net, and if the minus first
transform of the g-net be the ¢-net we have a closed system of ncts containing the
original net, its first and minus first LapLacian transforms. Symbolically, if L denotes
the LapLacian transformation, we should then have

L) =s L) =L(s)=p L'(y)=LE) =y,
L"N=s L"M=L"@®=9s L70=L"(0)=y.
A net which satisfies these conditions would be periodic of period 3 under the La-

PLACIan transformation.

The necessary and sufficient conditions for a met to be periodic of period 3 under the
Lapracian transformation are

(12) € =o, €’ = o,
(12,) H £ o, K #o.

To prove this we compute the covariants of the first and minus first LapLacian
transforms. The covariant of the ¢-net which corresponds to the covariant ¢ of the

y-net is
’
G = g, — al G.

From the general formule '®) we have

’ ’ H'I' ” ”n ’
(13) a=44+3, o=Cy4+4" —240,
whence
: " H "
6, =C y—[—ﬁ’—{—;A]c—l—A”p.
Similarly we find
K '
P =@y—[K“+3B]P+BG-
Thus the point P,, will be on the line joining P, to P, if and only if €” = o, and
the point P,_, will be on this line if and only if € =o. But if € = €” = o we
obtain from (8) and (8,), provided H 5 o and K 5 o,

Hll ’ Ku ’
(14) g t3d4d=0 F+38=o
and consequently

e, =4Ad"p, p_, = Bo,

and these equations prove our theorem.

19) loc. cit. '), equations (43) and (93).
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From equations (12), (8,), (8,) we obtain the relations

"

B, .
(15) 3d' = p*, 3B = 5.

It follows then from equations (14) and (1 5) that

H, B, _ 4!
7—7_'—_3_—0’ 1\+A”_
HB=4(w), KA =)
if ¢ and ¢} are arbitrary functions of u and v alone, respectively.

The products HB and K A" are relative invariants. If we apply the transforma-
tion (6) they are transformed into

whence

HB=HB, Ko = s K"
If, therefore, we choose U and V so that (U’)’ = ¢ () and (7')* = ¢ (v) we have
HB =1, KA" =1.
Since this transformation does not involve the geometric properties of the net, but
merely determines in part a special form of its parametric representation, we may
assume this transformation to have been made at the outset, so that we shall have
(16) H="L B , K= A;

We may now express all of the coeflicients of the canonical form in terms of
the two seminvariants B and A4 (these quantities are also invariants). In fact, using
the equations (7), (8), (12), (15), (16), we find

4, 4, B

A:—B, B=B, C=§7,—'9—F——?'1,

L— Bv v A'.: " I ”" . I I A:Bv
(17) A_g_B’ B_gA"’ C-—*;(A B+.71—"+_B—)—9—Z7'B’
A" =4", B =—da, C'=D5u_ B A

3B 9B 3
From equations (9) and (16) we obtain the two further conditions
d'log 4" 2 I
ICIT R Ty 3
(18)
d’log B _4par L _ 2
guov A BT~
On the other hand, if we consider a system of partial differential equations in
the canonical form
N yuu=—B’yu+Byv +CJ”
(19) yuv = A'yn + B'.)’v + O}"
yvv = A"yu - A’yv + C”)"
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whose coefficients satisfy the conditions (17) and (18) we find that the integrability
conditions (5) are identically satisfied and that € = €' = o. Hence we may formulate
the following theorem:

If the coefficients of a system of partial differential equations of the form (19) satisfy
conditions (17) and (18) and if H and K are different from zero, any fundamental
system of solutions y“, y®, yB of (19) defines a net, periodic of period 3 under the
LapLactan transformation, of which the most general net of period 3 is a projective trans-
Sformation. Conversely, any non-degenerate net of period 3, defined by (1), whose first
and minus first LaPLACIan transforms are non-degenerate gives rise to a system of partial
differential equations of the form (19) whose coefficients satisfy the conditions (17) and (18).

The invariants of the system defined by equations (17), (18) and (19) are given by

B = B, € = o,

(20) { ™ ’B+{y’ ®=;§+w;,($:%(m3+ﬁv+%),
w = 4", ¢'=o H=-, K=,

and the covariants are

(204) P=L~f%» c=n—§y-

The seminvariants and invariants of the Laplacian transforms.

- We shall now list **), for later use, the seminvariants of the first LapLacian
transform. They have the form

A"=_B, B,= g
Co=le Ll e+ F]
(21) 4=—G = E=35h
Gmt(rness) s Bl +E]
4=, B =—4,
C=-t[ -t -+ e+ 5] -5

Ity See loc. cit. '), equations (45), for the general formule.
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The invariants **) are found to be

I

B, = 7B’ € =o,
. 4! B, , _1[B, A
A —E’ZT'_E‘"’ %‘_.6—[3—_2_'_']’
(22) I I
P T " _I___ o
61 - 3 (A B + " + B ))
A = B, ¢ = H =A4"B, K, =%.
For the minus first LapLacian transform we have ™)
( A—l = B'_n B = A”
1 [4), 4)° 4, B, A"
R 1E i i et AR b
’ —_— AIJ ’ —_ I A” B

G~ 1 1 1 ) 414, | B,

C—'—3 AB+I4—"+_B +9Alr AII+B ’

" I : ,
A_,,=A—u‘§, B, =—4,,
PR N I B,

C._| - SAII - 9A'12 + ;An [Au ]
and

B, =4, €, =o,

I " B B Al , I ( . I 1 )
—_ ] Y e pU—. =—\A"B+ -+

ol =4 B]’ B.=—15sa =5\ 4 EtytE)

o e—e M= K= 4B

QII-'-l = Au )

The invariants and seminvariants of the first LapLacian transform may be expressed
interms of 4” and B, by equations exactly analogous to (17) and (20). Moreover,
there exist conditions between A" and B, analogous to (18). The same thing is true
for the minus first LapLacian transform Thus it may be verified analytically that any
one of the three nets may be considered as the original net and that the other two

would then be its Lapracian transforms.

13) |oc. cit. '), equations (46), (46 a).
13) loc. cit. 1), equations (50), (51), (52)-
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§ 3
The osculating conics of the three nets.
Substituting the values of the invariants as given by (20) in equations (10) and

(11), we find the equations of the conics which osculate the curves v = const. and
# = const. respectively at P, to be

M= B'x] + —4;1—;[% -+ f}}]xr", —2Bx x +9x; =0,
(25) 4AH B A'I
N={x+ ——3——[—3— + 57,]xzxj —24"xx, 4 A" x, = o,
where
— ZA'llu 414:4'2 Buu 4B: A:Bu

=34 T 94T + 3B T 9B 94"B’

= 2B, 4B, _[_M_/{:,'L . 4/1;’ 4B, .

3B 9B’ 34" 94"* 9A"B
We can write down immediately the equations of the conics osculating the two
curves of the s-net which pass through P, referred to a local coordinate system de-
termined by the quantities s and the covariants of the s-net which correspond to the
covariants 3 and & of the y-net. This coordinate system has the same triangle of re-
ference as the local coordinate system of the y-nct, but its sides are taken in different
order and it has a different unit-point. We shall therefore have to transform the equa-
tions of the conics to the local coordinate system of the y-net before we shall be in

a position to compare them with the equations (2 5)-

Let x”, x, x!"" be the coordinates of any point referred to the local coordinate
system of the point P, of the first LapLacian transformed net. Then the equations of
the osculating conic of the curves v = const. and u = const. of the s-net which meet

at P, will be
___ a2 .12 b P () (1) (1) 2 __
M, =8'x" 4 48,8 %" x" —2B,x"x" 4 9,x7 =0,
, (1)2 rarrt L1 (1) a2 (12 (1) (1)
N =142 4% % 2 4 A X — 2 x VX = o,

(26)

(27)

where ¢, and ¢, are defined by formule analogous to (11). We wish to find the
equations of these conics referred to the local coordinate system of the y-net. '

Let y,, p,, o, represent the three covariants of the first LapLacian transformed
net in its canonical form, corresponding respectively to y, p, o for the original net,
as defined by (204). We have the relation **)

(28) ¢ = )\yl )
where

} B —
) = const. 4" H.

14) loc. cit. '), p. 488.
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Making use of the equation (28) and (204) and the corresponding relations

._ayx 4 _a_y_x_ '
P|_’~é_u__Blyx’ cl_a.v—Atyl

for the first LapLacian transformed net we obtain the following equations:
I "
(29) Ay, =0, )\plz—-B;y, ‘o, = A"p.

We are now ready to find the equations of transformation between the two systems
of coordinates.

We have considered x,, x,, x, as the coordinates of a point referred to the local
coordinate system of the y-net and x!", %", x" as the coordinates of the same point
with respect to the local coordinate system of the ¢-net. Therefore we must have

xy+xp+xo=o0@y, + ", +x"5)

Making use of equations (29) this reduces to

%y + x,p + x50 = 0@ e+ 5y + 4750,

whence
(30) o' =x, ox" = Bx,, wx‘;) = Zf,—,xz.
From equations (21), (22), (27), (30) we obtain
M=x+ [ g —F]nn—Fastei=o
G1) sLE 4
N =1 x’——4— ﬂ—}-ﬂ]xx —2x X -{-——I-—x*:o
| S & R § 314" A" 2B 1772 1773 A"Zg )
where
— Buu__?_:__ A:u + 2‘4;’2_ A:’Bu
(2) %= 3B 9B 34" ' 94" 9A'B’
y 24, B4 B, 5B 5B
T 34" 94> 3B ' 9B ' 94"B "

In a similar manner we obtain the equations of the osculating conics of the curves
of the minus first LaprAcian transform at P,. They have the form

= _i. L. _i"_ _B_! ._‘41 —_ ¢ e
M-—r— Bﬂx; 3B[:B +2Au]xnx; 231x1+"?—|‘x|"‘0?
(33) . 4" B 5

N__Eq:_lx;-l-—;— Z:L,——B—"]xlxs—ix,%—{—xl:o,
where B

2B, , 8B 4, | 54’  54/B,
?_.,—'—3B +9B1—3A"+9A"’+9A”B’

G4 4 A 2B A'B,

q, _—___11’_____.___BL2+___.___ v .

-1 347 94" 3B ' 9B° 94"B
The developments of the next section show that in view of our choice of arbi-
trary functions and constants this may be considered as the most general set of six



PLANE NETS PERIODIC OF PERIOD 3 UNDER THE LAPLACIAN TRANSFORMATION. 11

conics where one is tangent at each vertex of the triangle of reference to each of the
two sides through that vertex. Six conics so related are not in general linearly de-

pendent.
Let A represent the determinant of the sixth order formed by the coefficients of

the conics M, N, M, N, M_,, N_, respectively. It may be reduced to the form
A=— A”Bla;/l’ (i: i= 1, 2, 3)’

a, = A"(1 — Bg_, ._,)[ A”’ B] B(eo_, + 4"°Y_),

1t

where

” A’v’ Bu " 2 A:’ Bu
a,=—Bp— 4 B[2T+"B':)—A B"L’_.[z;{ﬁ"‘*g‘]’

"2 " A: B :/' B" A"
a,=1—A"B— 4 [274,—,-{-7,7 (:A"—_B—J— [A"+2 ]
. A” A" }
A B¢ [ AI'+ ]’—An+2 -',
UE 4 B " n2 "
au:B(I-—A (P J’)[Au-i—z? A B?—I—A q"yl’
”n 2 A:” B(' Al’: A" BV
auzl—A B +B[:4'7'+2AB—'] A" ]"""l‘[ A"_,_—F]

. 4, B4 B,
— 4 B‘P[ A"+F][.4_”+27:|’

— X3 X} B "2 é_:oi Bv
a”———-—Alll AB[A!I ]—A B?x A"+2.B—]’

4, =B— 4"+ A" Bo_}_ — 4" By,

A" Bﬁ " 2 " A:I' B'l
e b A R M - A

a, = A”[-j—;'-, - %] 4+ 4"BY_, [-gg + 2%] — 4" B,
Since neither family of our net may be straight lines, 4" 5% o and B £ o. Hence
the condition that the curves be linearly dependent is a,] = o. Three special cases in
which this condition is satisfied are 4” = B, 4" = 1/B*, B = 1/4"*, from which
follows respectively, using (16), (22), and (24), H=K, H,=K,, H = K_,
Since we may choose either of the three nets as the original net, each of these
three cases mean the same thing, viz., equal LaprLace-DarBoux invariants for the
original net. Professor WiLczynski *®) has shown that in this case the conics M, and

15) E. J. Wirczynski, Uber Flichen mit unbestimmten Direktrixkurven [Mathematische Annalen,
Bd. LXXVI (1914), pp. 129-160).
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N_, coincide and the net may be considered as the stereographic projection on the
directrix plane of the asymptotic curves of a surface with indeterminate directrix curves.

§ 4
Determination of these nets by boundary conditions.
The two invariants 4" and B, in terms of which all of the coeflicients of the

defining system of partial differential equations are expressed, satisfy the two partial
differential equations of the second order

9*log4” 2 I
dudv =4 B——Z'—’_'-_F’
(%) 9’ log B 1 2
Suow Bt F

If we make the substitutions
(35) y, =log 4", y,=log B,
we transform (18) into

aug"u = e — 20,
(36) 5
augzv = V2 eI — 2772,
It is easy to see that all of the derivatives of the form
a’-ﬂ*y‘
(37) Swap AFOEFO)

may be obtained from (36) in terms of derivatives of lower order while the values
of all the derivatives of the form

oty &y

57 ’ 5‘1;;7 ’
remain arbitrary. Consequently a simple application of familiar existence theorems
teaches us that (36) has analytic solutions y, and y, which, for v = v, reduce to

(38) y, =log 4" =U (»), y,=IlogB=U,/(u),

where U, and U, are arbitrary analytic functions of » alone, while for » =4, y,
and y, reduce to
(39) yvl = Vl (‘U), Y. = Vz(v)’

where 7, and V, are arbitrary analytic functions of v alone, and where, of course,

2
we must have

(40) Ul (uo) = Vl (vo)’ Uz (“o) = Vz (vo)‘
The four arbitrary functions, each of a single variable, which we have at our
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disposal may be chosen so as to make a curve u = const. and a curve v = const. of
the original net, a curve v = const. of the first LapLacian transformed net and a
curve u = const. of the minus first LapLacian transformed net coincide with four
arbitrarily chosen curves. We shall now prove this statement and show further that
the net will then be uniquely determined except for six arbitrary constants.

We first recall a fundamental theorem of the projective differential geometry *°)
of plane curves. Let y (x), y,(x), y,(¥) be homogeneous coordinates of a point P
which describes a non-rectilinear, analytic, plane curve as x varies. Then y,, y,, y,
are linearly independent solutions of a linear homogeneous differential equation of the
third order, viz:

d
(41) B 03 b +py =0
whose seminvariants
(42) P,=p,—pi—1, P =p —3pp,+ 2p} —p}
and invariants
(43) 6, =P — 2P, 0,=6006 —7(8)y — 2P0

may be determined as functions of x if y , y,, y, are given.

On the other hand, if two arbitrary functions ¢ (x) and ¢,(x) be given there
exists a curve whose invariants 6 and 8, are respectively equal to these given func-
tions and this curve will be uniquely determined except for projective transformations.
In particular, if 8, = o the corresponding curve is a conic.

If we differentiate both members of the first equation of (19) with respect to u
and then eliminate y, and y, , we obtain the following equation:

(414) Yo + 3990+ 303+ 4,y =0
where
. B“ . A" AI' + &
9, = — 3B’ 9. = — A” An B I’
_ Al 2AlA, 74D | 4B, APB,
q; - 3A" + sAm 27 Au; + A”B AuzB

If we put v = v, in the coefficients, (414a) is the differential equation of the curve
v = v, of the original net. For v = wv_, y, 4" and B are functions of # alone and
this may be regarded as an ordinary differential equation. We compute by formule
analogous to (42) and (43) the invariants 6 (u) and 6,(s). After making the conve-
nient substitution

U (u) =log 4", U,(4) = log B,

16) E. J. WiLczynski, Projective Differential Geometry of Curves and Ruled Surfaces (Leipzig,
B. G. Teubner, 1906), pp. 58-61.
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they take the form

b, = [— 18U —9U+ 27U U, +9U, U, + 18U, U’
(44) +4(U7 = U+ 6 U U(U, — U) — 54],
b, =666 — 767 — 270,07,
where
Q=5;G6U—-U-UU,—-U).
In a similar manner we obtain the invariants for a curve v = v, of the minus
first LapLacian transform in the form

07" =~[oU" + 18U — 18U, U’ — 9 U/ U, — 27U, U]
(45) +4(U) = U)) + 6 U U(U, — U) — 54},
B = 606 — 7 (B — 27 QO (B,
where
0 =13 Ul — Ul — UL UL — U2,

The theorem concerning the existence of solutions of (36) assures us that U,
and U, may be chosen as arbitrary functions of u. We shall now prove that these
arbitrary functions U, and U, can be chosen in such a way as to make the curve
v = v, of the original net and the corresponding curve v = v, of the minus first
LarLacian transform coincide with two arbitrarily chosen non-rectilinear analytic curves.

Let C bc any analytic curve, not a straight line, and let equation (41) be its
differential equation with respect to any independent variable x to which it may be
referred parametrically. Let 8 = ¢ (x) and 0= 9,(x) be the values of its invariants
as functions of x. Further, let C_, be any other such curve having a differential equa-
tion analogous to (41) referred to another variable £ as a parameter. Let 6/~ — /="' (§),
05 = ¢i " (¢) be the values of its invariants as functions of & If the curve v =1,
of the original net and the corresponding curve v = v, of the minus first LapLacian
transform coincide with C and C_, respectively, it must be possible to determine u
as a function of x and £ as a function of x, and consequently # as a function of g,

so that the equations
azme
s U) = ?8 X ),
(46) 0("”(u) — ?(3—:)(5),
05" (w) = &5 " (%),
will be identically satisfied.

Conversely, if equations (46) are satisfied the curves C and C_, will be projec-
tively equivalent to the curves v = v, of the original net and of the minus first La-
PLACIan transform respectively. By choosing the fundamental system of solutions of
the differential equation the curves may be made to coincide.

To reduce the order of the differential equations which will appear in this pro-
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blem we make the substitution

(47) w=U, z=U

in (44) and (45). Substituting then the resulting expressions for 6, 6, 6", 67~ in
(46) we find that the differential equations to be satisfied by y, z, # and & as func-
tions of x have the form

L dw d’z , dz
/ —-de“ — 9t 7<d” +o(w+ 2
+2(w —)@w + 0)(w + 27) — 54 = 549,(x),
d'op, do d
. 69,57 — 7 (du’) 3(‘;‘ w~wz—-z)<{>,——es(x),
(48) fw o d(_(w+) dz
9%—,— —— —9(2 z 27w
+ 2(w —)(Cw + )(w + 2()—- s4=7549""(%),
d‘{J d?(—l) 2 dw . .
ot () = (8 i) =70

If C be not a conic, so that ¢ (x) 5% o, we can, by a suitably chosen transfor-
mation of the independent variable x, make ¢ (x) = 1 *7) and similarly for ¢{~" ().
Assuming these transformations made and using x as the independent variable in all
of the differentiations which occur in equations (48), we may write the equations in
the form

[dw dz dw dz
d| dx | 1 d | dx dx
—18;1_3? du |du 93?' du du + 7{d +9(w+2{)d
dx dx dx |dx dx dx
+ 2(w — ) (w + 20 (2w + 1) — 108 = o,
az
d| dx s , I
dx “ﬁ? — (w +u'(+{)=—'7?s(x)’
dx
(49) < dw dz dw dz
d dx 1 d| dx 1 dx dx
9% | T |dw T 87| Zr —9Cu 0T —zu it
dx dx dx |dx dx dx
+ 2(w — )(w =+ 20) (2w + ) — 108 = o,
dw
d ?; 2 2
33; an —(w-[—w(—}—()_—--——-% @)
‘ dx

———————

17) loc. cit. 1), p. 61.
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Using the second and fourth equation to reduce the first and third we obtain the
final form

2 2 -=1 d
[7w+ 24wz 12w+ 1177 — 108 — 37295 ““(w"l‘z()%];i—z
2 N dedi d .
=@ Q@ Fw ) —2 G = G = et ) — w2 0w,
dw . s du
- 9 =B +wit+)—e®]z7
50) «
2 2 -1 d
[11w 4 12w’z + 24w’ 707 — 108 — (2w +2) %5 —3‘“’%]3;
| =0 w0 — S 428w g — (wt20)
; dg dx dx 5 ¥e)

998 — (3w ) —o BN T

We have in (50) four differential equations of the first order with four dependent
variables w, z, #, and £ and the independent variable x. According to the well known
existence theorems for ordinary differential equations there exist four integrals involving
the variables and four independent arbitrary constants from which can be determined
w, 7, # and % as functions of x and the four constants.

Inasmuch as the variable u itself does not occur in system (50), but only its
derivative du/dx, u -k will satisfy the same system as that satisfied by # if % is an
arbitrary constant. This constant may be chosen equal to zero without loss of gene-
rality by fixing arbitrarily the origin of the -scale.

Let us select a point # = u, on the curve C. Since the point P, must be on
the line tangent to the curve C at P, it can occupy only a single infinity of posi-
tions. If the curve C_, is prescribed, the position of the point P, on the tangent will
thereby be determined thus giving to a single relation between the three remaining
arbitrary constants arising from the integration of equations (50).

We have further

U, =w, U,=21

U = fwdu ~+ const., U, = f(du -+ const,,

whence, in view of (47),

so that

wdu (du

A" = const. e’ B = const. ¢
Hence the functions U, («) and U, (u) are determined except for four arbitrary
constants. In a similar manner we determine two functions

B
B

involving four arbitrary constants by means of the invariants of the arbitrarily chosen
curves u = u, of the original net and u = u, of the first Lapracian transform, and

v
)

AI'
rm="5, Vo=
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by choosing a definite point of the tangent as the position of the point P, of the
first LapLacran transformed net which shall correspond to P . By means of the con-
ditions (40) the eight constants reduce to six.

Two of the arbitrary constants occur in 4)/4" and B,/B, two in 4//A4" and
B,/B; the two remaining are factors respectively of 4" and B.

We see by inspection of (31) and (33) that the conic M, contains three of these
arbitrary constants in its coefficients while the conic N_, contains the other three.
Since the conic N_, must touch at P, the line tangent to the curve C at P, and since
all such conics form a 3-parameter family, we may think of the determmmon of the
three constants as corresponding geometrically to the selection of a specific conic of
this 3-parameter family as the conic N_ . In a similar manner we determine a conic
M, and the other three constants.

We consider now the case when ¢ (x) = ¢;"(%) = o, i. e, when the curves of
the nets are conics. From (48) we find in this case

a*w a d d
— 18— 0 T b 7 oW 20 S D =0,
(482) P iy
52 4 189X _ 52w 4 0% — 18w 4 fw, ) =0,
where

flw, ) = 4w’ - 6w’z + 6w’ — 47 — 54.

Subtracting the corresponding members of the second equation from those of the first
and integrating the exact differential thus formed we obtain

dw
(s1) — 35, — 3du+w+4w<+z+c—o,
where ¢, is the constant of integration. From equations (482) and (51) we obtain,
after performing a quadrature,

60 o[M T = w0 6w — D F 26w — D o,

showing that in this case w — z may be expressed as an elliptic function of n. The
additive constant of integration which occurs may be chosen cqual to zero without
loss of generality by properly selecting the origin of the u-scale. We have then as a
solution of (51) and (52) w and 7 as functions of « and threc arbitrary constants.
The determination of these and of the remaining constants of integration may be made
as in the more general case discussed before.

We have obtained, therefore, the following thcorem:

Choose an arbitrary triangle LM N. Through the point L pass two non rectilinear
but otherwise arbitrary analytic curves C and C' tangent to LN and LM respectively
at L. Through each of the points M and N pass another such arbitrary curve, C' through
M and C_, through N, tangent to MN at M and N respectively. Select any conic M,
tangent to LM at M and a second conic N_| tangent to LN at N. There exists one
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and only one net periodic of period 3 under the LavLaCian transformation which contains
C and C', which has C_, corresponding to C and C. corresponding to C' as curves of
the minus first and first LapLACIan transforms respectively, and which moreover has M,
as the osculating conic of the curve of the first LapLacian transform corresponding to C
and N_, as the osculating conic of the curve of the winus first LApLACIan transform
corresponding to C'.

§ 5.

Nets of conics whose Laplacian transforms are coincident straight lines.

The special case which arises when the conditions
(53) H=K=o

are added to € = @ = o is of great interest in connection with the theory of sur-
faces and has been studied in its general aspects by Professor WiLczynskr. We shall
discuss in considerable detail the still more special case, when all of these conditions
are satisfied and when besides al] of the curves of the net are conics.

Since a net for which H = K = o has degenerate LapLacian transforms ), it
is not justifiable in this case to speak of the net as being periodic. We interpret geo-
metrically the conditions € = €' = o as follows.

If € = @"” = o simultaneously with the conditions (53) the two curves into
which the transformed nets degenerate become straight lines and are coincident. In the
first place the conditions '9).

AK 4+ 90'6C —C' A =0, BHFBE —CB,=o0

that the degenerate LapLacian transforms be straight lines are identically satisfied on
account of (53) and (12). To show that these two lines coincide we return to the
fundamental geometrical interpretation of the conditions € = €' =a ™). If € = o,
the curve described by P, as P, moves along a curve v = const. is such that its
tangent at P, passes through P, . If @ = o, the curve described by P, as P, moves
along a curve u = const. is such that its tangent at P, passes through P,. The tan-
gents to the curves of the LapLacian transforms in our case are the two Stralght lines
themselves and they have the points P, and P, in common.

The form of the coefficients of the system of partial differential equations which

satisfy the conditions
CE=¢"=o, H=K

.

18) The p-net and o-net each degenerate into a single curve and this curve represents the family of
direct transforms. See loc. cit. '), pp. 490, 493.

19) loc. cit. I), equations (54 a), (54 b).

29) loc. cit. 1), p. 506.
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has been determined by Professor WiLczynskr *'). If in particular we assume H=K =0
we must equate to zero the quantity & which occurs in his formule and we obtain

the equations

a=—f B=—am =Bt de,
Gy (4 =72, B =T, C'=—%%+??”
where S
(55) ?= 2(‘2%—_% >

U and 7 being arbitrary functions of # alone and v alone respectively. The invariants

have the form

B=—29 € =o,

V9 P P P 49

(56) «A =29’ B =29’ € 3’
N = — 29, ¢ =o.

The condition that the curves v =rconst. and the curves u = const., respectively,
be conics **) may be written
(5'7) 3B¥“—‘4B“;—6BB';;+632H:O’

3A"Y, —4dAlY— 644"} F 64""K = o,
where » and ¢ are defined by (11). Making use of equations (53), (54), (56) the
first equation of (57) reduces to
d’log ¢ dloge 9’loge __

(s8) w2 ou ow

From (55) we obtain by differentiation

Ologe 1 [U" U
g.":a—r—z v tu+ry

G2) Floge  x U U:_  _2U |, 20"
Touw T 2 LU v uU+4vVv ' U+ry)
Substituting the second members of (59) in (58) we obtain the equation
d
Z;{U, u} = o,

where
UIII 3 U" 2

W=7 — o7

21 Joc. cit. S), p. 139, equations (35).
24y loc. cit. '39), p. 135.
23) loc. cit. ), p. 507.
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denotes the Scuwarzian derivative of U with respect to u. This gives on integration
U=ctan(c,u~4c)+c,
where ¢, ¢,, ¢, ¢, are the constants of integration. In a similar manner we find
V=dtn(dv+d)|d,.
We may make the further transformation of the independent parameters
— — ¢,d
u=cu-c,, v=rcuv-4| -
1

without disturbing the canonical form indicated by the form (54) of the coefficients *#).

Thus we may write
U=c¢tanu4c,

(60) V:—:d,tan%fv-l-d‘.

I

Substituting (60) in (55) we find
I Ve, d c/d, sec usecv

q):— d -
catanu-}—d;tanf—v—l—c*—]—d“

which reduces finally to the form

’

pq

6 =
(61) ? 2 psinucosqv - cosusin gv - rcos ucos gv

’

where p =¢/d, ¢ = iiL, r = (¢, -d,)/d, are the three independent arbitrary con-

stants remaining.
Thus we see that there exist precisely oo projectively distinct classes of nets which

are composed of conics and which satisfy besides the four conditions H=K=8=€" =o.
Let
(62) A(u, v) = psinucos gv 4 cos usin gv -+ rcos ucos qv.

We may write our seminvariants (54) in the form

_ A, __Vrg _ AL 58 1pga,
SRETS S S TR T T

A A P Ay 24,4,
A:r=_'Pq Buzﬁy_ Cn=_éﬂ+5A:__Vﬁ,A.
A’ 34’ 34 ' 9A? 34%

On the other hand, if we consider a system of partial differential equations whose
coefficients are defined by (62) and (63) we find the conditions H=K=€=€"=o0

24) loc. cit. '3), p. 133, equations (14).
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and the integrability conditions identically satisfied and besides the net defined by

three independent solutions of such a system is a net of conics.
We proceed to integrate the system of partial differential equations of the net.

First we make the transformation
1

e -
y=- (—f} y
on the system with coefficients defined by (63). Indicating by a4, b, ¢, etc., the coef-
ficients of the transformed system, we have

- A s ~n V— T Av P y = - “n
a:A", b=a :———i—q, b =3 ad=b=¢=c=c¢"=o.
We have then to integrate a system of partial differential equations of the form
_ A _Vpe
Yuu = Tyu A Yoy
(64) Yuw = 0y
I A'/
yuv = - ——g——q‘y: + ——A-_yl"

where A is defined by (62). We find the following three linearly independent solu-
tions of this system
3

= COS gV,

. P
Yy, =sinu —-—cosu -
r qrVq

(65) 9Vpq

. I
y, =1 cosu ~+ singv — - C0s g,
y, =1
The equation of the family of curves v = const. has the form

pe i+ +r)x+[(p*+77)sin*gv —2rsingvcosgv4-cos'gv —p g’] x?
+2Vplq x,x,—2Vp’ ¢’sinqux x ,—2[(¢+r)singv—rcosgv]x, x, =o,

and for the family of curves # = const. we find the form

(66)

(67) ¢+ n)xi4pxi4g [(r ~+ 1)sin*u — 2 prsinucosu - p*cos u——_] x?
+29Vpgx,x,—2Vpgsinux,x ;—2¢@[(r" 4 1)sinu—prcosu]x, x,=o.

The line x, =o0 is at the same time the first and minus first LapLAcCian trans-

forms.

It is possible to determine (except for projective transformations) a net of the
kind under discussion by choosing an arbitrary line as the LapLacian transform and
two arbitrary conics as curves of the net. We shall need the equations of the curves
of the net referred to the local triangle of reference P, P,P,. Hence we make the
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transformation

(68) xi = x:yi + x;Pi + x';ai (1 =1, 2, 3),
where x/, x,, x are proportional to the coordinates of a point referred to the triangle
P P, P,. Making use of (4) we find

yoe

b}
e, :cosu-{—!;—sinu, p, = — }Q;j—sin u, P, =0,
(69) /5
c,=————P:sinqv, cz_—:qcosqv—{-—q—sinqv, 6. =o.
rVq r ’

From (65), (66), (68) and (69) we obtain (after dropping accents)
66)  pgxi+2VpaA x4 2Vpghx,x, + (4 + Al =0,
A being defined by (62), as the equation of the curves v = const. referred to the
local triangle of reference P, P,P,. By means of the same transformation we find
that the equation (67) of the curves # = const. takes the form
(67) pgx+ 2Vpga,x,x, + 2Vpqax,x, +[47 - A])x] =o.
By assigning a fixed value to each of the arbitrary constants p, ¢, 7 we may deter-
mine uniquely for # = u,, v = v, the expressions A/ ¥pq, AJVpq and A Vpgq oc-
curring in the coefficients of (66’) and (67') which is equivalent to choosing two
arbitrary conics # = u, and v = v, as curves of the net.

The Lapracian transform is the line P, P,

Hence we may formulate the following theorem.

Choose an arbitrary triangle LM N. Trough the point L draw two arbitrary conics

C and C' tangent to LN and LM respectively at L. There exists one and only one
net of conics for which H=K = €=§" = o which contains C and C' and which has

for its degenerate first and minus first LAPLACIAn transforms the line M N.

Cﬁicago, Illinois, 14 July 1915.

Jasper OLE HASSLER.




