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THEORY OF VARIABLE DYNAMICAL-ELECTRICAL
SYSTEMS. ‘

By H. W. NIcHoLs.

OMPARED with the volume of literature on the subject of electrical
and mechanical systems with invariable elements—resistance,
inertia or inductance, stiffness or capacity—very little has been published
concerning systems in which these elements are variable in a general way,
and this notwithstanding the fact that such important applications as
electric signaling depend upon the variability of some element of the
system. The problem is usually to find the effect upon a steady or quasi-
steady state of changes in some element, and the steady state is often
not of interest, so that its existence is ignored. The ignoring of the un-
disturbed state but not of the energy which is transformed from it by
the variable elements leads to many interesting and important problems,
some of which are considered in this paper.

A more formal statement of the problem to be solved is: A dynamical-
electrical system capable of description by means of differential equations
obtained from a Lagrangian and a Dissipation function of the usual type
is operating under the influence of given impressed forces. This state
of the system is disturbed by changes in an inertia, resistance or stiffness
element and the disturbed state is considered by itself, the undisturbed
state being ignored if its motions are of types (defined later) different
from those of the disturbed state.

It will be found that energy can in this way be added to the disturbed
state in a manner similar to that in which it is ‘“‘lost’’ from a dynamical
system by transformation to a type with which the purely dynamical
problem is not concerned, namely the energy of thermal agitation of
systems whose coérdinates are not required to be included in the La-
grangian function in order to obtain a satisfactory solution of the larger
scale dynamical problem.

A very simple illustration of a system of this kind is an electric bell or
“buzzer.”” From one very practical point of view the dynamical system
of interest comprises only the button with its impressed force and the
vibrating armature, so that the type of motion obtained bears no relation
to that of the source (for example, a battery) nor is there any necessary
relation between the energy of the motion and the work done by the
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172 . H. W. NICHOLS.

impressed force at the button. From another point of view the system
is a generator of oscillations, either electrical or mechanical, without
energy supply at the frequency of the oscillations and deriving its energy
from a source which may be ignored if only oscillatory states are of in-
terest. ’

From the point of view here taken it is convenient to classify dynamical-
electrical systems into the following types, the first two of which are the
ones ordinarily considered and the last two are of particular interest be-
cause such systems are capable of bringing energy into play from sources
of different kinds, as will be explained later.

Types of Systems—i1. All purely electrical systems (whose motions
do not involve the changing of a mechanical codrdinate) and those in
which the variables are measured from equilibrium positions, the gener-
alized displacements x being small, are characterized by Lagrangian and
Dissipation functions which are homogeneous quadratic functions of the
displacements and velocities and have constant coefficients. As a
result the system of differential equations of motion is a set of linear
equations of the form:

S1xy — Siaxe — Sisxs = e

— Sy + Saaxs — Sasxs = ey

Here any stiffness operator S has the form
S=lp*+rp+s; p=adfdt
and e is a given function of the time, being an impressed force. This
system is characterized by the fact that its operational determinant
| S1154x| is symmetrical, since the Lagrangian and Dissipation functions
are of the specified type, and by the fact that it satisfies the energy
principle. Due to these facts, the reciprocal theorem holds, namely,
if Cj; represents the operator which finds the displacement x; from unit
driving force at the place %, or the mutual compliance between j and k:
Dy

Cir =75

where D is the operational determinant of the system and D;; the minor
of row j and column k. But when a unit driving force is located at j
it produces at k the symbolic displacement Ci; = Dy;/D; and because
D is symmetrical, D;, = Dy;. - Hence the two mutual compliances are
the same. Such a system has been called bilateral.

The set of linear equations above has the further property that, if
the driving forces are periodic and are resolved into their Fourier com-
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ponents, all these components will in general appear in the particular
solution for any x, and no others will ever appear. This is because the
coefficients are constant, and this property will be described by saying
that the system cannot change the type of driving force. This feature is
important in many applications. ,

2. When the codrdinates of interest are the small departures from zero
values in a state of motion, the Lagrangian function is not a homogeneous
quadratic one but leads to a set of differential equations of the form:!

Sy — (Bia + Ci)xs — (Bis + Cis)xs — -+ = ey
- (B21 - 021)301 + Sooxe — (323 — C23)x3 — e = gy,

in which Cj; has the form Rjzp = Ryp.

If the kth equation is multiplied by pxy and the results added, the terms
in C cancel and hence do not enter into the equation of activity. Systems
of this kind are different from those of the first class in that the reciprocal
theorem does not hold. They resemble them, however, in reproducing
the type of driving force. While the C’s are of odd order in p, they do
not contribute odd order terms to D, although they do to its minors.
These centrifugal terms correspond formally to mutual resistances, but
differ from ordinary dissipative terms in that they occur in pairs in such a
way as to make the determinant D of even order in p so long as true
resistances are not present. This is suggestive, as it indicates the pos-
sibility of compensating true resistances by similar terms, and the general
conditions under which this may be accomplished will be discussed later.
It is evident that in order to do this there must be a transformation of
energy from that of an ignored type of driving force, otherwise an un-
compensated flow of energy takes place out from the system through the
resistances.

Energy dissipated as heat is of course not lost, but simply transformed
into a type which is ignored in purely dynamical-electrical problems as
outside the scope of the investigation. In the same way energy may be
thought of as entering the system from an ignored source through
suitable devices for changing its type into one with which the problem
is concerned. The principal object of this paper is to investigate systems
in which this occurs.

3. When the differential equations of the system are linear but with
coefficients which are functions of the time, the system is characterized
by the very important fact that it is able to execute motions whose types
are different from those of the driving force, that is, the particular solu-

1 See, for example, Whittaker, Analytical Dynamics, p. 84.
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tions no longer correspond in component frequencies to the driving forces.
If therefore some driving forces are of types which are ignored for the
purposes of the investigation, perhaps because they have no direct
influence upon certain parts of the system, it is possible to supply energy
to the system in a way similar to that in which it is drawn off as heat.
The definition chosen for the type of driving force or motion is now shown
to be a suitable one, for when no energy is transformed to ignored types
of any kind, the particular solutions depend upon the then pure imaginary
roots of D = o.

4. When the differential equations of the system are non-linear, the
principle of superposition no longer holds, which fact is of considerable
importance in some applications. Non-linearity often means that all
the mechanism of the system has not been taken into account.

I. SysteEMs WITH INVARIABLE ELEMENTS.

The classification adopted is a convenient one for our purposes and will
be followed in this treatment, beginning with the first two classes.
These are the cases ordinarily considered, and will be taken up only very
briefly to collect some useful results, all of which, however, are no doubt
old.

The coefficients of p* in the differential equations:

Sux; — Siaxe — -+ =€

— Saxy + Saaxa — -0 =g

being constants, p may be treated as an algebraic quantity, with the result
that any x has the value
_ ZDjie;
X = _D—_ .
If ¢, is the only driving force acting,

Djxe;
% ="p

and the operator D;/D is called the mutual compliance, C;;, between
the parts % and j, being the operator which finds the displacement pro-
duced at % by a driving force at j. The use of such operators apparently
originated with Heaviside. For systems of the first class, Cij = Cis.
When k = j the compliance is self instéad of mutual.

In certain special cases in which the driving forces are special functions
of the time these operators reduce to algebraic quantities. Some of the
important results are considered below.
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Steady State.—If in Cji, the operator p is put equal to zero, the solution
obtained is that appropriate to the final steady state under the influence
of a constant driving force.

Harmonic State—When p is put equal to in + &, the solution is that
appropriate to an exponentially increasing or decreasing harmonic driving
force of frequency #n/2r and damping §, and in the extremely important
case in which 8 = o, the solution is that for an undamped harmonic
driving force of frequency n/2r. The highly developed subject of alter-
nating currents and of sustained simply periodic motions in general,
depends largely for its practicaly value upon this method of reducing the
differential equations to algebraic ones.!

When the driving force is harmonic, putting p = in reduces any x to
the quotient of two determinants whose elements are complex numbers.
Further, since any S, enters linearly into the determinant D, any xi
must be of the form (omitting all subscripts for brevity):

aS + b

TS+
or a bilinear transformation of S. This is the reason alternating current
loci are circles.

When this transformation is thrown into its three constant form by
division by ¢ (which obviously cannot be zero for any physical system)
it becomes:

*=i"a@s+de- ' TS¥K
the constants of which should and do have physical significance, namely:

When A = o a change in S has no effect upon x; these two parts of
the system are conjugate. Hence to have conjugate parts a system, if
connected at all, must have at least three degrees of freedom.

J is the value of x when S is infinite, that is, when the branch having
the operator S is removed.

When K is zero or A/J reduction of S to zero produces infinite and
zero values, respectively, of x.

Many other relations may be found involving this transformation. It
is useful in experimental work, being established by three points.

In practical work, for example in alternating currents, it is usual to
ignore the operational nature of these quantities S, etc., and treat them
in the same way as the forces, displacements and velocities themselves;
that is, complex numbers a + b, are used for both operators (0) and

1 For a concise and valuable treatment of this case (p = in + ) see G. A. Campbell,
Proc. A. I. E. E., April, 1911.
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physical quantities (7)), the latter being functions of the time, which
-variable is eliminated in single frequency problems by this method.
Consequently no distinction is made between products such as OT and
TT, which are physically very different things, the first being of frequency
n/2w and the second having a constant part and a part of double fre-
quency, #n/m, that is, not being capable of representation in the complex
plane of 7. Thus if
O=a+1, T =c+ 1,

the formal product OT gives a physically intelligible result, while the
formal product T'T = cics — dids + i(c1d2 + c2di) has no physical sig-
nificance. In particular, it does not represent power, torque, etc.
Steinmetz avoided this difficulty by giving up the rule ¢ X 1 =1 X ¢
for these products, but it seems better! to introduce a double frequency
operator, say k, represented geometrically by a unit vector at right angles
to 1 and 4, such that

O =a + b + ko,

T = ¢+ id + ko,
as before, to retain the formal operations OT, but to define the complete
product TT of two physical quantities as the sum of the scalar and
vector products:

c1 C2

dy ds

This gives the correct value (in contrast to formal multiplication)
and moreover indicates, by the unit operators 1 and k, the nature of the
result with respect to frequency. In problems in which both time dif-
ferentiations and multiplications 7'T are required, there is some advan-
tage in using this method and it will be used here when necessary.

Impulses and Initial Values—When p is made infinite in the compli-
ance operator, the initial values of the cotrdinates are found.

When a driving force e; is impulsive, its impulse being

=P + kQ.

T-‘T+T><T=6162+d1d2+k

t
Ij = Lim e,dt,
T t=0
ej=oo
we have e; = pI;, which may be substituted in the differential equations
to find the behavior under this kind of excitation. An advantage of this
method of treatment is that the initial conditions may be found from

the differential equations; thus the initial displacements are

xx(0) = Lim (pCjul;),
p=o

! Armour Engineer, January, 1912.
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and the initial velocities
xk(o) = Lim (chjklj).
p=»
In general, since Cj; = D;/D and the order of D is two higher than that

of Dy, the initial displacements are zero, the initial velocities finite, and
the initial accelerations infinite for impulsive excitation. This ceases

‘to be the case when inertia terms are lacking from some of the elements,

when some initial velocities may be infinite. (pC;)~t and (p2Ci)7,
with p infinite, are respectively the initial resistance and initial inertia
offered at the place % to a sudden disturbance acting at the place j.

Free Oscillation—The condition of free oscillation of the system is
that D = o, which equation gives the values of p = in + & corresponding
to the frequencies and damping constants of the component oscillations.
If the free oscillations are sustained, 8 = o.

S nce the condition D = o is also the condition that the effect produced
by a given driving force shall be the largest possible, it is clear that the
two requirements of good signaling, namely that the effect x shall be
both a large and a true copy of the cause e for all wave forms, are in
general contradictory; for the condition that x shall be largest is also the
one that the system shall oscillate without regard to the driving force.
In this case the ‘“quality”’ of reproduction is zero. (It is highly desirable
to develop some dynamical specification of quality of reproduction which’
corresponds to and predicts data furnished by the senses.)

There are two obvious exceptions to this statement, one the case in
which the compliance C is of one kind and also independent of p, the
other the case of an infinite number of degrees of freedom, to which this
argument does not necessarily apply.

II. SystEMs HAVING VARIABLE ELEMENTS.

When the inertia, resistance, or stiffness factors are variable with the
time only, the differential equations of the system are linear with variable
coefficients and the importance of this class of systems depends, from
our point of view, upon the fact that the particular solutions contain
types of motion different from those of the driving force. The variation
which is most important is that in which the magnitude never departs
greatly from a mean value and in cases of physical interest it is then
possible to find a solution in the form of a convergent series as has been
done, for example, by Barkhausen,! Pupin and others, using a method
of successive approximation. The object of this paper, however, is
not primarily to find the coefficients in such an expansion, but to show

1““Problem der Schwingungserzeugung,” 1907.
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how the transformation of energy from one type to another leads to
useful results.
Considering any generalized stiffness factor with constant elements,

S=lpr+rp+s,
it is clear that when [, 7, and s are variable S must be written

pUp) +ro+s =1+ [r+ (PD]p + 5,
so that if
l=1Ilo4+\ r=ro+p s=s5 =g,

the change in S is
AS = 2+ (p+N)p + 0.

This interpretation of AS will be understood in what follows.
In the set of linear equations

Suxl — Sigxg — -+ =€

— Saixy + Saaxe — -+ =&

let S;, be the variable element. This can always be done, if necessary,
by a linear change of variable. Put Si; = So — S and call D, the
value of D when 6S = 0. Also let .

xr = Xx + &
in which
ZD;ie;
X =_—5’(’:—’.
If these values are substituted in the set of equations above we get
(So — 38)&1 — Siske — - -+ = 85X,
— Suéi + St — - =0 (A)

— Sués — Smab2+ --- =0

and any £ is therefore:

Dy Dy D\
& = —5—83X1 —FO(I - GS'DO) 88X,

Dy Dy \2 D
=[I+5S-D—()‘—(8S—D*‘:)+"-}—D—053X1. (I)

This equation shows that, so far as first order terms in S are con-
cerned, the disturbance superposed upon the unvaried system may be
accounted for by supposing the sources of the unvaried motion removed
and replaced by a driving force equal to $SX, whose seat is in the variable
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element, the constants of the system remaining the same. It shows
also that, with a proper interpretation of the symbols, the driving force
for large or small values of 4S is

_ 5Sx1
= Dy’
I —4S Dy

—

since when this is operated upon by Dy,/D, the result is ;.

There is, however, one very important difference between this system
and one without ignored sources and excited by the same driving force,
for in the latter case all the power expended in the system comes from
the driving force, while in the former case the power may come from
impressed forces required to produce the variation 8S (that is, from
the equivalent driving force) or it may come from the sources maintaining
the ignored state, in which case the variable element acts as a transformer
of energy from one type to another. These two rbles are essentially
different ones and will be discussed in detail shortly, after a few con-
sequences of equation (1) are noted.

It follows from that equation that if ¢ is intended to be a copy of the
variation &S, the copy cannot be perfect unless D;; = o, which means
that the compliance of the system, measured from the variable branch,
shall be zero. Consequently a perfect copy of the variation of a stiffness
factor S cannot be obtained with finite displacements. The terms of
degree higher than the first in 4S5 indicate distortion, or departure from
perfection of the copy otherwise than through resonant selectivity of the
system. An illustration is a microphone telephone transmitter, in which
the electrical copy of the motion of the diaphragm is desired to be perfect.

It is evident that forces f;, of non-ignored type, may be added to the
system in the usual way, and the right hand members of (A) will be
supposed increased by these impressed forces of ¢-type.

To evaluate { in algebraic terms, 6SX; must be reduced to a function
of time, say ¢(), and 8SD;,/D, to the form F(t) - P(p); then the solution
is the sum of terms such as

¢ =200, ¢ = FO - PO, ¢ = - FOPOY,
etc.

A few simple examples will be given to show the application.

(a) Consider an electrical circuit containing inductance !, resistance 7,
capacity 1/s and a constant source of EIM.F. E. The elements are in
series. Let the stiffness of the condenser vary as so(1 — a cos nf). The
steady state is X; = E/so and
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a cos nt aFE cos nt
= 1 —_— e e —_—
¢ ( 5. ) So

where
So = Ip? + rp + so.
Since 1/S, operating upon any periodic function can always be evaluated,

the expansion can be carried out.
(b) If the battery is replaced by an alternator of voltage E cos g¢¢, we get

Eewt
~ So(ig)
Hence £ contains terms of frequencies proportional to ¢ & #, and higher
order terms of frequencies proportional to ¢ & kn, k =1, 2, ---.

(¢) If, in this circuit, the resistance varied according to 7(1 — a cos nt),
we have 85X, = ar cos nt - pX; and no disturbance is produced unless
X, is a function of the time, that is, unless the E.M.F. E is variable.
If, however, the condenser is shunted by an infinite perfect inductance
we have, for a constant E.ZM.F.

X, = E/rp; 85X, = aE cos nt.

X, 85X, = A cos [(g + n)t + a] + B cos [(¢g — n)t + A].

(@) If, in the last circuit, the inductance is variable so that
8S =alcosnt - p —anlsinnt - p
with X, = E/rp we get
08X, = — aEnl/r - sin nt,

and the part al cos nt - p of the stiffness 4S5 has no influence because the
current pX, is constant. Finally, if the circuit carries an alternating

current
pX, = A cos ¢,
we find
8SX1 = B[(g + n) sin (¢ + n)t + (¢ — =) sin (g — n)4].

So far no account has been taken of the manner in which the variation
8S is produced, while if a complete description of the behavior of the
system is to be had, the dynamics of the variable element must be
included in the system of equations. If the energy represented by the
¢-system comes from forces required to produce the variation 8S, the
principle of energy will be satisfied by including these forces and no
liberation of energy from the original state will take place. If, on the
other hand, the energy of the ¢-system comes from the ignored state and
is simply set free by the action of forces producing the variation, the
principle of energy will not be satisfied for that system and there will be
no particular relation between the energy of the latter forces and the
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energy set free by them. This is a very important distinction; for ex-
ample, in the problem of the telephone amplifier and of generators of
sustained oscillations the energy which is transformed must come from
an auxiliary and ignored source.

To determine the source of the energy of the disturbed state, consider
how variations in any element are produced. Any inertia, resistance or
stiffness factor, or in the electrical case, any inductance, resistance or
capacity, is fixed by geometrical cosrdinates and by quantities of the
nature of permeability, dielectric constant, etc., depending upon the
properties of materials. The geometrical coérdinates and electrical
charges are the variables chosen to represent the state of the system,
together with these material constants whose dynamical natures are
either not known or supposed not known. With these the Lagrangian
and Dissipation functions are built up, the equations of motion being

then found from
d L 9L A 9F

dt 3%  ox ' oz

Now L is a function of the cosrdinates x and their velocities & and is
differentiated by each to find the reactions; hence any change in the
geometrical shape of any system of electrical conductors or other bodies,
and the forces thereby brought into play, are included in the dynamics
of the system. It therefore follows that any energy derived from the:
change of geometrical form of any inductance, capacity, inertia or stiff-
ness of the system comes from impressed forces tending to change this
geometrical form and is taken account of in the equation of energy. In
particular, in any complete cycle of operations, no energy comes from
the undisturbed state of the system, hence no energy of an ignored type is
continuously transformed by the variation of the geometrical codrdinates
determining any inductance, capacity, inertia or stiffness factor of the system.

On the other hand, forces due to the variation of material constants in
the Lagrangian function L are not included in the dynamical equations
obtained by Lagrange’s method and hence the energy set free or trans-
formed by their variations may come from that of the undisturbed state.

An example of this is found in the case of a deformable inductance coil.
If the coil is energized by a battery and then deformed so as to vary
periodically the inductance of the circuit and thus produce an alternating
current in it, all the power represented by that alternating current will
be derived from mechanical forces required to vary the shape of the cir-
cuit. Such a device could not be used to bring into play an auxiliary
source of energy of different type—for example, it could not be made
into a telephone amplifier. An ordinary telephone receiver is also a
system of this kind. '
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The same thing is true in the case of a condenser whose geometrical
dimensions only are varied, for here the forces resisting deformation are
derived from the Lagrangian function and enter into the activity equation.

If in the coil the permeability of the medium is varied without mechan-
cal motion of it as a whole, and hence the inductance varied without
varying any geometrical codrdinate entering into the Lagrangian func-
tion, the energy of the varied state must be derived from the battery.
It may require energy to produce the variation in permeability, but the
amount of this energy may be quite different from that transformed from
the auxiliary source and will depend upon different things. The same
remarks apply to the variation of the dielectric constant of a condenser
without bodily motion of the medium itself.

The Dissipation function F is also a function of the coérdinates and
their velocities, together with constants of materials, but in the equations
of motion only its partial derivatives with respect to the velocities appear.
Hence if either the geometrical dimensions of resistances or the specific
resistance constants of materials vary with the time, the impressed forces
required are not part of the dynamical scheme described by the Lagran-
gian equations. The energy of the disturbed state must come from the
sources of the undisturbed state, while the energy required to vary the
resistances need have no necessary relation.to that brought into the
-system from the ignored sources. Any resistance variation, however
produced, is able to transform energy from the undisturbed state to the
disturbed one.

From this discussion it follows that the only variations not already
taken account of in the ordinary equations of motion are those in which a
permeability, density, dielectric constant, elastic constant, or a resistance
is changed. These are therefore the ways in which energy can be trans-
formed from the sources of the undisturbed state, and in what immedi-
ately follows the variation &S of the stiffness will be supposed to contain
explicitly only these parts, any other part being already included in the
equations of motion as obtained by Lagrange’s method. These vari-
ations, as well as the resulting motions, will first be supposed small in
order that the equations may remain linear.

To take account of the variations produced in the way just discussed,
we will now suppose that 45 depends upon some mechanical or electrical

coordinates x; - -+ Xy, Xy * ** Xy and consequently upon §; ¢+ - Expn
in a way described by the differential equation
N+ M

oS = E 1i(P) &is

which is apparently sufficiently general to include all cases in which the
equations remain linear.
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The variation S may depend upon M coérdinates not required for the
specification of the original system which is not concerned with the
mechanism producing this variation, as well as upon the N coordinates
originally required. (We might also suppose that a number of elements

were varied, with
N M

85k = Zli oi(P)ei; k=1---N,

but it follows from the previous discussion that no generality is added
thereby.)

The system (£x4y - -.£x.n), Which represents the additional mechan-
ism by which 4S5 is determined, will be supposed subject to laws capable
of statement by linear differential equations, and the driving force
85X, will be written

21t X1 = ZQu;k;.

The differential equations of the system, including impressed forces

of ¢-type, will now be of the form:

(S1uu—Q0uwé = (S + Qu2)ée - -+ — (Sixv+ QwéEn|— Qi mprdnsr =S
—Sné1 + Sné: coe — S, vEx o cee =1y
o o e o SwiiEni s =fap
y. %1
° o te o coo Swintmix=frin
. N+M

Aside from the fact of the variability of S;; (which variation may be
supposed to be small) this system differs from those discussed in part I
in that there is no mecessary relation between Si;; + Qi and Sy Con-
sequently the equation of activity is not satisfied for the t-system, but energy
s continuously drawn into the system from the ignored sources through the
periodically variable element. The energy so drawn is, per unit time:

T
P = %E j; Quiéikide.

We have now succeeded in making S;; different from S;; in a way not
accounted for by centrifugal terms and such that S;. — Si; may have
practically any form, depending upon the dynamical nature of the
mechanism by which S is varied. This system obviously need have no
special relation to the original one; in fact, if no impressed forces act
upon the additional codrdinates £yyy :: &y.a required to completely
determine 4.5, that system has no effect upon the solution for any original
codrdinates except through the Q-terms, for if
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DWW = ISllSunl
any original codrdinate is

N
lZlDik(N)fi
sk:Tﬁ—_’ k:l...N'

and contains no explicit reference to the additional mechanism producing
the variation 8S. .

Since we are treating the original system £, - - - £y as the one whose
dynamical nature is known, or as the only one upon which measurements
are to be made, it is appropriate to eliminate the coordinates £y41 -« + £y
from explicit appearance; moreover this is suggested by the form of the
determinant above. For these reasons imagine the last M equations to
be solved for the codrdinates appearing in them. Let the result of this
be substituted in the first N equations and put Qu;éxi; = £, the g's
being expressed in this way in terms of the impressed forces fu,1 * * * fasar
We then get for the equations of motion

(S11 = Qu)ér — (S12 + Qr)é2- - - — (Siv+ 0w éx=fi+Zg1i=fi+a

(B) — Saiér + Saée e =fs

_SNlEl PR PPN +SNN£N =f1V'

which contain explicitly only the original variables, and from which the
following fundamental theorem'is obtained:

The effect of the ignored sources and of the mechanism by which the small
variation S is produced is to make the original system appear from dy-
namical-electrical measurements on the t-variables only as one in which Sy
is changed to S11 — Qu1, any Sw to Su + Qux, and the impressed force f,
to fr + g1 '

These equations are the fundamental ones in the study of systems to
which energy is added by transformation from ignored sources, and to
make clear the meaning of the terms a few special cases will now be con-
sidered. First supposed that no impressed forces act upon the codrdinates
Exs1 - o+ Ewen SO that g, = o ultimately. Also suppose that the Q's are
zero except Q11 which will be written ap? + bp + ¢. The equations then
show that the system behaves as one in which the stiffness Sy; is
(un — a)p* + (ruu — d)p + (s11 — ¢) so that the inertia, resistance and
stiffness, or the inductance, resistance and (capacity)~! have been de-
creased by the (positive or negative) amounts a, b, ¢, respectively. The
quantity — b is called a ‘‘negative resistance’ for obvious reasons.
The power added to the system by means of it, or the negative power
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dissipated by it, is b£:2, hence proportional to the square of the velocity
£ as is the heat produced in the resistance 7;;. Energy is thus brought
into the system by the same general type of ignored mechanism as that
by which it passes out of the purely dynamical or electrical system.

The effects of a and ¢ are changes in the storage of power and hence in
the resonant frequencies and phases of forced oscillations. An ordinary
electric bell is a simple example of this kind of system, especially if the
contact is shunted with a resistance of a few ohms so that the resistance
changes are not too large.

Second, if every Q is zero, but g, is different from zero we have the
simplest case, namely, energy added through the trigger or relay action
of impressed forces which vary only the eliminated coérdinates and do
not act upon the original system. A variable resistance telephone trans-
mitter and an electric switch are illustrations. The power added is gi£:.

Third, if every Q is zero except one with unlike subscripts say Qis,
and if g, = o, the most noteworthy effect is that the determinant of the
coefficients is neither symmetrical nor has it only the special skew-
symmetric elements appropriate to centrifugal forces. The reciprocal
theorem does not hold and we get, for example, putting A for the value

of D when Q2 = o:
_(_:_21 - Agy — Q12M,
C12 A12

where M, is a second minor of A. The mutual compliances may there-
fore be made widely different in two opposite directions through the
system. Similar expressions obtain for other mutual compliances.
Examples of systems having these characteristics will be worked out
later in this paper. '

Free Oscillations.—One of the most important cases is that in which
all the impressed forces are zero. In this case no forces of {-type act
"upon the system and if it is to move and do work all the energy required
must be transformed from the ignored sources. Such a system is called
an oscillation generator. »

If the coérdinates are not to be zero the determinant D must vanish and
its vanishing will determine values p = p,, p,, etc., which give the
frequencies and damping constants of the oscillations. Now for the
invariable systems occurring in pure dynamics it can be proved that the
real parts of the roots of D = o are negative if there is any resistance in
the system, so that sustained free oscillations of those systems cannot
take place. This proof, however, does not apply to systems having the
more general determinant here found, and we may expect sustained
-oscillations under proper conditions.
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The condition of sustained free oscillation is that D = o with p = n.
Suppose p is given this value in the equation D = o which will then
become an equation in # with both real and imaginary coefficients. This
equation is equivalent to two equations, say

F(n) =0, G(n) = o,

which when solved simultaneously will give certain values of # and certain
corresponding relations between the n’s and the Q’s. The latter relations
are those which must exist in order that p shall be pure imaginary, or
that the oscillations of frequency /27 shall be sustained. Hence in
order to make the system perform certain free oscillations 7, the trans-
forming mechanism must be adjusted to give the corresponding values
of the Q’s, and by changing these values different oscillations will in gen-
eral be possible. In this respect this kind of system differs from one
merely devoid of resistances, which oscillates simultaneously in all possible
modes except in special cases of normal coérdinates, when special starting
conditions are required.

The power dissipated in a system executing harmonic oscillations is

(S1ibr — Siak: — --7) - P14 (— Subr + Sagbs — +++) - pEa+ -+

and the power transformed is

(Quér — Quaée — +-°) - phu

In the sustained free oscillations of the system these are equal, hence
in that case the variable element transforms just enough power to supply
the dissipation.

Since the effect of the variable element is to supply the dissipated
power, it might be thought that to calculate the frequencies of sustained
oscillatien it would be necessary only to ignore all resistances, or better
the dissipation in each branch by making the resistances zero or infinite.
But the frequencies so obtained will not in general be the correct ones,
even when the variable element introduces only negative resistances
and does not change any reactance. As an example consider the case
of a transformer:

_L;p’+R;p+S;—bp — Mp? _
| My Lp* + Rop + S|
We get, with all losses suppressed:

(LiLz — M?)p* + (SeLy + SiLo)p? + 5152 = o.

while equating terms in odd and even powers of p separately to zero
gives the additional term in the frequency equation:

Ry(Ry — b)p%.

D o.
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The odd order terms are
PRy — b)(Ksp? + S3) + pR:(Lip? + S1)

and these equations are inclnsistent with Ry(R; — b) = o unless M = o.

Moreover let &+ p; and =+ p. be the roots of the even part of D = o
and substitute them in the equation for . The result will be that in
general b(p;) will be different from b(ps), so that the system, with a given
value of b, will perform only a part of the possible oscillations.

Example.—A device which illus-
trates this theory and method is
one for producing small alternat- C—
ing currents for laboratory use
and known as the ‘‘microphone
hummer.” It consists of a bar !
B supported on knife edges above Fig. 1.
a magnet and carrying a carbon
cell C through which flows current from a battery. Motion of the bar
varies the resistance of the cell and consequently introduces an E.M.F.
into its circuit which produces current in the magnet and sustains the
oscillations under proper conditions. Sufficient energy ‘is transformed
from the battery to allow alternating current to be drawn off into a
load resistance R. To solve this problem, take the case of the slightly
more general arrangement shown in the next figure in which S,; represents
any kind of coupling of the meshes 1 and 2 carrying the mesh currents
£, and £. A’ and A” are infinite perfect inductances to restrict the
direct currents to their proper paths. Impressed forces are included
as shown.

This system has a variable inductance in the magnetic circuit since the
permanence of the magnetic circuit is a function of the displacement &,.
Since this variation is due to
a change in the geometry of
the figure it will be taken ac-
count of in the Lagrangian
function as will be seen below.
The inductance of the mag-
netic circuit is Lo/(1 — ats)

Fig. 2. where L, is the average in-
ductance, hence that part of
the kinetic energy which depends upon the magnet is

3L(I: + &) = §Lo(1 + ats)(lz + £2)3,

C,
B

- &
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where I; is the steady current through it. We therefore get, to first

order terms:

oT
% aLolpt, 4+ constant = ¢pé, + constant

d oT
2ot Lop*t: + opés

and the equations 6f motion are therefore:
Sufr — Sizke o =95X:+fi = Qués + f1
= S 1&1 + Saabz + ¢pts = fo,
0 — ¢pts + Susts = fs.

Here 85X, is equal to the product of the direct current, I, through
the microphone and its resistance change ér.
The determinant of the system is

Su —Si2 — Qs
D=|-Su Ses op
o — ¢p Sas

It shows how the centrifugal terms ¢p appear due to the fact that the
pull of the magnet is proportional to the square of the total current, and
also how the symmetry fails when power is added through the term
Qu = Q.

Since the general theory is immediately applicable to the problem,
only some very simple cases will be treated further. Suppose, for
example, that the load is pure resistance, S; = Rp, and that the bar has
effective mass m and stiffness s, its resistance being neglected. Also
let the coupling S;; = Si; be through a transformer of self inductances
J, J, and mutual inductance M. The equations of the system now
become: )

|Jp*+Rp — Mp* —0Q |fi
— Mp? Kp? ¢p |fes K=L+J.
o —¢p mpP+sifs

Free Oscillations.—For this case, D = o with p = in, giving two
equations with even and odd powers of p. Put Q = A + Bp where
A and B are even functions of p; then we get for D = o:

G(mp* + 5) + J¢* = M¢B,
RK(mp* + s) + R¢* = MoA,
Here A =ao+asp*+ -+, B=b +byp®> + - --.

G =JK — M.
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These equations give a great deal of information; for example we may
inquire what are the conditions under which the bar will oscillate in its
own natural frequency, for which — p? = s/m = n®. For this case
A = R¢/M, B = Jp/M, and we get for the simplest dynamical con-
nection between the resistance change and the coérdinate £;:

5SX1 = 5?'[1 = Q£3 = (R¢/M+ Pf¢/M)£s

Hence the resistance change must depend upon the displacement and the
velocity according to the law

J¢ dts  Re
or = —— —— v Ea
MI, dt ' MI,
in order that the oscillations shall be sustained and have the required
frequency. In the instrument the microphone is mounted upon an arm
which can be set at various angles to the axis of the bar and this allows
the correct adjustment to be approximated. The resistance change
probably depends upon the acceleration also, which, for this motion, is
proportional to the displacement. It is easy to see that the power drawn
into the system from the battery is equal to that dissipated in the load R.
We might also wish to know the frequency at which the system could
oscillate for a given dynamical connection; as an example suppose the
microphone is so fastened to the bar that the resistance change is pro-
portional to the displacement. Then 4 = ay, B = 0 and

2

R¢ JK

o = -]Tl— ( | S —a’) .
The frequency is therefore increased and the current I must be adjusted
to give ao the proper value as set by the second equation. Note that if
¢ = 0, that is, if the bar does not react upon the magnet, the frequency
will be no/27 and no power will be required from the battery to maintain
the oscillation. If the damping of the bar is not assumed to be zero
more interesting problems arise which may easily be worked out but are
too long to be included here. In that case the damping of the bar has
considerable influence upon the frequency (not the same as in the
damped free oscillation of the bar alone) and this effect can be noticed

in the instrument by damping the bar without adding to its inertia.
Forced Vibrations—Imagine an alternator of frequency n/2w acting

in the mesh 1. The current in the load R will be -

_pDuf _ pAuf
El - D = A — QAIB’

where A is the value of D when Q = o.
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Now D/pDy, is the impedance offered by the system when measured
from the terminals of the alternator, hence the effect of adding the trans-
forming device is to change this impedance from

A
PAn

A
za=z(x ~Q-—A¥).

The impedance may therefore be considerably decreased and also given
very different reactance characteristics. This fact may be described
by saying that the transforming device introduces into one of the ter-
minals the negative impedance — QZ(A1s/A). In fact, this is what would
be indicated by measurements made with a Wheatstone bridge at those
terminals.

If Q(A13/A) = 1 we have D = o0 and the system offers no impedance
at all. This is the case of free oscillations again.

Similar results obviously will be found if the alternator is connected
into the other mesh or if a mechanical force acts upon the bar. The
effect of the transforming mechanism is therefore to amplify the effect
of an impressed force by supplying energy from a source of another type
which has been ignored in the problem.

We may look at this problem in another way: thus suppose only elec-
trical quantities can be measured so that the system is taken to be one
of apparently but two degrees of freedom, both electrical, and information
is to be gained only by operations upon them. Elimination of the me-
chanical coérdinate by means of the last equation gives:

07+ Rot — (050 + (528 ) & = i+ Ol + 5,

- Mp*t + (sz-‘-m:”i:s)h = f2 — %{;s-
This system, especially in the neighborhood of mp* + s = o, would act
very differently from a purely electrical system. The two mutual com-
pliances would be widely different (but still only if Q were not zero),
the effect of the force f would be changed under the same circumstances,
and for any finite coupling ¢ the effective stiffness factors would be
changed.

Another Example.—A good illustration of free vibrations occurs in
the case of the ‘“‘howling telephone’’ which is formed by holding an
electrically connected telephone transmitter and receiver together as
shown in Fig. 3, the geometry of the system being there made as simple

Z =

to
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as possible. The fact that the dynamical connection between the re-
ceiver diaphragm and the variable element is a column of air (assumed
to move in one dimension only) adds interest to the problem.

Let the variable current be £; and the
displacement of the diaphragms §; and  z, &
£3.  Then 87 will be h¢;, say, and 4

Isr = Qk, T ——
so that Q/hI expresses the dynamical
connection between the two diaphragms. 1
We may suppose k£ to be a number,

although this is not necessary. The
equations of motion are now similar to those of the last example, namely

(Lp? + Rp)EL — (Q — ¢p)é2
— ¢pf1 + Saats

in which S,; means the stiffness offered by the diaphragm to an im-
pressed force and consequently includes the loading due to the air column.
The condition of free vibration is

(Lp* + Rp)Sa: = ¢p(Q — ¢p)
or for sustained oscillations
(inL + R)Sz = ¢(Q — in¢),"
and to solve the problem we must know S22 and Q for harmonic motions.
These depend only upon the air column with the two diaphragms and
may be found in two ways. To do this directly from the differential
equations of the fluid motion, consider the tube of air and let Sp and S,
be the stiffnesses of receiver and transmitter diaphragms alone, and
also put:
p = mean density of fluid,
8P = increase of pressure over mean,
V = velocity potential in fluid,
qV = aV/odx, '
f = impressed force on unit area of the receiver diaphragm.
The differential equations of the fluid motion are, for p = in

(n? 4+ a®@®)V = 0; 6P = — inpV,
from which we get:

V= e"“(A cos = 4+ B sinﬂ) ,
a a

o,

0,

. . n
P = — mpe"“(A cos%x+Bsm—a§)
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The boundary conditions are:

Atx =o Sofz = f — 8P,
pé = qV.
Atx =1 Sets = 4P,
pEs = gV.

These four equations allow us to eliminate 4 and B and solve for £
and £; by means of :

nl ol ol
(Socoszl——anpsma—)fz+ Sq£;=fcosg‘,

. onl A .onl
(So st—+ anpcosg—) £ —anp & =fsm%.

From these we get:

l
(SeS, — a?x?p?) sing- + anp(S, 4+ S,) oosZ—l
Sa = nl nl !
anp cos +-S, sin;
hI - anp
Q= nl nl’

anp cos— + S, sin —
P a + q a

and the problem is solved provided the resulting transcendental equa-
tions can be solved for the vatues of # and A1.

These values of Ss; and Q are interesting in themselves: thus S;; = 0
gives the free vibrations of a pipe with arbitrary terminal conditions,
and by putting, in the equivalent expression,

nl  anp(So + Sg)
a (anp)? — SoS,’

zero and infinite values of Sy, S,, we get the frequencies of open and
closed pipes. Other values give the effects of yielding ends.

There is one value of diaphragm stiffness which is unique and important.
Suppose Sy = tanp so that the transmitter diaphragm offers only the

resistance ap = ro. Then
Sz = So + tnro,

tan

nl .
tan — =1,
a

and we get the result that no finite free oscillations exist, so that no re-
flextion takes place at S, all the energy sent out is absorbed, and the
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tube behaves as one of infinite length. We therefore get the effect of an
infinite column of fluid upon a vibrating diaphragm and the energy
radiated to infinity. Hence 7o may be called the radiation resistance of
the fluid. For air it is about 40 C.G.S.

Although the equations of free vibration cannot be solved in general,
the character of the solution can be seen. There will be a number of
values of #» which satisfy the frequency equation, and for each value of
n a corresponding value of AI which is required to sustain the oscillations
of that frequency.

These examples are sufficient to show the applications which may be
made of this theory and method. Others, together with a treatment of
non-linear connections, will be given in another paper.



