Name in full \qquad Edwin of Date \qquad April 9. 1920
Academic title Instructor in Pathology.

State in detail military exploits performed, honors and marks of distinction conferred (including service chevrons), and any items of interest concerning your service, such as position of instructor in special subject, etc.

Include all service of 1%
and military

Name in full George buctín Itowland Date $\operatorname{Fan} 20.1920$
Academic title

State in detail military exploits performed, honors and marks of distinction conferred (including service chevrons), and any items of interest concerning your service, such as position of instructor in special subject, etc.

Note: In reply to quectornnaice dated in the spuciy of 197 Is sated 9 coned qualify as army, telegrapher. These questionaine, 9 understand, wo u never chsifife. Con nov 7.1919, in response? Co an urgent calt-Mnorge the docicly press, 9 enlizied as a telegraph operation, but on account of the signing of the armistice four doyplater, 9 was notified by the uar department on how 15 that x l devices wowed not be needed. I was therefore never mustered into the service: Applications to the scale department for service as hanslator on diplomate agent lad to no result.
usfl. us $\rightarrow n 5 y$ and i.aswatt $=$ ouses

-za vantliim ligiobs ai atate bus sionod ,bamolrsy atiole bomatroa moltonìaib to aftumit (Amorvards salviga zalbubati) -rios jegrotai lo amoli yas hare en durs sivms twou zuintor Inhaqe al raty miteal lo fiallion .259 , Jaidiua.

Name in full \qquad Edwin Powell Stubble \qquad
Academic title \qquad I elbow in ashonomy

State in detail military explaits performed, honors and marks of distinction conferred (including service chevrons), and any items of interest concerming your service, such as position of instructor in special subject, etc.

Incl

and military
Include all service civil
and military

Name in full \qquad Ihueber. Date fonvary 27.1920.
Academic title - Assistant Professor of roughish.

State in detail military exploits performed, honors and marks of distinction conferred (including service chevrons), and any items of interest concerning your service, such as position of instructor in special subject, etc.

7 row sept 7 to november 15, 1918 lave a 'civilian volunteers' in the Cor: Department at Washington DC. on 7 Ebrwary-10.19.9 I was commissioned Captain in the Suartermaster Section, Officers' Reserve Corps.
 $\operatorname{cic}_{4}+$
 \qquad Ilfit n่ 9mnK
 \qquad stil jimblamak

$$
\begin{aligned}
& \text { whencuitusis dt is mindupo? }
\end{aligned}
$$

$$
\begin{aligned}
& \text { जral sunese ares.g0 , wotse? }
\end{aligned}
$$

-z9 vtetilim lisjab ai stet? bis anomorl ,bomolrsq eliofa bomalnoa noisoniseib to eltam (enorvarb : saivea gnibuloai) -rios jeststai lo emati van bas
 thiboge ni rotomtani lo foithog .ot9, tooidur

 -nog Jestotri lo amgli vme bran Isiboge nit zotomstani lo soitiano ato , tosidus

aloe Prof, of history
The University of Chicago
OFFICE OF THE DEAN
The School of EDucation
of THE COLLEGE OF EDUCATION

October 24, 1918.
My dear Mr. Jernegan:
The President's office has asked for a statement of the war activities of all members of our Faculty. Such activities include membership on national and state committees, participation in publications; addresses, and other matters of this sort. Please indicate below the activities with which you are associated or in which you have participated during the past year.

Dean Miller has requested me to secure a list of fuesebidr tiff.
\$

Mr. Jernegan,
Faculty Exchange (cuenca whecture, Moollaen Monanidect 3 t frame e un d cuenca maneture, ocolobn 1918 4F. Har-auns Oncere. Huivuerth Plieafo Custuncur
 Louse- sen are quaver \&y 1818 Univisity College- sprigtracilum inf.

```
    .8IEI AS T3dOta0
            A xd} bstan and govt10 ='smabseart ort 
```



```
3x+5)
```

\qquad
$!$

 Tofad tnucms ant aseazbmi sasase aodjeizas smeroms

 , asuer vilut riov| Name in full | |
| :--- | :--- |

State in detail military exploits performed, honors and marks of distinction conferred (including service chevrons), and any items of interest concerning your service, such as position of instructor in special subject, etc.

State in detail military exploits performed, honors and marks of distinction conferred (including service chevrons), and any items of interest concerning your service, such as position of instructor in special subject, etc.

The University of Chicago

abe mibool of Education January 16, 1920.

My dear Professor Robertson:
I enclose a statement in
reply to your recent inquiry about public service
rendered during the war. I will secure complete
copies of the material here in question and file it
with you shortly.

Very truly yours,
chare Nous

Professor D. A. Robertson, Faculty Exchange.

CHJ:K

Name in full

\qquad
Academic title

State in detail military exploits performed, honors and marks of distinction conferred (including service chevrons), and any items of interest concorning your service, such as position of instructor in special subject, etc.

Edition for the Berrean of Education of th wronkinnt of it intriver an tor the Unites Skis food administration, of Recent ai Counnmictand National toft, victor in Thingorm of teafato ($n_{00} 1-24$, ort ion 1917 to man_{19181}

Nom in in Marish CMharaseh nom Opel, rae Natemit tile Mat hemal SPereareb Fedex)

 marks of distinction conferred
(including service chevrons), and any items of interest concerning your service, such as subject, etc.

Name in full

Oses. Pr Physios

Dateleré $\sqrt[5,1020]{1 / 10}$
Academic title \qquad

State in detail military explaits performed, honors and marks of distinction conferred (including service chevrons), and any items of interest concorning your service, such as position of instructor in special subject, etc.
. Thad Special Laboratory at Bureau of Standards wheres directs o canned on instruction and rexeave n' radio Engineáni."

Include all service civil
and military

Name in full Thomas Albert Knott
Academic title Associate Professor of Enclish

State in detail military exploits performed, honors and marks of distinction conferred (including service chevrons), and any items of interest concerning your service, such as position of instructor in special subject, etc.

One silver service chevron for over six months' service in the United States.

Inolude all ser $\ddagger 100$ oivil In the winter and spring of 1918 I and military acted as chairman of the foreign language subcommittee of the War Work Committee of the University of Chicage. This subcommittee did translation worktend censored figteiky iancuane the post office departmentar the government.

Name in full
Fred Conrad Koch
Date
Academic title \qquad
Assonate Professor of Shpibogical Oheminthy \qquad 20,1920

Actury Chairman of the oxparkinent

State in detail military exploits performed, honors and marks of distinction conferred (including service chevrons), and any items of interest concorning your service, such as position of instructor in special subject, etc.
 of tho chairman f the deparliment

ILY NEWS, WEDNESDAY, SEPTEMBER 1

NAVIGATION SCHOOL IS ACTIVE

Shipping Board Training New Off-

 ceres to Man Merchant Ships.Fast as American shipyards are launching ships the United States shipping board is keeping up with them by launching officers for the ships. The free school of navigation at 72 West Adams street; which opened July 10, 1917, will on Sept. 14 have turned out and placed thirteen masters, twenty-four chief mates, seventy-three second mates and eighty third mates, all licensed by the apartment of commerce. The Chicago school stands fifth among the twenty-
three schools in the United States in number of officers graduated.

Men eligible to enter are American citizens between the ages of 19 and 55 Who have had at least two years' expertence on deck or bridge. A man can be transferred from any draft classification Whatsover and placed in this service. The eleventh session begins Sept. 16 at 9 a. m. The director is Dr. Oliver J. Lee of the University of Chicago.

LY NEWS, WEDNESDAY, SEPTEMBER 11

ГHE
 HOME
 ON
 A VA

A lineo © Сferer

BEDTIME STORIES.

BY THORNTON F. BURGESS.
GTVER IS REMINDIKD OF AN OLD FRIEND.
When Peter Rabbit reached the dear id Brier Patch he had a lot to tell Mrs. eter. He was so full of all he had arned about Short-Tail the Shrew that

The Merchant Mariner

DR. LEE FAVORITE

WITH HIS STUDENTS

Head of Recruiting Service Navigation School at Chicago Gets Results-Holds Navigator's License.

Dr. Oliver J. Lee, director of the U. S. Shipping Board Free School of Navigation at 72 West Adams street, Chicago, is an expert navigator. Though he has never sailed the seas, except as a passenger, Dr. Lee holds a master's license, for unlimited tonnage, on any cky.

Dr. Oliver J. Lee
Dr. Lee belongs to the research faculty of Yerkes Observatory, and knows the bearings of every star in the heavens. He is thirtyseven years old, a graduate of the University of Chicago, and holds the degree of Doctor of Philosophy from that institution. The University of Chicago loaned him to the Shipping Board Recruiting Service for the duration of the emergency.

In spite of Dr. Lee's titles, he is a "regular guy." His "boys," from the few nineteen year olds who have gone through his school, to the lake skippers of twenty years' experience, all take him in as one of themselves.

Every afternoon, after class, there is a line of his students waiting in the anteroom to his office for a chat with their instructor. They bring him their problems, which range all the way from love affairs and mothers-inlaw to finances and new uniforms. And in his desk drawer is an ever increasing pile of letters written from aboard ship telling how the new masters and mates of the merchant vessels are making out.

EVENING SCHOOLS TO RECEIVE APPRENTICES
DirectorDowney of BostonSchools Extends Privileges to Boys In Training-Classes Three Nights Each Week.

The School Commttee of the Citv of Bos

The Flag-

 The Salty SeasThe Yankee SailorBy Geo

Illustrated by John T. McCutcheon

ONCE there was a boy brought ap in the cornbelt among trickling fitches tilled with rain water and that was why he longed for the tang and the salty savor of dpen seas.

Where do you find the boys redding Clark Russell and Captain Kidd and the good old yo-heave-yd yarns of American fars from the

days of Paul Jones down to the New Bedford Clippers? Why, out on the prairies where all the horfzons are dry and the only navigation is by skiff.

From the time when I began to wrest money from an unwilling public I became a traveler, and every time I had a chance to travel I hurrief to a sea coast and boarded a ship. There is no substitute for salt water. The Great Lakes are extensive and moist, but beyond the curtain of water are no promises of romance and adventure, no strange citiep, no lands that are foreign and mystical and heavy with history. I traveled to Europe and out to China and Japan and through the West Indie all the way around. In my pampered cruisings, year after year, I saw nearly everything that I wahted to see except the American flag. The American Merchant Marine did not exist except in the bodks at the library.

Once a few Americans stood on the deck of a passenger boat headins into one of the super-heated parts of India. A scattered ship-

Almost the best news of the war

Dxet in vist and

luf
\qquad

 bes anomor fhamrohog atiola havino achaineib lo ehrour (efiovado soivma salloubait

 fribay al motsurtani io motizog

Name in full LENON, Harvey B(race)

Academic title
Assistant Professor of Physics.

State in detail military exploits performed, honors and marks of distinction conferred (including service chevrons), and any items of interest concerning your service, such as position of instructor in special subject, etc.

We are publishing this year series of papers on Adsorption of Gases by Charcoal carried on at the Jniversity before and during avove service by myself and my students at request of the Chemical Warfare Service. This work is that referred to by Millikan, Science, $50,290,1919$ and separates will be sent to your office as these papers appear.
At the request of the War Departnent other researches growing out of Proving Ground oroblems are being carried on at present.
(hemorenis
\qquad altit jimblamat

 Hescos erepsg esent 88 eofine riok ut thea er

Nome in an Julian Herman Lew ir Date fan 20,1920
academic title ernstructor, left. Pathology; Assoc. Member Gtho L. A. spague Mernoual chit.

State in detail military exploits performed, honors and (including service chevrons), and any items of interest concorning your service, such as position of instructor in special subject, etc.

Was not called to active service un order to do investigative mark for the Government: Inv scientific papers mere published in medical jousinak ar the recent t of this work.

OS Pl, DS, win of tand \qquad
 ili ai mant

\qquad

 demorvalo soicuas saribubain)
 thoqe at rolvurtail lo galishog ats, Jogidina

Name in full \qquad Ralph \&fald Lommen \qquad Academic title fiellow, Enghsh, 1916-17, Qosistant in Engluh.

State in detail military exploits performed, honors and marks of distinction conferred (including service chevrons), and any items of interest concerning your service, such as position of instructor in special subject, etc.

Include all service civil
and military

Name in full \qquad Daniel David Luckembill

Academic title \qquad

Sate in data miliary ex. As Nh. Luckenbicl is on his way to the tear East f plaits performed, honors and marks of distinction conferred (including service chevrons), and any items of interest concerning your service, such as position of instructor in special subject, etc.
wail endeavor to give the ceased mifomatore sobieh he con verify laches showed you fayer.
 Reveron mulita- M. Co. Sept 1917-90. 1919
(2) In addition to requear work in $2 L_{0}$ own dejpationst taught two clares in Nacternaties (S.A.T.C)

 oflit jimobesA

Academic title Associate Professor in Physiology.

$\begin{aligned} & \text { 壳 } \\ & \text { a } \end{aligned}$			Date	(State in full, without abbreviation) RANK, BRANCH of SERVICE, and ORGANIZATION, specifying Co., Reg., and Div., or similar designation of unit	Location	RANK	ions for BRANCH
	Enlistment						
	Promotions, Transfers, Offices held, e.an ., etct.	I					
		2					
		3					
				Military Record, Nil.*			
		6					
		7					
		8					
	Discharge						

State in detail military exploits performed, honors and marks of distinction conferred (including service chevrons), and any items of interest concerning your service, such as position of instructor in special position of in
subject, etc.

* Received offer of Captaincy in Sanitary Corps, Autumn 1917. In view of fact that Professor Carlson contemplated entering service refuzed offer without further consideration to assume responsibilites of Acting Chairmanship of the Department of Physiology during Professor Carlson's absence. Duimg this period the Department cooperated with the Depertment of Anatomy in giving two courses of instruction to what was known as "Neuro-Surgical Schools of the United States Army" (November December, 1917, and January-Bebruaxy,1918). An outline of the work given to these two groups of surgeons is enclosed. During the remainder of the war was engaged in teaching and research at the University in addition to the administrative duties as acting Chairman of the Department.

-za vinilim fistob nit atate
 thonstaon anifomidalb lo ehom (enotvarlo solvise zuribulani) -tion jastotai lo amsti kae bras an foue soivnas woy sniang
 Lata, haidue

$$
\text { Lerall. } 9: \text { G aune }^{-} \text {Somyts }
$$

$$
\text { revail. } 9: A \text { anne }
$$

A. B. Luchisrat

Lecture and Laboratory Schedule of The Chicago Neurological School and

Laboratory Outline of the Course

$$
\begin{aligned}
& \text { ary b of was. }
\end{aligned}
$$

PRRIOD I.

Lecture:- Nerve Degeneration and Nerve Regeneration - Splitting and Crossing of lierves. Physiological Union of Various Types of Nerves.

Iaboratory:- Experiment 1.
PERIOD II.
Lecture:- Spinal Reflexes and Spinal Snock.
Laboratory:- Experiment 2.
PRRIOD III.
Lecture:- Discussion of Reflexes as an aid in diagnosis.Upper is Iover. liotor Neurone Lesions.- Types of motor paralysis.

Laboratory:- Demonstration: Experiments 3, 4, 5 and 6.
PMRIOD IV.
Lecture:- Cerebral (motor) localization with lecture demenstration of a decerebrate rabbit and a pigeon without cerebral hemispheres.

Laboratory:- Bxperiment 7.
PERIOD V.
Lecture:- Cerebral (sensory) localization - The central Nervous System and the Alimentary Tract.

Laboratory:- Experiment 8 .
PERIOD VI.
Reserved for unfinished work, quiz, of conference.

```
                    7-4.40
```



```
                            - 51, rategar
```



```
                            *352
```



```
    4+0.4725
```



```
                            *-20+8-20
```



```
    # 40250-5
    4*)
```

```
-2-
PIRRIOD VII.
Lecture:- The Physiology of the Cerebellum.
Iaboratory:- Mxperiment 9.
    PBRIOD VIII.
Iecture:- The Physiology of the Brain Stem, with -ecture
    demonstrations.
PRRIOD IX.
Lecture:- The Physiology of the VII and XII Cranial Nerves
        with lecture demonstrations of animals showing
        lesions of these nerves.
Laboratory:- Experiment 10.
    PRRIOD X.
Lecture:- Lesions of the optic, III, IV, V, VI and XI cranial
        nerves with a discussion of pupillary reflexes.-
Laboratory:- Experiment 11.
    PIRIOD XI.
Reserved for unfinished work, quiz, or conference.
    PERIOD XII.
Lecture:- Cerebral Circulation and the Formation of
    Cerebrospinal Fluid.
Laboratory:- Experiment 12.
    PBRIOD XIIII.
Lecture:- The Physiological mffects Resulting from Raised
    Intracranial Pressure.
Laboratory:- Experiment 13.
```


$$
-3-
$$

PIBRIOD XIV.
Lecture:- The Physiology of the Semicircular Canals.
Laboratory:- Experiment 14.
PERIOD XV.
Lecture:- The Functional Tests of the Vestibular Apparatus.
Laboratory:- Experiment 15 as demonstration.
PRRIOD XVI.
Reserved for unfinished work, quiz, or conference.
PERIOD XVII.
Lecture:- The Physiology of Hearing and the Functional Tests of Hearing.

Laboratory:- Experiment 16.
PERIOD XVIII.
Laboratory period covering experiments $17,18,19$ and 20. PMIIOD XIX.

Laboratory period covering experiments $17,18,19$ and 20. PERIOD XX.
Lecture:- The Physiology of the cervical sympathetic with demonstration on cat of signs of paralysis of the cervical sympathetic. (Experiment 21 (1)).

Laboratory:- Ixperiment 21 (2).

- Mintiac

Cuy kotitat

Thite bot inter

2.). Easuer

$$
x, 307 \pi=5
$$

Bxp. 1. Demonstration: Physiological Nerve Degeneration. Anatomical union of Nerves does not constitute physiological continuity.

Exp. 2. Stimulation of the Spinal Nerve-roots; Spinal Shock. - Anaesthetize a dog with ether and insert a cannula into the trachea. Then turn the animal and place it ventral side down on the operating board. Lake a median incision through the skin over the spinous processes of the upper lumbar vertebral. Hxpose the daminae of the vertebrae by cutting down through the soft tissues along the spinous processes and scraping sideways over the vertebrae. Stop the bleeding from the cut muscles by pressing wads of cotton soaked in warm salt solution against the cut surfaces. Cut through the laminae of the vertebrae with bone forceps and expose the spinal cord for about four inches. Press soft wax against the cut surfaces of the bones to stop the oozing of blood into the spinal canal.

Strands of nerves will be found coming out of the cord and taking their courses downward. On inspecting them closely the strands will be found to consist of two parts, the upper part being the posterior and the under part the anterior nerve-root. Carefully separate the parts of the strands on the same side of the cord and pass fin ligatures under two posterior nerveroots. Tie one nerve-root near the cord and cut it on the central side of the ligature; tie the other root further away from the cord and cut it on the peripheral side.

Now give the animal only enough ether to keep it "halfnarcosis." Stimulate the cut nerve roots with light tetanizing shocks and observe through which muscular responses can be evolred. liow find two anterior nerve-roots on the other lateral half of the cord and likewise ligate, out and stimulate them. The presence of sensory nerve fibres in the dura mater itself which extends along the nerve strands for a little way may give rise to a muscular response, if there is a spread of the stimulating current on to the dura. A stimulation of the dura mest be avoided. It could be obviated by stimulation of the nerveroots inside of the sheaths of the cord. If this latter procedure is followed, however, greater care must be exercised in handing the delicate nerve-roots.

Now expose the cord at tine fourth dorsal segment. Arrange for a blood pressure tracing. Again elicit reflexes by stimulation of the central end of a posterior root. NJow transect cord at the fourth dorsal segment. Immediately after transpex tion again stimulate central end of the posterior root. Are the reflex effects obtained? What effect did the transection have on the general blood Pressure? Is there any relation

Abstract

 haty to

between the drop in general blood pressure and spinal shock?
Exp. 3. Demonstration of a Dog with completely transected Spinal Cord.

Exp. 4. Demonstration of a Dog with a hemisected Spinal Cord.
Exp. 5. Demonstration of decerebrate rigidity.
7xp. 6. Practical absence of shock in the lower animals and in the young of mammals.

Fxp. 7. Stimulation of the Cortical liotor Areas in the Dog. - Have an inductorium set up with a single cell to deliver tetanizing shocks; connect a pair of fine, but not sharp-pointed, electrodes with the secondary. Etherize and insert a tracheal cannula in a dog. Then fasten the dog, belly down, on a holder and put a large pad under the neck to support the head. Clip the hair over the scalp. Feel for the condyles of the lower jaw and lay a string taut between them across the top of the head; stretch another string between the outer canthi of the eyes; the crucial sulcus is just back of a line midwat between the two strings. Now make a medial incision through the skin down to the bone, and reflect the flaps on either side. Detach as much of the temporal muscle from the bone as is necessary to get room for two trephine holes, the internal borders of which must not be less than $1 / 4$ inch from the middle line so as to avoid wounding the longitudinal sinus. Carefully work the trephine through the skull, taking care not to press heavily on it at the last. Raise the two pieces of bone with forceps, connect the holes with bone-forceps and enlarge the opening as much as may be necossary to expose all the motor areas. Press soft wax against the cut edge of the bone to stop bleeding.

Now unbind the limbs on the side opposite to that on which the brain has been exposed. At this stage the anaesthesia should be very light. Apply the stimulating electrodes successively to the areas for the hind and fore limbs. Contractions of the corresponding groups of muscles will be seen if the narcosis is not too deep. Movements of the head, neck and eyelids may be called forth by stimulating the motor areas for these regions. Stinulation in front of the cructal sulcus may also cause great dilatation of the pupil, the iris almost disw appearing. The dilatation takes place almost promptly, and is greatest on the side opposije, but the pupil on the same side is also widened. Aven after section of both vago-sympathetics in the neck, a slow and slight dilatation, greatest perhaps on the same side, may be caused by cortical stimulation

Repeat the whole experiment if necessary on the opposite side of the brain.

In the course of his observations the student will perhaps havo the opportunity of seeing general epileptiform convulsions set up by the localized excitation. They begin in the group of muscles represented in the portion of the brain directly stimulated. After the convulsions have been sufficiently studied, they should again be induced and the stimulated motor area rapidly excised during their course. In some cases this will be followed by immediate cessation of the spasms.

Stimulation of the cerebollum. - On the same animal expose one side of the cereballum. Stimulate the cerebellum and observe what muscular movoments are thus evoked. How do they differ from those caused by stimulation of the cerebral cortex? Explain.

Bxo. 8. Demonstration: Action of the vagi and splanchnics on the Stomach and Intestines. - The Nervous Contril of the Colon.

Bxp. 9. Demonstration:
(I) Coizplete removal of the cerebellum in the pigeon. (Inmediate Effects).
(2) Unilateral Removal of the Cerebe Llum in the Rabbit. (Imediate Effects).
(3) Permanent Fffects (Dog) following Unilateral lesions of cerebellum.
(4) Fffects following Removal of the liotor Cortex in the Dog.
(5) Effects following the Removal of the Occipital Cortex in the Dog.
(6) Bxperimental Jacksonian Ipilepsy.

Exp. 10. Study of the Physiology of the Hyposlossal and Facial Terves.

تtherization and tracheotomy.

1. Hypoglossal Nerve. The operator makes a median skin incision about $13 / 4$ inches long over the junction of the thyroid cartilage and hyoid bone. After dissecting through the fascia a longitudinal incision, parallel to the skin incisions is made through the mylohyoid muscle $1 / 4$ inch latoral to the median skin incision so as to avoid a hemorrhage arising from
 (3) Betat

nilst
. $4=2=2$

 18
 (3)

 - -

\square -

section of the longitudinal vein which runs in the median line over the surface of the mylohyoid muscle. Avoid utating into the longitudinal fibres of the geniohyoid which lias buneath the mylohyoid muscle. On reflecting the mylohyoid laterally the large hypoglossal nerve will come into view. Isolate the nerve as far as possible towards its exit from the cranial cavity and section it. Put a ligature on the peripheral end and stimulate with a tetanizing current:
a) Towards which side does the tongue point? Towards which side is the concavity of the raphe directed? What muscle is concerned in the protrusion of the tongue? What muscles are thrown into action when the tongue is pulled backward and upvard? - orvards which side does the tip of the tongue point?
b) Isolate the other hypoglossal nerve and repeat the observations. Then stimulate both nerves simultaneously and note tine effect.
2. Facial Herve. Turn the dog on its side and, after cutting away hair, make a skin incision about one inch long parallel with the course of the facial nerve. Feel for the stylomastoid process and by means of scissors and probe dissect through tho dense fascia which lies about the nerve and above the parotid gland. Isolate and ligate the nerve close to its exit from the stylomastoid foramen and cut the nerve on the central side of the ligature. Stimulate the peripheral end of the nerve or its individual branches with a weak tetanizing current and note the effect on the ruuscles about the mouth, on the muscles about eye, and on the muscles of the ecr. Repeat observations on other facial nerve.

Exp. 11. Demonstration:

(1) Unilateral Section of Optic Nerve.
(2) Dog showing effects following section of III Cranial Nerve.
(3) Dog showing tifects following section of the VI Cranial lierve.
(4) Dog showing effects following section of the XI Cranial Nerve.

Bxp. 12. Demonstration:
Hechanical Factors Influencing the Cerebrospinal Fluid.

aituatiacalic

 ratchiay reways

Exp. 13. Demonstration: Mhe following outline of this important experiment is given so that the class can follow more readily the various steps in the demonstration.

A Study of the fiffects of Increased Intracranial pressure on the Blood Pressure and the Respiration.

Wtherization and tracheotomy. Arrange for a respiratory tracing. Arrange for a blood pressure tracing from the left femoral artery. Isolate carefully both vagi and place lifting ligatures under them. Turn the animal on its side and make a median incision through the skin from the root of the snout to the great occipital protuberance. Reflect the temporal muscle from the calvariun. Expose the dura by taking out a circular piece of the calvarium by means of a trephine. Remove the exposed dura. Screw into the trephine opening a metal cannula provided for that purpose. Insert into the cannula a rubber stopper provided with a Tpiece. Connect one arm of the T tube through rubber tubing with a percolator. Connect the other arn of the I tube with a mercury manometer. Fill the whole system through the percolator with physiological salt solution heated to body temperature. Arrange. the manometer on the drum so that the zero pressures (arterial and intracranial) are taken from the same base line. Nlow the flag tracing the intracranial pressure to write a little in advance of the flag recording the arterial prescure.

1) Take a normal blood pressure and respiration tracing with the intracranial pressure at zero.
2) Raise the intracranial pressure gradually until the intracranial pressure is slightly higher than the blood pressure.
3) If the arterial pressure rises higher than the intracranial pressure raise the percolator so that the intracranial pressure barely exceeds the arterial pressure. Determine how hich you can raise the arterial pressure by this method.
4) Lower the percolator and allow the intracranial pressure and erterial pressure to return to normal. Now,
5) Bring about a sudden rise in the intracranial pressure by raising the percolator rapidly to a point exceeding the blood pressure and note the effect.
6) Allow the blood pressure and the respiration to return to the normal and repeat 2), 3), 4), and 5) after having sectioned both vagi.

 3.

25020
haty

7) Section spinal cord in upper thoracic region and repeat 2) and 3). \%

Bxp. 14. Study of the Bffect of Stimulation of the Vestibular Apparatus of the DOG.

Ttherization and tracheotomy. Make an incision behind the ear over the most prominent part of the mastoid process which can be felt as a slight prominence just below the point where the linea nuchae superior turns forward towards the processus zygomaticus. Remove the musculature attached to and covering the mastoid process. A small trephine hole is made in the mastoid and the plug of bone removed exposing the spongy diploic bone. The latter can be removed with a currette or chisel if found necessary until the white, shining, hard otic bone is seen. The horizontal and posterior semicircular canals lie under cover of the exposed capsule of the otic bone and are accessible to the various forms of stimuli which will be employed. As soon as the eye reflexes have disappeared stimulate the semicircular as follows:

1) Press a pointed piece of ice against the exposed otic bone. Note the deviation of the ejes. In what direction is the nystagmus? Note whether or not the position of the head affects the deviation of the eyes or direction of the nystagmus when cold is applied to the otic bone (semicircular canals).
2) Attach a piece of rubber tubing to a percolator bottle. Put a small cannula in the end of the rubber tubing. Fill the percolator with hot $0.9 \% \mathrm{NaCl}$ solution. With dog's eyes in a normal position allow a stream of hot salt solution play on the otic bone and note the results.

* References:
"Concerning a definite regulatory mechanism of the vaso motor center which controls blood pressure dur ng cerebral compression", Harvey Cushing, Johns Hopkins Hospital Bulletin, XII, 1901, p. 290.
"Some Experimental and Clinical Observations Concerning States of Increased Intracranial Iension", Harvey Cushing, American Journal Liedical Sciences, New Series, 124, 1902, p. 375.
"The Blood-Pressure Reaction of Acute Cerebral Compression, Illustrated by Cases of Intracranial Hemorrhage", Harvey Cushine American Journal of Medical Sciences, New Series, 125, 1903. p. 1017 .

Abstract

3) Try to change the deviation of the eyes and the direction of the nystagmus by alternately aoplying ice and hot salt solution to the otic bone.
4) lake a median skin incision over the lower cervical and upper thoracic vertebrae just large enough to permit insertion of an indifferent electrode. Now close the skin incision with sutures allowing the post of the indifferent electrode to project above the skin. Attach wirs to post and connect with 2-3 dry cells. Attach a different electrode to remaining pole from dry cells by a wire. Stimulate the semicircular canals through the different electrode by pressing the latter into the trephine role and thus completing the circuit. Note the deviation of the eyes and the direction of the nystagmus. What pole was used to obtain the results? Now stimulate the canals with the other pole by changing the wiring. What is the effect of stimulating the semicircular canals with a constant current? *

Bxp. 15. Further Study of the Effects of Stimulation of the Semicircular canals in Han and Dog under more nearliy Normal Conditions.

Give a small $\operatorname{dog}(4 \mathrm{~kg}$) a subcutaneous injection of $1 / 8$ grain morphine sulphate. Fasten a small cat board to a rotating chair (lab. stool). After the animal has become stuporous, tie the animal loosely to the cat board.

I. Rotation Test.

1. Tian. One member of the group volunteers to sit on the large rotating chair. He is now rotated to the right or left at a uniform speed for 10 complete revolutions. The rate should be about 2 sec . per revolution. Note the direction of movement of the head and body with respect to direction of rotation of the chair. Note primary nystagmus at beginning of rotation. At the completion of the loth revolution the chair is suddonly stopped and the movements of the eyes noted. In what direction is the after-nystagmus when the person is rotated to the right? To the left? Is the nystagmus intensified by looking in the direction of the nystagmus? Is it diminished by looking in the opposite direction? What effect has rotation of the chair in tha oppesite direction on the intensity of the mystagmus? How long does the after-nystagmus persist? That subjective sensations does the ooserved person experience? If the observed person is very susceptible to the rotation test a person not so easily affected

* Reference:
"The Effects of Stimulation and Extirpation of the Labysinth of the Ear, and their Relatinn to the liotor Systern". Part I. Experimental, J. G. Wilson and F.H. Pike, Phil. Frans. Roy. Soc. London, Series B. V01. 203, pp. 127-160.
(1)
sitting on the observed person's lap can observe the primary nystagmus during rotation, i.e., the nystagmus occurring during rotation of the person observed. See if you can detect primary nystagmus. If so, what is its direction with respect to direction of rotation which induced it? Note number of rotations necessary to effect a well marked nystagmus.

2. DOg. Repent the rotation test on the morpininized dog.
II. Caloric Test.
3. Cold. Irrigate the ear of the morphinized dog by sticking a cannula coming from a percolator filled with water at $16 ;$ i C into the external auditory meatus so that the stream of cold water reaches the tympanis membrane and the surrounding tissue. What is the direction of the nystagmus? 2. Heat. Irrigate with water at $43^{\circ}-44^{\circ} \mathrm{C}$. Results?
III. Galvanic Test.

Shave the skin over the mastoid region and shoulder of one side. Put the indifferent electrode to $2-5$ dry cells on the skin of the shoulder and then apply the different electrode to the mastoid process. Attempt to elicit nystagmus first with the positive and then with the negative pole as the different electrode. Results?
IV. Demonstration of dog suffering unilateral destruction of the semicircular canals. In what respects do the signs differ from dog suffering unilateral removal of the cerebollum?*

Brp. 16. Laboratory domenstration of Erb's liotor Points.
*References:

1) Diseases of the Nose, Throat, and Far - Fiedical and Surgical - Ballenger, 3 d edition, 1911.
2) Deutsche Otologische Gesellschaft, 20te Tersammlung, 1911: Funktionelle Prufung des Vestibular-appareises, R. Barany und K_{i} Vittmaack.
3) Beitrage sur Theorie, ijethodik, und Kinik der kalorimetrischon Funktionsprlfung des Bogengangapparates, Branings, Zeitscin. f. Ohrenheilkunde, 63-64, 1911-1912, p. 20

Kxp. 17. The Artificial \#ye. - For demonstrating the dioptrics of the ey an apparatus consisting of two tarts is prom vided. The part A has an uter box containing annthor bax which can be slid inngthwise in it. At the back of the outer box there is a window of ground glass which reprosents a retina. The inner box has an aperture in front which can be fitted either with a spherical or a toric lens to represent a cornea. Just back of the cornea there is a rotatory diaphragm whereby pupils of different sizes and silapes can be brought into the visual axis. There are three lenses, one marked HT , one $\mathbb{M A}$, and the third, a stronger one, marked SA, which can be set in the inner box just behind the pupil. *
(a) Put the spherical Tens in the aperture at the front, turn the diaphragm so as to bring the larger circular pupil in place, and set the lens marked $R T$ in place in the inner box. Shove the inner box into the outer box to the primary position. that is, with the line marked \mathbb{E} just even with the front rim of the outer box. With this arrangement of A the ground glass is at the principal focus of the refracting system; that is, it is so placed that parallel bundes of light rays that enter the box will come to a focus on the glass. A, therefore, now represents a relaxed (unaccomnodated) emmetropic eye which besides has no astigmatism and has a dilated pupil. An emmetropic eye is ane which, when unaccommodated, brings light which impinges on the cornea in bundles of parallel rays to a focus on the retina. Now take A to the window and direct it toward a distant well illuminated object; a fairly distinct inverted image of the distant object will be caught on the ground glass plate. Iurn the diarhragm so that the smaller circular pupil is brought into place; the image becomes sharper wut fainter; why? Direct the eye toward a near object; its inage will be blurred; it can be made more distinct by replacing tire Re lens within th box by the lens Oa or SA with greater refracting power; this shows that an emmetropic eye, when viewinc a near object, the light from which reaches the eyo in bundles of diverging rays, must accomindate, increase its refractive power. In the eye of man and mest aninals an increase in the refracting power of the eye is effected by increasing the curvatura of the lons.

All other positions of the inner box, that is, when II is slid in or out, represent ametropic ajos. Any eye which, When relaxed, does not bring bundles parallel rays to focus on its retina, that is, any oye that is not ammetropic, is an ametropic eye.
(b) Put the R lens back in the aye. On putting the inner box back de not_shove it in to the primary position, but leave s. * $R T$ = relaxed ametropia; $L A A=$ modarate accommedation; and. $\mathrm{SA}=$ strong accommodation.

Exp. 17. The Artificial Eye. - For demonstrating tine dioptrics of the ey an apparatus consisting of two parts is prom vided. The part A has an uter box containing annther bax which can be slid inngthwise in it. At the back of the outer box there is a window of ground glass which represents a retina. The inner box has an aperture in front which can be fitted either with a spherical or a toric lens to represent a cornea. Just back of the cornea there is a rotatory diaphramm whereby pupils of different sizes and siapes can be broubht into the visual axis. Where are three lenses, one marked KT , one $\mathbb{H A}$, and the third, a stronger one, narked SA, which can be set in the inner box just behind the pupil. *
(a) Put the spherical lens in the aperture at the front, turn the diaphragm so as to bring the larger circular pupil in place, and set the lens marked $R F$ in place in the inner box. Shove the inner box into the outer box to the primary position. that is, with the line marked E just even with the front rim of the outer box. With this arrangement of A the ground glass is at the principal focus of the refracting system; that is, it is so placed that parallel bundes of light rays that enter the box will come to a focus on the glass. A, therefore, now represents a relaxed (unaccomnodated) emmetropic eye which besides has no astigmatism and has a dilated pupil. An emmetropic eye is ane Which, when unaccommadated, brings light which impinges on the cornea in bundles of parallel rays to a focus on the retina. Now take A to the window and direct it toward a distant well illuminated object; a fairly distinct inverted image of the distant object will be caught on the ground glass plate. Iurn the diarhragm so that the smaller circular pupil is brought into place; the image becomes sharper iut fainter; why? Direct the eye toward a near object; its inage will be blurred; it can be made more distinct by replacing tire Re lens within th box by the lens -.a or SA with greater refracting power; this shows that an emretropic eye, when viewiñ a near object, the light from which reaches the oye in bundles of diverging rays, must accomindate, increase its refractive power. In the eye of max and most aninals an increase in the refrarting power of the eje is effected by increasing the curvatura of the lons.

All other positions of the inner box, that is, when \mathbb{E} is slid in or out, represent ametropic eyes. Any pye which, wher relaxed, does not bring bundles af parallel rays to focus on its retina, that is, any oje that is not ammetropic, is an ametropic eye.
(b) Put the $R \mathbb{N}$ lens back in the oye. On putting the inner box vack de not_shove it in to the primary_position, but leave $\mathrm{S}_{\text {. }}$ * RT = relaxed ametropia; liA = moderate accommedation; and. SA = strong accommodation.

```
                                    -35
```



```
    *)
```



```
    {2,
```



```
                                    c(0) (2+20
```


$$
-23-
$$

about one-half inch outside of the rim of the outer bnx. The position now represents (relaxed) myopia, a state of refraction in which distinct images of near objects only can be had; the objects must be so near the aye that whatever light from them enters the eye and is brought to focus on the retina impinges on the cornea in bundles of divergent rays. Iurn the eje toward an object within a few feet of the eye; an image, more or less distinct - depending on the distance of the object - will be obtained. Iurn the eje toward a distinct object; its inage will Do blurred. The inage can be made more distinct by setting a sitable concave lens before the eye.
(c) Shove the inner box in from the primary position. The position now represents relaxed hypermetropia, a state of refraction in which the light, tha can be brought to focus on the rotina, must impinge on the cornea in bundles of converging rays. Iurn the eye toward a distant object; its blurred inage can be made distinct by setting a suitable convex lens before the eye. It can also be made more distinct by replacing the $R \mathbb{R E}$ lens within the box by the IIA or SA lens, this shows that a hypermetropic eye even in viewing a distant object, must accomnodate for it.
(d) Set the $R E$ lens in the inner box, turn the largest pupilinto place, and put the inner box in the primary position. Put a disc perforated with two holes in front of the cornea. ITow direct the eye toward a distant object; there will be a single fairly distinct image on the retina. Now replace the $R \mathbb{E}$ lens by the SA lens, put the inner box in the primary position and then direct the eye toward the same distant object. There will now be two blurred images on the retina; why? Caver one of the holes in the disc; the image on the opposite side of the retina will disappear. Why the opposite side? IJow remove the disc; direct the eye toward an object so near that a distinct image of it can be obtained on the retina. Put the disc back in front of the cornea and get an image of the same near object; it will still be a single inage. Now replace the SA lens by the RE lens, put the inner box in the prinary position and direct the eye toward the same naar object; two blurred images of the object will apprar on the retina. Cover one of the holes on the disc and the THage on the same side will disappear. Record carefully the iesults obtained in this experiment by clesing one of the hoies to compare them later with the results obtained by covering one of the holes in the card when performing Scheiner's experiment on the natural eye.
The remainder of Fxp. 17 should be done in a dark room with the additional use of the B part of the apparatus. The B part of the apparatus is likewise made up of a bow within a box. On the front side of the inner box there is an apnrture fitted

QuatMGYR
2 8.8

x-4

with a convex lens. Inside of the larger box there is a lamp and in front of that a glass plate, the surface of which being rough acts as a new source of light, when the plate is illuminated from behind. When the inner box of B is at the primary position the glass plate is at the principal focus of the lens so that light from the class plate will emerge from B in bundies of parallel rays. If, therefore, we wish to simulate in a dark room rays of light coming from an object at great distance, it can be done by illuminating a figured ground glass screen in B with its inner box set in the primary position. If wo want a luminous near object in the dark room, the screen may be transferred to the slip on the outside of B, just in front of the lens. If it is desired to have light emerge from B in bundles of converging rays, this can be done by illuminating the screen inside the box with the inner box drawn out from the primary position; With the inner box shoved in from the primary position light will emerge from B in bundles of divergent rays. These two latter possibilities, however, as well as those attachments to the apparatus that have not been mentioned yet will be made use of in Exps. 18 and 19.
(e) Place the SA lens in A, which should be set in the primary position and have its smallest pupil in place. Put the glass plate with the cross shaped figure on it outside of B in front of its lens and set B about one metre away from A, or at such distance that the sharpost possible image of the cross can be caugint on the retina A. Now put the larger pupil of A in place; the image in A is now not quite so sharp, though more Iuminous; why? Put the ring-shaped pupil in piace; the image is now almost blurred; it can be made sharper by shoving the inner box in a little to bring the retina a little nearer to the front. Winy must the retina be brought nearer?
(f) Place a rod glass in front of the cross and adjust A so that the inage in it is distinct. ITow replace tine red glass by a blue one and note the effect on the sharpness of the image. Adjust A so as to make the blue image sharper and explain the adjustment.
(g) Substitute for the Spherical corneal lens the toric lens, putting the greater curvature of the toric lens in the vertical plane. The eye is now astigmatic (see also Ixp. 19). The horizontal arms of the cross are now wider than the vertical arms; Why? Correct the astigmatism by properly placing a suitable lens, winich will be provided, before the eye.

Exp. 18. - Opthalmoscopy.
(1) For studying the principles of opthalmoscopy first use the same apparatus as in $\mathbb{B x p} .17$ in the dark room. Here part A represents an observing eye, and the part B an observed eye. The same states of refraction as were represented in A by the different positions of the inner box apply also to B in
 43042

 4ex a

 2he 2

$$
\text { [8x } 2
$$

ex

corresponding positions of its inner box. Put the glass plate with the black letter on it inside of B and turn on the light. With the inner box in the primary position B represents a relaxed emnetropic eye, from which any light reflected by the retina emerges in bundles of parallel rays. With the inner box pulled out B represents a myopic eye from which light reflected by the retina emerges in bundles of converging rays. With the inner box pushed in B represents a hypermetropic eye fros which light reflected by the retina emerges in bundles of diverging rays. In opthalnoscopy the observing eye must adapt itself to bringing to focus on its retina light coming from the retina of the observed eye.
(a) Direct Opthalmoscopy.
(I) Set B as a relaxed emmetropic eye and place A before it to catch the emerging light. It will be found that in order to get a distinct inage of the retina of B on the retina of A, the latter must also be set as a relaxed emmetropic eye. Light comes out of B in parallel bundles, so A must be set so that bundles of parallel rays represented to it come to a focus on its retina. (See Fig. I, Diagran III).* This illustrates that in opthalmoscopy by the direct method, if B is emmetropic and relaxed and A is emmetropic, the latter must also be relaxed. The image in A is inverted, that is, in a natural eye it would be seen erect. Measure the size of the image in A.
(2) Now set B as a myopic eye; the image in A becomes indistinct. To make it distinct either of two things can ne done; the converging rays from B can be made parallel before entering A by putting a suitable concave lens before the latter; or A can be so set that the converging rays striking its lens will come to focus on its retina, that is, it may je set to a corresponding degree of hypermetropia. This shows that if B is myopic and A is emmetropic, the latter will need a concave lens before it, but if A is hypermetropic to a degree corresponding with B's myopia, A will not need a lens. If, however, the hypermetropia of A is of lower degree and the myor ia of B is low, A will even need a convex glass. Try out all of i iese cases on the model using the test lenses where necessar.
(3) Now set B to hypermetropia and A to relaxed eminetropia. The image in A is not distinct. To make it so, the diverging rays from B can be made parallel by using a convex lens, or A can be so set that the diverging rajs will come to focus on its retina, that is, set to a corresponding degree of myopia.

[^0]

-16-

This shows that if B is hypemetropic and A is emmetropic, the latter, remaining relaxed, can use a suitable convex lens, or Without the lens it can perhaps accommodate just right, but that if A is myopic to a degree corresponding to B^{\prime} s hypermetropic. A will not need a lens. Consider the cases where the myopia of A and the hypermetropia of B do not correspond in degree and try them as well as the foregoing out on the model. Consider aiso and try out the following cases:-
(4) B is emmetropic and A myopic.

5 . B is emmetropic and A hypermetropic.
6) Both A and B are myopic.
(7.) Both A and B are hypermetropic.
(b) Indirect Opthalmoscopy. - Set B as a relaxed emme.. tropic eye and fix a convex lens of 16 diopters in front of j^{t}. Place a white screen on the visual axis and it will be found that tio screan catches a distinct inverted (real) image of about 6 cm . from the convex lens. Illuminate the figure on the back of the screen.

Set the Elens in A and place and arrange A so that a distinct image of the figure on the back of the screen is caught on the retina of A. liow remove the screen; a distinct image of E's retina will now be seen un A's retina, but it is now erect. (See Fig. 2, Diagram III), Of course it is not essential that B be set as an emetropic eye. Change B from emmetropia to ametropia and it will be found that very little readjustient of A will be required to make the image in A distinct. $-f B$ is made mynpic, the rays passing through the convex lens will be ccoverged a little nearer to it; if B is made myopic, the rays passing through the convex lens will be converged a little nearer to it; if B is made hypermetropic, convergence will be a little further away from the convex lens, and in both of these cases A may have to be reset accordingly.

The foregoing illustrates that in npthalmoscopy, by the indirect method, the rays of each bundle emerging from the obstirved eye are converged by a convex lens to a point betwean the two eyes whence they diverge to the observing eye, which must therefore adapt itself to bringing divergent rays to focus on the retina, or in otherwords, the ovserving eye must accomodate as for an object placed where the rays from the obsarved eye are converged to by the convex leng. The inage in A being erect it follows that by a natural eje it would be seen inverted. Compare the size of the inage in A with that obtained by direct optiailroscopy.
(2) Opthalmoscopy with Thorington's Artificial Eye.- In a dark roam fasten an eye to a stand and place beside it,a little back of it, and at the same leval, a lamp.

$$
20
$$

[^1]

\qquad
\qquad
\qquad
 20 ene

\qquad

[^2]
(a) Direct Method. - Set the eye to emmetropic by pulling out the back part to 0 . Take an opthalinoscope and turn the wheel on it so that 0 is at the aperture. Put the aperture before the pupil of your own eye and bring your eye up to within three or four inches of the lens of the artificial eye into which light from the lamp should be reflected. Relax your accommodation and if your eye is emmetropic, a distinct, enlarged and erect view of the fundus of the eye will soon be obtained. If your eye is ametropic, find by trial which lens on the wheel has to be put at the aperture to enable you to see clearly. If your eye is myopic, you will need a concave lens (red numbers). If your eye is hypermetropic, you will need a convex lens (white numbers).

Now set the artificial eye to myopia and see what lens is needed to enable you to see the fundus distinctly. Of course that depends (See (1) (a) (2)) on the refraction of your own eye as well as that of the observed eye. Set the artificial eye to hypermetropia and make the necessary correction (See (I) (a) (3)), or you may accommodate to enable you to see the fundus.
(b) Indirect Nethod. - Place your eye with the opthalmoscope before it at about two feet from the artificial eye. Take tine convex lens in your left hand and hold it about two inches in front of the artificial eye and reflect light into it. Accommodate your vision for a point about three inches in front of the convex lens. Wo correcting lens for the observer is needed except perhaps in cases where his eye is hypermetropic, or he does not have a wide range of accomnodation; he may then be helped by a convex lens. Why? Compare the picture as to magnification, extent of the field and position with thit obtained by the direct method.
(3) Opthalmoscopy on the Natural Eye. - Let A be the observer and \bar{B} the person whose eye is to be examined. A and B sit facing each other, Close to the ear of B on the same side as the eje to be examined is a lamp. For a clinical examination the eye should have a drop of a 0.5 per cent solution of atrophine put into it. This paralyzes the iris muscles, leaving the pupil dilated, and thus permits more light to enter and more to emerge from the eye, but most important of all it forces accommodation to a steady relaxea state. This latter condition can, for class work, however, be sufficiently effected usualily by having the person fix his gaze on a distant object during the examination.
(a) Direct Liethod. - A should know how much, if any, ametropia his eyes have, so that he can, before starting the examination, have it corrected by the proper lens at the aperture of the opthalmoscope. Ho takes the mirror, looks through
4ity

 shoditem koayks ayth

[^3]
-18-

the aperture and reflects light into B^{\prime} s eyes. A red glare, the so-called "reflex" from the choroidal vessels is row seen. A then brings the mirror to within about three inches of $\overline{3}$'s eye. If A's eye is emmetropic, or, if not so, is properly corrected, and if B^{\prime} s eye is emmetropic and both eyes are completely relaxed, the retinal vessels of B^{\prime} s eye can now be seen. If they cannot be seen readily, B^{\prime} s eys is most likely ametropic and A must take measures in accordance with (1) (a) to enable him to see.
(b) Indirect Lethod, - Here it is not so much of importance that the accommodation of the observed eye be relaxed (See (l) (b)) as it is that it be kept steady. E should fix his gaze far off. If his right eye is under examination, he should also direct his visual axis just along A's right oar to make it easier for A to get a view of B^{\prime} s optic disc. With an opthalnoscope before his ey.e A moves back to about 18 inches from B_{1} takes a biconvex lens of about 16 diopters in his left hand and places it about 2 inches in front of B^{\prime} s eye, keeping it steady by resting his little finger on B^{\prime} s fornhead. A now reflects light into B^{\prime} s eye and accommodates his vision as if looking at an object about $21 / 2$ inches in front of the lens. It makes very little difference what the refraction of B's eye is, if it is kept steady. A should see the fundus distinctly, if the latter is not strongly hypermetropic. If A is hypermetropic or does not have a wide range of accomodation, a convex lens before his eje may ve needed.

It will be readily undorstood that direct opthalmoscopy, but not indirect opthalnoscopy, can be used to detect and measure annetropia. mis is moze conveniently done, however, by retinoscopy.

Exp. 19. - Retinoscopy or Skiascopy, the oioservation of the movements of the shadow in the pupil of an eye when a mirror reflecting light into it is rotated, furnishes not only a method of detecting and measuring ametropia, but is als, used to detect and measure astigmatism.
(1) Direction of I:Ovements of the Shadow in the Pupil and of the Illuminated Field of the Retina.
(a) The B part of the apparatus used in Brp. 17 is set up as a hypermetropic eje. Take a position with your eye just one metre in front of the eje. Turn on the light and let a fellow student set the lever on the front of the y ye so that the pupil of the eye appears as a disc of light to you. How let him move the lever slowly so that the illuminated part of the retina of $\overline{\bar{B}}$ inoves to the left side; the disc of light will move off of the pupil and $⿴ i l l l$ also move toward the left, or the

-5, 2 m

 2.

shadow which follovs the disc of light will nove toward the left. Set the eye as an emrnetropic eye and the direction of movement of the shadow and the illuminated field will be found to be the same. Fig. 3 on Diagrain IV silows why this is so.
(b) Now let him draw out the inner box little by little and move the lever each time. At first the shadow in the pupil rill nove in the same direction as the illuminated field, but soon a position will be reached where movement of the lever causes the disc of ligit to disappear all at once, no movement of the shadow can be made out. Now place the white screen in the position of your eye and it will be found that a distinct image of the latter on the retina is formed on the screen; the light from the retina leaves the eye in bundles of converging rays which cross each other one metre from the eye and evidently the condition in which the light disc disappears all at once is that in minch the light converges just to the observing eye. With tize observing eye at one metre distance such an observed eye has one diopter of myopia. Fig. 5on Diagram IV illustrates why the disc of light disappears at once.
(c) Set the eje back to emmetropia, put eu convex lens of one diopter before the eye, place your eye just one netre away and repeat what you did in (b) after you found the position in which tire light disc disappeared all at once. The results will be just the same and for the same reasons.
(d) With your eye in position one metre from B and the latter set as it was at the end of (b) let your fe. low student pull the inner box out further and move the lever. It will be oiserved that now the disc of light moves off of the pupil and the shadow grows in the direction opposed to the direction of movement of the lighted part of the retina. The eye represents one with myopia greater than one diopter. Fig. 4 on Diagram IV: explains the observation.

These observations show that in retinoscopy: When the light minch cornes out of the eye is in divergent or in parallel bundles, or in bundles whose rays converge to a point back of the observing eje, the shadow on the pupil moves in the same direction as the field of illumination of the retina is moved; When the emerging light is in bundles whose rays converge just to the observing eye, the ligint disc disappears all at once; wher the rays of the emerging light converge to a point between the observed and the observing eye, the shadow moverient is in a direction opposite to that of the movement of the illuminated field of the retina. It is also shown that an eye with myopia of one diopter corresponds in its refraction to a relaxed emmetropic eye with a convex lens of one diopter before it.

(2) Dependence of the Direction of Lovement of the Illiminated Field of the Retina on the Kind of Iifror used. Set up the A part of the apparatus with a lamp beside it. Hold a large plane mirror in front of A at about three feet from it. Reflect light into the eye. Let a fellow student view the retina of A from behind. Now rotate the mirror slowly to the left and he will observe that the lighted field on the retina moves toward your left, or in the sarne direction as the face of the mirror is rotated. Now hold a large mirror with a concave surface before B and rotate it slowly toward the left; the lighted field will now move toward the right or in a direction opposed to the direction of rotation of the face of the mirror. This shows that with a plane mirror the lighted field of the retina moves in the same direction as the face of the mirror is rotated, but with a concave mirror it maves in the opposite direction. This holds good of course for any state of refraction of A; try this out too. This difference is due to the fact that the immediate source of light from which the retina is illuminated is not on the same side of the zirror in tine two cases. With a plane mirror the immediate source of light is a virtual one (virtual image of the ultimate source of light, See Fig. 1, Diagram IV) and is back of the mirror so that on rotation of the face of the mirror toward the left it moves toward the right. With a concave mirror the immediate source of illumination is a real image (of the ultimate source of light, See Fig. 2, Diagram IV) that is in front of the mirror and hence moves toward the left when the face of the mirror is rotated.
(3) According to (2) the direction of moverisnt of the lighted field of the retina, while it is not affected by the refractive state of the eye, depenus on the lind of mirror used. From this and from (I) it follovs that for a given eye the direction of movement of the shadow in the pupil depends on the kind of mirror used. Set up a Thorington's eye as in Bxp. 28.
(a) Set the eye for emmetropia. With a plane mirror before jour eye take a position just one metre from the observed eye. Reflect light into the eye and observe the pupil as a disc of light. Now rotate the nirior slowly to the left; a shadow Will nove across the pupil in the same direction as tiro face of the airror is rotated. Now put a concave mirror before your eje and rotate it slowly toward the left; the shadow in the pupil will now move toward the right or in tile direction opposed to the direction of rotation of the face of the airror.
(b) Set the eye for mypermetropia and repeat (a); the results will be the sande.
M95-

(s)
(s)$40 \cos +\operatorname{sen}+\operatorname{sen}$
4. an 1 2etact ${ }^{2}$4.-. ス̌aterx

anotstonatit sobtacece

做: tive 3t
2r - Dativos - Dativos

9rict 5

 9
4av) 4 -
4av) 4 - 56

-21-

(c) lake the eye strongly myopic and rotate a plane mirror before it; the direction of movement of the shadow is opposed to that of the face of the mirror. Rotate a concave mirror before the eye; the direction of the shadow movement is the same as that of the face of the mirror.
(d) Now set the eye at myopis 1. In this position light from a point on the retina leaves the eye in a bundle whose rays converge to a point one metre from the eye. Perform retinoscopy with a plane mirror; the disc of light disappears all at once. With a concave mirror it does the same. This condition, where the light leaving the observed $e_{j} \theta$ converges just to the observer's eye is the only one in which a plane mirror and a concave mirror give a like result; under any other condition, or whenever a movement of the shadow is to be sean, the results with the two kinds of mirrors are opposed to each other.
(4) Detection of Anotropia. - Set up a Thorington's eye. Put your eye at just one metre distance and perform retinoscopy with a plane rirror. One of three things follow, viz: (a) the shadow moves in a direction opposed to that of the face of the mirror; (b) there is no shadov movement, the disc of light disappears all at once; (c) the shadow moves in the same direction as the face of the mirror is rotated.

According to (1) (d) case (a) must be a condition in which the light coming out of the eye comes to focus at a distance within one metre of the eye. The eye is myopic and, we can say at once, to a degree greater than one diopter.

According to (I) (a) and (b) it cannot ve said at once whether the eye in case (c) is hypermetropic, emmetropic, or myopic to a degree less than one diopter. Put a convex lens of one diopter just before the eye and perform retinoscopy.
(i) If the light disc disappears all at once, the convex lens is now bringing the light coming from the observed eye to a focus at a distance of one metre from it. According to (1) (c) the eye must be ematropic.
(ii) If the shadew noves in the same direction as the face of the mirror, the convex lens does not bring the light to focus within one metre; the eye must be hypermetropic.
(iii) If the shadow moves in a direct on opposed to that of the face of the mirror, the lens is now bringing the light to focus within one metre; the eye must be weakly myopic, or to a degree less than one diopter.
(5) Heasurement of Ametropia. - This is done by determining the strength of lens needed by a relaxed eye to form a refracting system equivalent to a relaxed emetropic eye. It is evident, however, tiat to do this by retinoscopy it would be of

no avail to make the refracting system such that the light from the retina leaves the refracting system in bundles of parallel rays because that condition cannot be distinguished directly from some others by retinoscopy, namoly, hypermetropia and myopia of less than one diopter. There is one state of refraction which gives a distinctive result with the retinscope, namely: when the light emerging from the refracting system converges to the observer's eye, which being at a known distance from the refracting system, enables us to say what the refracting power of the system is (See (l) (b)). The method then is to find by trial what lens must be set before the eye under examination to cause the light disc in its pxpil to disappear all at once when the observing eye is at ont metre distance from it. The refracting system, made up of an eye with such a lens before it, has a refracting power plus 1 and, knowing the strength of lens necessary to make it so, we can calculate what strength of lens would have been necessary to cause the light leaving the eye to leave the refracting system in parallel bundles. Remember that the refracting power of a convex lens is expressed by a numeral with a plus sign, of a concave lens by a numeral with a minus sign. The refractive power of the lens needed by an eye to form an emmetropic refracting system is calculated by algebraically subtracting +1 from the lens, found by retinoscopy, necessary to bring the light from the eye to focus at one metre. Examples.
(a) It is found necessary to set a +1 lens before an eye to make the light disc disappear all at once; $(+1-(+1)=0 \%$ this means that no lens need be put before the eye to make light from it go out in parallel bundles of rays, the eye is emmetropic.
(b) It is found necessary to put no lens before the oye to make the light disc disappear all at once; $(0)-+1)=(-1)$; this means that a concave lens of one diopter must be put before the eye to make the light go out from the refractory system in parallel bundes. The eye has one diopter of myopia. Since it requires a lens of minus sign to neutralize the anietropia of this eye it is evident that to express the measure of the ametropia the opposite sign must be used, hence the eye has ametropia +1 .
(c) It is found necessary to put a -1 lens before the eye; $(-1)-(+1)=(-2)$; a concave Iens of two diopters must be put before the eye to form an emmetropic system; the eye has myopia of 2 diopters or an ametropia +2 .
(d) It is found necessary to put a +2 lens before the eye; $(+2)-(+1)=(+1)$; a convex lens of one diopter must be put before the eye to make it an emmetropic system; the eye has hypermetropia of 1 diopter, or ametropia-1.
-980
Basent
then theredethe

4.4.

8:

A fallnw student sots a Thorington's eye at an ametropic unknown to you. Deternine by means of the retinnscope and correcting lenses the dogree of the ametropia.

Axp. 20 - astignatism (Regular).
(1) Iook at a figure showing a number of Iines radiating Borizontally, vertically and in intermediate directions from a camon center. First fix the figure at such a distance that one can comfortably accommodate. If astigmatism is present, all the lines cannot io seen with equel aistinctness at the same tive, wut they can all be successfully accommedated for. Next, bring the fisure to the near-onint of distinct visinn fer the horizontal and reighboring lines. Probably the vertical lines Fill be hlurreü and cannot $b=$ macie as distinct as the horizontal b_{j} and effort of accommouation. If the eje is distinctly astigmatic, the difference will le marleed.
(2) Use the opthalmoneter provided in the 1 boratory. I is instruat is an invrovenent on Telinoltz's opthalmometer in that with it astifiatism can ie aetected directly, and it does more than measure the distance anart of two iniages on a curved surface. "ith it, by rroper adjustment, the radius of cuivatuie of a reflecting surfice can ve read off directly. Fiaise or lower the chin rest until the upper lar of the he d-rest is just aiove the yatient's ejebrors, his head resting exactly vertical. The e, e not to oe examined is covered rith a blini. the patient louks ste adily into tile opening of the tuve एith tis cje wide open. The heitit of the instrument havine been adjustea, a clear i:late of the nires is obtained bj_{y} focusing. I'ie tuine is tien turnud horizontalls, slig'itly to the ritht or left until tie tro inages of tie aires are close togetirer and aqualdj distinct. Fotate tire outer tuke until the lont heridian lines of the inage are exactly in line with each otizer. If tilere is no astiginitism, this mill be seen at all axial positinns; if there is istigmatism, at only two pesitirns. in axis living thus vaen obtainad, the siaduated disc on eitioer side of tile tuive is rotated until the sherter lines or sours of tile ince also unite, forning a nerfect cross with the innger ones, ind the adjustavie pointer on the left-hand disc is made to coincice with the stationarj one and a reading taker. Now rotate tile outer tuve of the telescope rotatint i :" the sleeve or collar, throubh yo degreas; the loits axial lines of the inages will we in alignment without further adjustment. jut if the eye is astiginatic, the short lines will not. Ey rotating tise graduated disc or $\begin{aligned} & \text { Wide'r radii of curvature of the cornea in various }\end{aligned}$ meridians are re:d off, the short li:es are mie to coinctue, so
that a perfect cross is again formed, and the graduating is read. The difference wetween this and the orevious reading, i.e., the difference cetween the twe pointers, gives the difference in the curvature of the cornea in the twe meridians. The inages of circles winich form the outer portion of the mires are oval in ordinar, astigmatism.

Axp. 21. Stud. if the Vervical Sympathetic.
(1) Signs of paraiysia in the lat After Soction of the Cervical Sympathotic.

Befora operating oiserve the ejes of the cat and note any difference of size or shape. Isolate one cervical sympathetic nerve unuer asestic conditiors and section the nerve. lake the median skin incision of the neck as small as possible. Ailot for recovery fron the anesthetic and comare:
a) Size of the pupil of tire rig'at with the left eye.
b) idth of the palpebral fissure on the two sides.
c) Tenperatuin of the right and Ieft ears.
d) Position of tie nictitating membrane on each side.
e Prominerce of the ajewall or eac'l side.
f) Appearence of tire corjunctiva or both sides.
iexsure as accurately an you can the widin of the pupil on each side. Instill into eachl oonjunctival sac several droos of a 2 ; cocaine solution. Hew does it affect the size of the pupil on tile two sides. Allow $3 / 4$ hour to elapse from time of instillation of the cocaine till makint observation. Instill cocaine ever, other day during the next week and note the effect on tie size of the two pupils. *
(2) Stuci of the pipsiologL of the Carvical, Sympathatic.

Atherization and tracheotomy. Do not wet or handle tire ears. Isolate tize cervical sympathatic on one side. In the cat (and rabbit) this nerve though vithin the vagus sheat? is a distinct nerve anatomically. Place a lifting ligature under the nerve. Holu up the ear to the light so the. tio blood vessels can be clearly seen. liow ligature the nerve. A tunsient constriction of the arterioles may we seen to bake place the moment

* Shecific References:

Uuar jorbus Basedowii, Landstróm, Nordiskt Iedicinstt. Arliv, 40, 1907, p. 153. Tber die Anatomie der Etatten :uskulatur der Orbita und lider, speciell die lerm ana Orbitalis lusculosa, Trauss, :uncl2. Iiod. och. 58, 1911, 0. 1993, Sent. 19.

of Ligation. The constriction soon sives way to a dilation. Thy? Pieserve tine upper end of the nerve and stimulate with a weal totanizint currant. Note:
a) Iffect on the size of the vessels of the ear; on the tomperature of the ear.
b) Size of the pupil.
c) lictitating nembrane.
d) : ovement of the ejelids? Change in widt? of the palpewral fissure?
e) jovenent of the ejeivall independent of the movement of tre elilis.
f) : ovement of tire hair. It jajy be necessary to strengthen the current to elicit movement of the hair.
g) Isolate sciatic nerve on ench siue and stimulate central enu vith a tetanizing cur-ent noting effect on pupil. Explain.

In conclusion, we will enceavor ta demonstrate the possilility of crossed or alternatint paraljses by lesions involving different parts of tha irain stem. Io accoinplish this the animal is Dut on its side and urain exposed with oone forceps and trem jilne. Tenorrhage is controlled with soft wax and elovation of the head. The cereural semisplneras are now removed. Iiow stinulate tie crus cereiri and pors on one side and rote effects. ixplain. - dxplore floor of tie fourtl ventricle electrically. Locate nuclei of orisin of X, XI, XII nerves, etc.
2. $13.2 \rightarrow 0$

Name in full \qquad
Academic title Asst Proferear in Com'l Organization
(State in full, without abbreviation)
Enlistment

State in detail military explaits performed, honors and marks of distinction conferred (including service chevrons), and any items of interest concorning your service, such as position of instructor in special subject, etc.
$02-24-1$ nig. $9 \quad 2$ tovors $2 \mathrm{c}=\frac{1}{2}$
 ноหА多
 atha
 equather vo wintele eq "pmififiras ebt gfaya , etan milonda misto Da a valata belius
©he frhunl kruirm
©he Elpututary sohnol 3nurnal

Edited and published ay
©he 国quartment of Ehuration ©he luitursity of Chitagn chicago, illinois

no "ivan seread" exenat er bunanine
thatiabation as ace tubbinty
 men.
R. K. Lyman

State in detail military exploits performed, honors and marks of distinction conferred (including service chevrons), and any items of interest concerning your service, such as position of instructor in special subject, etc.

Include all service civil and military

Academic title Head of the Reader's Department, Harper Memorial Library, University of Chicago.

[^0]: * You will find a framed copy of this Diagram hanging in the laboratory (Room II).

[^1]: $+8$

[^2]:

[^3]:

